
RESEARCH ARTICLE

Inference of Network Dynamics and
Metabolic Interactions in the Gut
Microbiome
Steven N. Steinway1,2☯, Matthew B. Biggs3☯, Thomas P. Loughran Jr2, Jason A. Papin3*,
Reka Albert4*

1 College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America,
2 University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia, United States of
America, 3 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United
States of America, 4 Department of Physics, Pennsylvania State University, University Park, Pennsylvania,
United States of America

☯ These authors contributed equally to this work.
* papin@virginia.edu (JAP); ralbert@phys.psu.edu (RA)

Abstract
We present a novel methodology to construct a Boolean dynamic model from time series

metagenomic information and integrate this modeling with genome-scale metabolic network

reconstructions to identify metabolic underpinnings for microbial interactions. We apply this

in the context of a critical health issue: clindamycin antibiotic treatment and opportunistic

Clostridium difficile infection. Our model recapitulates known dynamics of clindamycin anti-

biotic treatment and C. difficile infection and predicts therapeutic probiotic interventions to

suppressC. difficile infection. Genome-scale metabolic network reconstructions reveal met-

abolic differences between community members and are used to explore the role of metab-

olism in the observed microbial interactions. In vitro experimental data validate a key result

of our computational model, that B. intestinihominis can in fact slow C. difficile growth.

Author Summary

The community of bacteria that live in our intestines (called the “gut microbiome”) is im-
portant to normal intestinal function, and destruction of this community has a causative
role in diseases including obesity, diabetes, and even neurological disorders. Clostridum
difficile is an opportunistic pathogenic bacterium that causes potentially life-threatening
intestinal inflammation and diarrhea and frequently occurs after antibiotic treatment,
which wipes out the normal intestinal bacterial community. We use a mathematical model
to identify how the normal bacterial community interacts and how this community
changes with antibiotic treatment and C. difficile infection. We use this model to identify
bacteria that may inhibit C. difficile growth. Our model and subsequent experiments indi-
cate that Barnesiella intestinihominis inhibits C. difficile growth. This result suggests that
B. intestinihominis could potentially be used as a probiotic to treat or prevent C. difficile
infection.
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Introduction
Human health is inseparably connected to the billions of microbes that live in and on us. Cur-
rent research shows that our associations with microbes are, more often than not, essential for
our health [1]. The microbes that live in and on us (collectively our “microbiome”) help us to
digest our food, train our immune systems, and protect us from pathogens [2,3]. The gut
microbiome is an enormous community, consisting of hundreds of species and trillions of indi-
vidual interacting bacteria [4]. Microbial community composition often persists for years with-
out significant change [5].

When change comes, however, it can have unpredictable and sometimes fatal consequences.
Acute and recurring infections by Clostridium difficile have been strongly linked to changes in
gut microbiota [6]. The generally accepted paradigm is that antibiotic treatment (or some
other perturbation) significantly disrupts the microbial community structure in the gut, which
creates a void that C. difficile will subsequently fill [7–10]. Such infections occur in roughly
600,000 people in the United States each year (this number is on the rise), with an associated
mortality rate of 2.3% [11]. Each year, healthcare costs associated with C. difficile infection are
in excess of $3.2 billion [11]. An altered gut flora has further been identified as a causal factor
in obesity, diabetes, some cancers and behavioral disorders [12-17].

What promotes the stability of a microbial community, or causes its collapse, is poorly
understood. Until we know what promotes stability, we cannot design targeted treatments that
prevent microbiome disruption, nor can we rebuild a disrupted microbiome. Studying the sys-
tem level properties and dynamics of a large community is impossible using traditional micro-
biology approaches. However, network science is an emerging field which provides a powerful
framework for the study of complex systems like the gut microbiome [18–23]. Previous efforts
to capture the essential dynamics of the gut have made heavy use of ordinary differential equa-
tion (ODE) models [24,25]. Such models require the estimation of many parameters. With so
many degrees of freedom, it is possible to overfit the underlying data, and it is difficult to scale
up to larger communities [26,27]. Boolean dynamic models, conversely, require far less param-
eterization. Such models capture the essential dynamics of a system, and scale to larger systems.
Boolean models have been successfully applied at the molecular [28,29], cellular [20], and com-
munity levels [30]. Here we present the first Boolean dynamic model constructed frommetage-
nomic sequence information and the first application of Boolean modeling to microbial
community analysis.

We analyze the dynamic nature of the gut microbiome, focusing on the effect of clindamy-
cin antibiotic treatment and C. difficile infection on gut microbial community structure. We
generate a microbial interaction network and dynamical model based on time-series data from
metagenome data from a population of mice. We present the results of a dynamic network
analysis, including steady-state conditions, how those steady states are reached and main-
tained, how they relate to the health or disease status of the mice, and how targeted changes in
the network can transition the community from a disease state to a healthy state. Furthermore,
knowing howmicrobes positively or negatively impact each other—particularly for key
microbes in the community—increases the therapeutic utility of the inferred interaction net-
work. We produced genome-scale metabolic reconstructions of the taxa represented in this
community [31], and probe how metabolism could—and could not—contribute to the mecha-
nistic underpinnings of the observed interactions. We present validating experimental evidence
consistent with our computational results, indicating that a member of the normal gut flora,
Barnesiella, can in fact slow C. difficile growth.
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Methods

Data Sources
Buffie et al. reported treating mice with clindamycin and tracking microbial abundance by 16S
sequencing [32]. Mice treated with clindamycin were more susceptible to C. difficile infection
than controls. The collection of 16S sequences corresponding to these experiments was ana-
lyzed by Stein et al. [24]. First, Stein et al. aggregated the data by quantifying microbial abun-
dance at the genus level. Abundances of the ten most abundant genera and an “other” group
were presented as operational taxonomic unit (OTU) counts per sample. We use the aggre-
gated abundances from Stein et al. as the starting point for our modeling pipeline (Fig 1).

This processed dataset consisted of nine samples and three treatment groups (n = 3 replicates
per treatment group). The first treatment group (here called “Healthy”) received spores of C. dif-
ficile at t = 0 days, and was used to determine the susceptibility of the native microbiota to inva-
sion. The second treatment group (here called “clindamycin treated”) received a single dose of
clindamycin at t = -1 days to assess the effect of the antibiotic alone, and the third treatment
group (here called “clindamycin+ C. difficile treated”) received a single dose of clindamycin (at t
= -1 days) and, on the following day, was inoculated with C. difficile spores (S1A Fig). Under the
clindamycin+ C. difficile treatment group conditions, C. difficile could colonize the mice and pro-
duce colitis; however this was not possible under the first two treatment group conditions.

Interpolation of Missing Genus Abundance Information
The gut bacterial genus abundance dataset included some variation in terms of time points in
which genera were sampled. That is, genus abundances were measured between 0 to 23 days;
however, not all samples had measurements at all the time points (S1A Fig). Particularly, the
healthy population only included time points at 0, 2, 6, and 13 days and Sample 1 of clindamycin
+ C. difficile treated population was missing the 9 day time point. Missing abundance values for
these 4 points were estimated using an interpolation approach (S1B Fig). For healthy samples,
the 16 and 23 day time points could not be interpolated as the last experimentally identified time
point for these samples is at 13 days. The assumption of the approximated polynomial for these
samples is that extrapolated data points are linear using the slope of the interpolating curve at
the nearest data point. Because genera abundances are fairly stable across time in this treatment
group (i.e. the slope of most of the genera abundances is approximately zero), extrapolating two
time points was deemed reasonable. A principal component analysis was completed on the inter-
polated data (Fig 2A) and shows that the interpolated time series bacterial genus abundance data
clusters by experimental treatment group in the first two principal components. Furthermore,
the results of the binarization for the healthy population suggest that interpolation did not have
any concerning effects on the 16 and 23 day time points (S2 Fig).

Natural cubic spline interpolation was used to estimate genus abundances at missing time
points in some samples. A cubic spline is constructed of piecewise third order (cubic) polyno-
mials which pass through the known data points and has continuous first and second deriva-
tives across all points in the dataset. Natural cubic spline is a cubic spline that has a second
derivative equal to zero at the end points of the dataset [33]. Natural splines were interpolated
such that all datasets had time points at single day intervals through the 23 day time point
(S1B Fig).

Network Modeling Framework
We use a Boolean framework in which each network node is described by one of two qualita-
tive states: ON or OFF. We chose this framework because of its computational feasibility and
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capacity to be constructed with minimal and qualitative biological data [34]. The ON (logical
1) state means an above threshold abundance of a bacterial genus whereas the OFF (logical 0)
state means below-threshold genus absence. The putative biological relationships among gen-
era are expressed as mathematical equations using Boolean operators [29,34]. We inferred
putative Boolean regulatory functions for each node, which are able to best capture the trends
in the bacterial abundances. These rules, (edges in the interaction network) can be assigned a
direction, representing information flow, i.e. effect from the source (upstream) node to the tar-
get (downstream) node. Furthermore, edges can be characterized as positive (growth promot-
ing) or negative (growth suppressing). An additional layer of network analysis is the dynamic

Fig 1. Dynamic analysis workflow. Time course genus abundance information was acquired frommetagenomic sequencing of mouse gastrointestinal
tracts under varying experimental conditions. Missing time points from experimental data were estimated such that genus abundances existed at the same
time points across all treatment groups. Next, genus abundances were binarized such that Boolean regulatory relationships could be inferred. A dynamic
Boolean model was constructed to explore gut microbial dynamics, therapeutic interventions, and metabolic mediators of bacterial regulatory relationships.

doi:10.1371/journal.pcbi.1004338.g001
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model, which is used to express the behavior of a system over time by characterizing each node
by a state variable (e.g., abundance) and a function that describes its regulation. Dynamic mod-
els can be categorized as continuous or discrete, according to the type of node state variable
used. Continuous models use a set of differential equations; however, the paucity of known
kinetic details for inter-genus and/or inter-species interactions makes these models difficult to
implement.

Binarization
Genus abundance data was binarized (converted to a presence-absence dataset) to enable infer-
ence of Boolean relationships for modeling applications. We adapted a previously developed
approach called iterative k-means binarization with a clustering depth of 3 (KM3) for this pur-
pose [35]. This approach was employed because binarized data is able to maintain complex

Fig 2. Construction of a network model of the gut microbiome from time coursemetagenomic genus abundance information. Principal component
analysis coefficients associated with each sample in the metagenomic genus abundance dataset was completed for A) interpolated genus abundances and
B) binarized interpolated genus abundances. ‘*’ = Healthy; ‘^’ = clindamycin treated; ‘#’ = clindamycin+ C. difficile treated. C) Consensus binarization of
genus abundance information. Each heatmap represents the consensus binarization for each treatment group. The horizontal axis represents the day of the
experiment that the sample came from. The vertical axis represents the specific genera being modeled. Each genus was binarized to a 1 (ON; above activity
threshold) or 0 (OFF; below activity threshold). D) Interaction rules were inferred from the binarized data. The interaction rules were simplified for visualization
(compound rules were broken into simple one-to-one edges).

doi:10.1371/journal.pcbi.1004338.g002
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oscillatory behavior in Boolean models constructed from this data, whereas other binarization
approaches fail to maintain these features [35].

Briefly, this approach uses k-means clustering with a depth of clustering d and an initial
number of clusters k = 2d. In each iteration, data for a specific genus G are clustered into k
unique clusters C1

G,. . .,C
k
G, then for each cluster, Cn

G, all the values are replaced by the mean
value of Cn

G. For the next iteration, the value of d is decreased and clustering is repeated. This
methodology is repeated until d = 1. This approach, with d = 3 (called here as KM3 binariza-
tion) has previously been demonstrated as a superior binarization methodology to other binari-
zation approaches for Boolean model construction because it conserves oscillatory behavior
[35]. These analyses were performed using custom Python code based on a previously written
algorithm [35] and is available in the supplemental materials.

Because KM3 binarization has a stochastic component (the initial grouping of binarization
clusters), we employed KM3 binarization on the entire bacterial genus abundance time series
dataset 1000 times. The average binarization for each sample (S2 Fig) was used to determine
the most probable binarized state of each genus in each sample at each time point (S3 Fig). A
principal component analysis of the most probable binarized genus abundances for each sam-
ple demonstrates that as with the continuous time series abundances (Fig 2A), binarized bacte-
rial genus abundance data cluster by experimental treatment group (Fig 2B). For inference of
Boolean rules from the binarized genus abundances (S3 Fig), the consensus of two of three
samples for each treatment population was used as the binarized state of each genus at each
time point in each sample (Fig 2C).

Inference of Boolean Rules from Time Series Genus Abundance
Information
The Best-fit extension was applied to learn Boolean rules from the binarized time series genus
abundance information [36]. For each variable (genus) Xi in the binarized time series genus
abundance data, Best-fit identifies the set of Boolean rules with k variables (regulators) that
explains the variable’s time pattern with the least error size. The algorithm uses partially defined
Boolean functions pdBf (T, F), where the set of true (T) and false vectors (F) are defined as T =
{X0 2 {0, 1}k: Xi (t + 1) = 1} and F = {X0 2 {0, 1}k: Xi (t + 1) = 0}. Intuitively, the partial Boolean
function summarizes the states of the putative regulators that correspond to a turning ON (T) or
turning OFF (F) of the target variable. The error size ε of pdBf(T,F) is defined as the minimum
number of inconsistencies within X0 that best classifies the T and F values of the dataset. The
Best-Fit extension works by identifying smallest size X0 for Xi. For more detailed information
refer to [36]. In line with this, we considered the most parsimonious representation of the rules
with the smallest ε. If the most parsimonious rule was self-regulation, we also considered rules
with the same ε that included another regulator. If multiple rules fit these criteria for a given Xi,
it implied that they can independently represent the inferred regulatory relationships. In cases
where the alternatives had the same value of (non-zero) ε, we explored combinations (such as
appending them by an OR rule) and used the combination that best described the experimentally
observed final (steady state) outcomes. For example, we combined the two alternative rules for
Blautia with an OR relationship. In the case of Barnesiella, we chained three rules ("Other",
"Lachnospiraceae_other", "Lachnospiraceae") by an OR relationship, and "not Clindamycin" by
an AND relationship to incorporate the loss of Barnesiella in the presence of clindamycin (Fig
2C). This was also done for rules for “Lachnospiraceae”, “Lachnospiraceae_other” and “Other”
and all four nodes attained the same rule. There are six nodes with multiple inferred (alternative)
rules: “Barnesiella”,”Blautia”,”Enterococcus”,”Lachnospiraceae”,”Lachnospiraceae_other”, and”-
Other” had 4, 2, 5, 4, 4, and 4 rules, respectively. The six other nodes had a single inferred rule.
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The network in Fig 2C represents the union of all of the alternative rules produced by Best-Fit,
or in other words,–it is a super-network of all alternative rules. Any alternative networks would
be a sub-network of what we show. A strongly connected component between the nodes inhib-
ited by clindamycin is a feature of the vast majority of these sub-networks. We used the imple-
mentation of Best-Fit in the R package BoolNet [37].

Dynamic Analysis
Dynamic analysis is performed by applying the inferred Boolean functions in succession until a
steady state is reached. Boolean models and discrete dynamic models in general focus on state
transitions instead of following the system in continuous time. Thus, time is an implicit vari-
able in these models. The network transitions from an initial condition (initial state of the bac-
terial community) until an attractor is reached. An attractor can be a fixed point (steady state)
or a set of states that repeat indefinitely (a complex attractor). The basin of attraction refers to
the set of initial conditions that lead the system to a specific attractor. For the network under
consideration, the complete state space can be traversed by enumerating every possible combi-
nation of node states (212) and applying the inferred Boolean functions (or “update rules”) to
determine paths linking those states. The state transition network describes all possible com-
munity trajectories from initial conditions to steady states, given the observed interactions
between bacteria in the community.

We made use of two update schemes to simulate network dynamics: synchronous (deter-
ministic) and asynchronous (stochastic). Synchronous models are the simplest update method:
all nodes are updated at multiples of a common time step based on the previous state of the sys-
tem. The synchronous model is deterministic in that the sequence of state transitions is definite
for identical initial conditions of a model. In asynchronous models, the nodes are updated indi-
vidually, depending on the timing information, or lack thereof, of individual biological events.
In the general asynchronous model used here, a single node is randomly updated at each time
step [38]. The general asynchronous model is useful when there is heterogeneity in the timing
of network events but when the specific timing is unknown. Due to the heterogeneous mecha-
nisms by which bacteria interact, we made the assumption of time heterogeneity without spe-
cifically known time relationships. Synchronous and asynchronous Boolean models have the
same fixed points, because fixed points are independent of the implementation of time. How-
ever, the basin of attraction of each fixed point (i.e. the initial conditions that lead to each fixed
point) may differ between synchronous and asynchronous models (S2 Table). For identifica-
tion of all of the fixed points in the network (the attractor landscape), the synchronous updat-
ing scheme was used. However, for the perturbation analysis, the asynchronous updating
scheme was used because it more realistically models the possible trajectories in a stochastic
and/or time-heterogeneous system. The simulations of the gut microbiome model were per-
formed using custom Python code built on top of the BooleanNet Python library, which facili-
tates Boolean simulations [39]. Our custom Python code is available in the supplemental
materials.

Perturbation Analysis
To capture the effect of removal (knockout) or addition (probiotic; forced over abundance) of
genera, modification of the states/rules to describe removal or addition states were performed.
These modifications were implemented in BooleanNet by setting the corresponding nodes to
either OFF (removal) or ON (addition) and then removing the corresponding updating rules
for these nodes for the simulations. By examining many such forced perturbations, we can
identify potential therapeutic strategies, many of which may not be obvious or intuitive,
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particularly as network complexity increases. We used asynchronous update when simulating
the effect of perturbations on the microbial communities. In each case we performed 1000 sim-
ulations and report the percentage of simulations that achieve a certain outcome.

Generating Genus-Level Genome-Scale Metabolic Reconstructions
To generate draft metabolic network reconstructions for each of the ten genera in the paper,
we first obtained genome sequences for representative species by searching the “Genomes”
database of the National Center for Biotechnology Information (NCBI). Complete genomes for
the first ten (or if less than ten, all) species within the appropriate genus were downloaded.
During the process of reconstructing genus-level metabolic reconstructions, some genera were
underrepresented (fewer than 10 species genomes) in the NCBI Genome database, including
Akkermansia, Barnesiella and Coprobacillus (S3 Table). The search result order is based on
record update time, and so it is quasi-random. Genomes were uploaded to the rapid annota-
tions using subsystems technology (RAST) server for annotation [40]. Draft metabolic network
reconstructions were generated by providing the RAST annotations to the Model SEED service
[41]. Metabolic network reconstructions were downloaded in “.xls” format. Genus-level meta-
bolic reconstructions were produced by taking the union of all species-level reconstructions
corresponding to each genus, as has been done previously [42]. The one exception was C. diffi-
cile, which was produced by taking the union of three strain-level reconstructions.

Subsystem Enrichment Analysis
Subsystems were defined as the Kyoto Encyclopedia of Genes and Genomes (KEGG) map with
which each reaction was associated [43,44]. These associations were determined based on
annotations in the Model SEED database [41]. To quantify enrichment, the complete set of
unique reactions from all genus-level reconstructions was pooled, and the subsystem annota-
tions corresponding to those reactions were counted. To determine enrichment for a given sub-
set of the community (either a single genus-level reconstruction, or a set of reconstructions
corresponding to a subnetwork), the subsystem occurrences were counted within the subset.
The probability of a reconstruction containing N total subsystem annotations, withM or more
occurrences of subsystem I, was determined by taking the sum of a hypergeometric probability
distribution function (PDF) fromM to the total occurrences of subsystem I in the overall popu-
lation. Enrichment analysis was performed in Matlab [45].

Identifying Seed Sets and Defining Metabolic Competition and
Mutualism Scores
To quantify metabolic interactions, we started by utilizing the seed set detection algorithm
developed by Borenstein et al. [46,47]. The algorithm follows three steps:

1. The genome-scale metabolic network reconstruction is reduced into simple one-to-one
edges, such that for each reaction, each substrate and product pair forms an edge (e.g. A + B
! C would become A! C and B! C).

2. The network is divided into strongly connected components, those groups of nodes for
which two paths of opposite directions (e.g. A! B and B! A) exist between any two
nodes in the group.

3. Nodes (and strongly connected components with five or fewer nodes) for which there are
exclusively outgoing edges are defined as “inputs” to the model, or seed metabolites.
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The rationale is that metabolites that feed into the network, but cannot be produced by any
reactions within the network, must be obtained from the environment.

Competition metrics were generated following the process of Levy and Borenstein [46]. For
a given pair of genera, the competition score is defined as:

CompScoreij ¼
jSeedSeti \ SeedSetjj

jSeedSetij
ð1Þ

Here SeedSeti is the set of obligatory input metabolites to the metabolic network reconstruc-
tion for genus i, and |SeedSeti| is the number of metabolites contained in SeedSeti. The competi-
tion score indicates the fractional overlap of inputs that genus i shares with genus j, and so
ranges between zero and one. The higher the score, the more similar the metabolic inputs to
the two networks, making competition more likely.

For a given pair of genera, the mutualism score is defined as:

MutualismScoreij ¼
jSeedSeti\:SeedSetjj

jSeedSetij
ð2Þ

Here ¬SeedSetj is the set of metabolites that can be produced by the metabolic network for
species j (i.e. all non-seed metabolites). The mutualism score indicates the fractional overlap of
inputs that genus i consumes which genus j can potentially provide. The mutualism score
ranges between zero and one. The higher the score, the more potential there is for nutrient
sharing between species. While the score does not measure “mutualism” per se (it cannot nec-
essarily distinguish between other interactions such as commensalism or amenalism [48]), for
simplicity, we will refer to these scores as the competition and mutualism scores.

All metabolic reconstructions, seed sets, competition scores and mutualism scores are avail-
able in the supplemental materials. Seed set generation was performed using customMatlab
scripts, which are available in the supplement. [45]. Statistical tests were performed in R [49].

Co-culture and Spent Media Experiments
Barnesiella intestinihominis DSM 21032 and Clostridium difficile VPI 10463 were grown anaer-
obically in PRAS chopped meat medium (CMB) (Anaerobe Systems, Morgan Hill, CA) at 37
C. To prepare B. intestinihominis spent medium, B. intestinihominis was grown in CMB until
stationary phase (44 hours). The saturated culture was centrifuged, and the supernatant was fil-
ter sterilized (0.22 μM pore size). Growth curves were obtained by inoculating batch cultures in
96-well plates and gathering optical density measurements (870 nm) using a small plate reader
that fits in the anaerobic chamber [50]. Single cultures were inoculated from overnight liquid
culture to a starting density of 0.01. The co-cultures were started at a 1:1 ratio, for a total start-
ing density of 0.02. Optical density was measured every 2 minutes for 24 hours, and the result-
ing growth curves were analyzed in Matlab [45]. Maximum growth rates were calculated by
fitting a smooth line to each growth curve, and finding the maximum growth rate from among
the instantaneous growth rates over the whole time course: [log(ODt+1)—log(ODt)] / [t+1-t].
The achieved bacterial density—area under the growth curve (AUC)—in a culture was calcu-
lated by integrating over the growth curve in each experiment using the “trapz()” function in
Matlab. It can be thought of as representing the total biomass produced over time. The simply
additive null model was calculated by fitting a Lotka-Volterra model [24] to the single cultures
for both B. intestihominis and C. difficile. The null model of co-culture (assuming zero interac-
tion between species) was simulated by using the parameters from single culture, and summing
the predicted OD870 values.
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All scripts used to analyze the data are available at https://bitbucket.org/
gutmicrobiomepaper/microbiomenetworkmodelpaper/wiki/Home.

Results

Processing of a Microbial Genus Abundance Dataset for Network
Inference
To capture the dynamics of inter-genus interactions in the intestinal tract we employed a pipe-
line (Fig 1) which translates metagenomic genus abundance information into a dynamic Bool-
ean model. This approach involves three steps: 1) discretization (binarization) of genus
abundances, 2) learning Boolean relationships among genera, and 3) translation of genus asso-
ciations into a Boolean (discrete) dynamic model.

Construction of a Dynamic Network Model from Binarized Time Series
Microbial Genus Abundance Information
Boolean rules (S1 Table) were inferred from the time series binarized genus abundances using
an implementation of the Best-fit extension [36] in the R Boolean network inference package
BoolNet [37](see Methods). A network of 12 nodes and 33 edges was inferred (Fig 2D). The
inferred interaction network has a clustered structure: the cluster (subnetwork) containing the
two Lachnospiraceae nodes and Barnesiella is strongly influenced by clindamycin whereas the
other subnetwork is largely independent of the first, except for the single edge between Barne-
siella and C. difficile (Fig 2D). In fact, Lachnospiraceae nodes, Barnesiella and the group of
“Other” genera form a strongly connected component; that is, every node is reachable from
every other node. Most nodes of the second subnetwork are positively influenced by C. difficile,
with the exception of Coprobacillus, for which no regulation by other nodes was inferred, and
Akkermansia, which is inferred to be regulated only by Coprobacillus. These latter two genera
are transiently present (around day 5) in the clindamycin treatment group, but they do not
appear in the final states of any of the treatment groups (see S1 Fig). This network structure is
consistent with published data in which the dominant Firmicutes (Lachnospiraceae) and Bac-
teroidetes (Barnesiella) are devastated by antibiotic administration [51,52]. Furthermore, the
clustered structure (Fig 2D) supports the established mechanism of C. difficile colitis: loss of
normal gut flora, which normally suppresses opportunistic infection (clindamycin cluster), and
the presence of C. difficile at a minimum inoculum (C. difficile cluster) [10,53]. The network
clusters have a single route of interaction between Barnesiella and C. difficile.

The negative influence of Barnesiella on C. difficile is in agreement with recently published
findings in which Barnesiella was strongly correlated with C. difficile clearance [54]. The role of
Barnesiella as an inhibitor of another pathogen (vancomycin-resistant Enterococci (VRE)) has
been shown in mice [55], which is also visible in the network model as an indirect relationship
between Barnesiella and Enterococcus (Fig 2D). Related species of Bacteroidetes have been
shown to play vital roles in protection from C. difficile infection in mice [56]. Furthermore, the
network structure shows that Lachnospiraceae positively interacts with Barnesiella, leading to
an indirect suppression of C. difficile. Interestingly, the two Lachnospiraceae nodes and the
“Other” node form a strongly connected component, suggesting a similar role in the network,
particularly in promoting growth of Barnesiella, which directly suppresses C. difficile. In sup-
port of this finding, Lachnospiraceae has been shown to protect mice against C. difficile coloni-
zation [52,57]. Therefore, the structure of the network is both a parsimonious representation of
the current data set, and is supported by literature evidence.

Network Model of the Gut Microbiome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004338 June 23, 2015 10 / 25

https://bitbucket.org/gutmicrobiomepaper/microbiomenetworkmodelpaper/wiki/Home
https://bitbucket.org/gutmicrobiomepaper/microbiomenetworkmodelpaper/wiki/Home


We applied dynamic analysis using the synchronous updating scheme (seeMethods) to
determine all the possible steady states of the microbiome network model. In a 12 node net-
work, there are 212 possible network states. We employed model simulations using the syn-
chronous updating scheme to visit all possible network states and identify all fixed points of
the model. Exploration of the steady states of this network reveals 23 possible fixed point
attractors (S4 Fig). Three of the identified attractors (Fig 3A) are in exact agreement with the
experimentally identified terminal time points of binarized genus abundances (Fig 2C). These
attractors make up a small subset of the entire microbiome network state space (S2 Table).

The attractor landscape can be divided into six groups based on abundance patterns they
share (S4 Fig). Group 1 is made up of a single attractor wherein all genera are absent (OFF). The
second group attractor consists of the experimentally defined healthy state (Attractor 2) and gen-
era in the C. difficile subnetwork which can be abundant (ON) independent of the clindamycin
subnetwork. The third grouping has the clindamycin treated steady state (Attractor 7) and gen-
era in the C. difficile subnetwork that can survive in the presence of the clindamycin. Group 4
contains the clindamycin plus C. difficile steady state (Attractor 12) and its subsets in which one
or both of the source nodesMollicutes and Enterobacteriaceae are absent. Group 5 contains
attractors in which clindamycin is absent and C. difficile is present. Even if clindamycin is absent,
our model suggests that C. difficile can thrive if Lachnospiraceae and Barnesiella are absent, i.e.
these states represent a clindamycin-independent loss of Lachnospiraceae and Barnesiella. Lastly,
group 6 attractors have both clindamycin and C. difficile as OFF. Blautia and Enterococcus are
always abundant in these attractors. Indeed, because of the mutual activation between Blautia
and Enterococcus they always appear together. Attractors in this group may also include the
abundance (ON state) of the source nodesMollicutes and Enterobacteriaceae.

Perturbation Analysis
We next explored the perturbation of genera in the gut microbiome network model. We con-
sidered the clinically relevant question of which perturbations might alter the microbiome
steady states produced by clindamycin or clindamycin+C. difficile treatment after clindamycin
treatment was removed. Thus, we considered the clindamycin-treated steady state (Attractor 7
in S3 Fig) and the clindamycin+C. difficile treated steady state (Attractor 12) as initial condi-
tions and assumed that clindamycin treatment was stopped. Our simulations, employing asyn-
chronous update (seeMethods), indicate that for both initial conditions, only the state of
clindamycin changes after the treatment is stopped; these steady states become Attractor 1 and
Attractor 19, respectively (S4 Fig). In other words, the steady states remain identical in the
absence of clindamycin. We next explored the effect of addition (overabundance; Fig 3B, left
column) and removal (knockout; Fig 3B, right column) of individual genera, simultaneously
with the stopping of clindamycin treatment, on the model predicted steady states. For the per-
turbation analysis, the model was initialized from the clindamycin treated steady state (Fig 3B,
top row) or the clindamycin+C. difficile steady state (Fig 3B, bottom row). From the clindamy-
cin treated state, addition of Lachnospiraceae or “Other” nodes restores the healthy steady
state; however, no removal restore the healthy steady state (Fig 3B). From the clindamycin+C.
difficile state, addition of Barnesiella, Lachnospiraceae, or “Other” nodes lead to a shift toward
the healthy steady state (suppression of C. difficile).

Generating Genus-Level Metabolic Reconstructions
Species-level reconstructions from the genus Enterobacteriaceae contained the most reactions
on average (1335), while those fromMollicutes contained the least (485) (S3 Table). The Barne-
siella and Enterococcus reconstructions contained the most unique reactions (S4 Table) and,
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interestingly, also displayed more overlap in reaction content between each other (503 reac-
tions) than was observed between any other pair of reconstructions (S5 Table). Lachnospira-
ceae and Barnesiella had the next highest degree of overlap (424 reactions).Mollicutes and
Coprobacillus had the least degree of overlap (363 reactions) (S5 Table). Note that the meta-
bolic reconstructions produced by the SEED framework are draft quality, and as such, may
lack the predictive power of well-curated metabolic reconstructions.

Subsystem Enrichment Analysis
Enrichment analysis was performed for the 99 unique subsystem annotations that were observed
in the community. 22 subsystems displayed interesting enrichment patterns with respect to the
structure of the interaction network (Fig 4). The subsystems for glycolysis/gluconeogenesis and
nucleotide sugars metabolism are enriched in all taxa, highlighting the fact that all taxa contain

Fig 3. Steady states and node perturbations in the gut microbiomemodel. A) Heatmap of the three steady states in the gut microbiomemodel. These
steady states are identical to steady states identified in the three experimental groups. B) The effect of node perturbations represented by four heatmaps. On
the Y-axis of each of the four heatmaps are nodes (genera) in each steady state. On the x-axis of each of the four heatmaps are the steady states found
under normal model conditions (i.e. no node perturbations) and also the specific perturbation of a single network node. The two heatmaps in the left column
of the figure demonstrate the effect of addition (forced overabundance) of individual genera, and the two heatmaps in the right column of the figure
demonstrate the effect of removal (knockout) of individual genera. The top row heatmaps show the effect of node perturbations on the clindamycin treated
group and the bottom row heatmaps show the effect of node perturbations on the clindamycin+C. difficile treatment group. *Genus abundance of 0 means
present in 0% of asynchronous simulations and is indicated in blue; Genus abundance of 1 means present in all (100%) of asynchronous simulations, shown
in yellow. n = 1000 simulations were applied for all Boolean model simulations.

doi:10.1371/journal.pcbi.1004338.g003
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relatively full complements of reactions within those subsystems. Interestingly, C. difficile is
highly enriched for reactions in cyanamino acid metabolism compared to all other genera.
Lipopolysaccharide (LPS) biosynthesis and cyanoamino acid metabolism subsystems are differ-
entially enriched between C. difficile and both Barnesiella and Lachnospiraceae. Between Barne-
siella and Enterococcus, Barnesiella is more highly enriched for d-glutamine and d-glutamate
metabolism, pantothenate and CoA biosynthesis, LPS biosynthesis. With respect to Enterococ-
cus, Barnesiella is less highly enriched in pyrimidine metabolism, and phenylalanine, tyrosine,
and tryptophan biosynthesis.

Fig 4. Subsystem enrichment analysis highlights metabolic differences between taxa. The p-values from the enrichment analysis are log-transformed
and negated, such that darker regions indicate greater enrichment. The enrichment analysis quantifies the likelihood that a given subsystem (row) would be
as highly abundant as observed within a given metabolic reconstruction (column) by chance alone. A subset of 22 interesting subsystems is shown here.
Subsystems of interest include those for which all taxa are enriched, such as glycolysis, and nucleotide sugars metabolism, highlighting the fact that all taxa
contain relatively full compliments of reactions within those subsystems. Similarly, subsystems for which a single genus differs from the remaining genera are
interesting, such as cyanoamino acid metabolism, whereC. difficile is highly enriched for reactions in that subsystem. Some subsystems are differentially
enriched between Barnesiella and Lachnospiraceae, andC. difficile such as lipopolysaccharide biosynthesis and cyanoamino acid metabolism.

doi:10.1371/journal.pcbi.1004338.g004
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Generating Metabolic Competition and Mutualism Scores
The metabolic reconstructions were used to explore the potential metabolic underpinnings of
the inferred interaction network. Competition scores were generated for all pairwise relation-
ships between the genera considered in the model (self-edges were excluded). The two Lachnos-
piraceae genera were treated as metabolically identical, and the “Other” group was excluded. We
grouped pairs of genera into five groups based on being connected by a positive or negative edge,
a negative or positive path (meaning an indirect relationship), or no path. A positive relationship
was found between competition score and edge type in the interaction network (i.e. positive
edges tend to have a higher competition score), which was not statistically significant, perhaps
due to the small sample size (p-value = 0.058 by one-sidedWilcoxon rank sum test) (S5A Fig).
The mutualism score did not display any obvious trends with respect to the network structure
(S5B Fig). All pairs with inferred edges exhibited relatively high competition scores and low
mutualism scores (S5C Fig). Barnesiella, a key inhibitor of C. difficile in the interaction network,
holds the second smallest competition score with C. difficile (see Fig 5A). Barnesiella and C. diffi-
cile also have the highest mutualism score among all interacting pairs in the network (S5C Fig).

The positive relationship between edge type and competition score suggests that more meta-
bolic similarity between genera tends to foster positive interaction. The converse is also true,
where less metabolic similarity tends to foster negative interactions (S5A Fig). Here, “positive/
negative interaction” is derived from the Boolean model, where a positive edge between species
A and B indicates that if A is ON at time t, then B is likely to turn ON at t+1.

Co-culture and Spent Media Experiments
Barnesiella intestinihominiswas chosen as a representative species for the genus Barnesiella for the
in vitro experiments. C. difficile grew more slowly in B. intestinihominis spent media (n = 16, p-
value< 0.005, by one-sidedWilcoxon rank sum test) (Fig 5B). The co-culture with both B. intesti-
nihominis and C. difficile grew more slowly than C. difficile alone (n = 16, p-value< 0.05, by one-
sidedWilcoxon rank sum test) (Fig 5B). C. difficile area under the growth curve (AUC), a measure
of the achieved bacterial density over the experiment, was not statistically different between growth
in fresh media and B. intestinihominis spent media (n = 16, p-value = 0.22 by one-sidedWilcoxon
rank sum test). However, the co-culture displayed a much lower AUC than expected under a null
model of interaction (in which the two species do not interact) (Fig 5C). Examining the co-culture
growth curve, it maintained a consistently lower density than a null model (Fig 5D).

Discussion
Here we have developed a novel strategy for generating a dynamic model of gut microbiota com-
position by inferring relationships from time series metagenomic data (Fig 1). To our knowledge,
this is the first Boolean dynamic model of a microbial interaction network and the first Boolean
model inferred frommetagenomic sequence information. Metagenomic sequencing is a power-
ful tool that tells us the consequences of microbial interaction—changes in bacterial abundance.
Bacterial interactions are, in fact, mediated by the many chemicals and metabolites the bacteria
use and produce. In a network sense these relationships are a bipartite graph; bacterial genera
produce chemicals/metabolites, which have an effect on other bacteria. Because there is no com-
prehensive source for the bacterial metabolites and their effect on other bacterial genera, we infer
the effects of genera on each other from the relative abundances of genera in a set of microbiome
samples, and we employ genome-scale metabolic reconstructions to gain insight into these rela-
tionships (Fig 6B). Binarization of the microbial abundances clarifies these relationships and is
the starting point for the construction of a dynamic network model of the gut microbiome. Inter-
estingly, principal component analysis demonstrates that the time series data clusters by
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experimental treatment group, suggesting that our initial assumption of binary relationships
does not lead to significant information loss (Fig 2A and 2B).

Fig 5. Metabolic competition scores and in vitro data indicate a non-metabolic interaction mechanism. A) Competition scores for all pairs of genera
with C. difficile. Notice that Barnesiella has nearly the lowest competition score. B) Maximum growth rates for all growth conditions. C. difficile grew more
slowly in B. intestinihominis spent media (n = 16, p-value < 0.005, by one-sidedWilcoxon rank sum test). The co-culture with both B. intestinihominis andC.
difficile grew more slowly thanC. difficile alone (n = 16, p-value < 0.05, by one-sidedWilcoxon rank sum test). C) Area under the curve (AUC) was not
significantly different for C. difficile in fresh media or B. intestinihominis spent media (n = 16, p-value = 0.22 by one-sidedWilcoxon rank sum test). D) The
experimental (red, solid line) and simulated (blue, dashed line) co-culture growth curves. “Binte” indicates B. intestinihominis, while “Cdiff” stands for C.
difficile. On average, the experimental co-culture growth curves maintained a lower density than the simply additive null model. Error bars represent the
standard error of the mean from 16 independent replicates.

doi:10.1371/journal.pcbi.1004338.g005
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We analyze the topological and dynamic nature of the gut microbiome, focusing on the
effect of clindamycin antibiotic and C. difficile infection on gut microbial community structure.
We generate a microbial interaction network and dynamic model based on time-series data
from a population of mice. We validate a key edge in this interaction network between Barne-
siella and C. difficile through an in vitro experiment. Consistent with the literature, our model
affirms that solely inoculating a healthy microbiome with C. difficile is insufficient to disrupt
the healthy intestinal tract microbiome. Additionally, our results demonstrate that clindamycin
treatment has a tremendous effect on the microbiome, greatly reducing many microbial genera,
and that during the time C. difficile is present, a certain subset of bacteria come to dominate the
microbiome (S1 and S2 and 2C Figs).

Our dynamic network model reveals the steady state conditions attainable by this microbial
system, how those steady states are reached and maintained, how they relate to the health or
disease status of the mice, and how targeted changes in the network can transition the

Fig 6. Computational models can bring us closer to true interaction networks. A) Potential inhibitory mechanisms include direct inhibition of C. difficile
by Barnesiella (e.g. via competition for scarce resources, or toxin production), or indirect inhibition (e.g. through a host antimicrobial response). B) A great
deal has been published on the topic of network inference from complex data sets, and more can be done to improve inference methods. Particularly for
microbial interaction networks, it is essential to identify, not only the nature of the interactions, but also the underlying mechanisms. Metagenomic genus
abundance information can be used to infer causal relationships between bacteria; however, other information sources are required to determine the exact
nature of these interactions. Each individual network edge may have very different underlying causes (metabolic, physical interaction, toxin-based, etc.).
Including more tools in the pipeline, such as metabolic network reconstructions, bioinformatics tools, etc., will help elucidate these mechanisms, allowing far
more rapid hypothesis generation, leading to a more focused effort in the wet lab.

doi:10.1371/journal.pcbi.1004338.g006
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community from a disease state to a healthy state. Furthermore, we examine genome-scale
metabolic network reconstructions of the taxa represented in this community, examine broad
metabolic differences between the taxa in the community, and probe how metabolism could—
and could not—contribute to the mechanistic underpinnings of the observed interactions.

Network Structure
The first feature that stands out in the inferred interaction network is its clustered structure.
Clindamycin has a strong influence on the subnetwork containing the two Lachnospiraceae
nodes and Barnesiella. The other subnetwork contains C. difficile and other genera that become
abundant during C. difficile infection (Fig 2D). Also worth noticing are the two contradicting
edges in the network, between Coprobacillus and Blautia, and the self-edges for Blautia (Fig
2D). These arise from rules in the Boolean model that are context-dependent. Such context-
dependent rules can manifest as opposite edge types, depending on the state of other nodes in
the network. Context-dependent interactions have been demonstrated in many microbial pair-
ings, and nutritional environments can even be designed to induce specific interaction types
[58]. It is possible that subtle environmental changes over the course of the experiment altered
conditions in a way that flipped the Coprobacillus-Blautia interaction. Because the interaction
network is derived from time-series data, it is possible to estimate causality, and therefore,
derive a directed graph. A directed network with clear, causative interactions can be used to
study community dynamics. This is in contrast with association networks, which are often
derived from independent samples, and cannot determine direction of causality [48,59–61].
Such networks are more limited in utility because they cannot be used to predict system behav-
ior over time, or system responses to perturbations [24,62]. Note that the inferred network
structure represents a set of hypotheses as to potential interactions among genera. Determining
whether or not the interactions truly occur requires further experimentation, similar to the
experimentation completed to validate the edge between Barnesiella and C. difficile.

Experimental Validation of Barnesiella Inhibition of C. difficile
We experimentally validated a key edge in the interaction network, and showed that Barnesiella
can in fact slow C. difficile growth. C. difficile was grown alone, in co-culture with B. intestini-
hominis, and in B. intestinihominis spentmedia. C. difficile grew more slowly in both co-culture
and spent-media conditions. Though moderate, the effect was statistically significant (Fig 5B).
The fact that C. difficile growth rate was inhibited under spent-media conditions indicates that
B. intestinihominis-mediated inhibition does not require B. intestinihominis to “sense” the
presence of C. difficile. Further, C. difficile growth on B. intestinihominis spent media demon-
strates that the two species have different nutrient requirements. Whether the reduction in
growth rate is a result of nutritional limitations (e.g. C. difficile resorts to a less preferred carbon
source) is unknown, but unlikely given the AUC data.

The AUC—a summation of the OD over the entire time course—is a measure of the total
bacterial density achieved over the course of the experiment. It can be thought of as a single
metric combining growth rate and biomass production over time. Examining the AUC for all
conditions showed that C. difficile AUC did not significantly change between fresh media and
spent media (Fig 5C). Thus, C. difficile was able to produce comparable overall biomass despite
a reduction in growth rate, further demonstrating that nutrient availability was sufficient in the
spent media condition. The AUC for the co-culture was much lower than expected in a simu-
lated null model (Fig 5C). Apparently, in co-culture, the total community biomass production
capacity is reduced from what would be expected in a scenario without species interaction.
Thus, there is a measurable negative interaction between B. intestinihominis and C. difficile in
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co-culture that impacts biomass production. This can be observed over the full time-course of
the co-culture, where the overall density is consistently lower than what would be expected in a
null model (Fig 5D).

Network Dynamics and Perturbation Analysis
Computational perturbation analysis showed that forced overabundance of Barnesiella led to a
shift from the “disease” state (clindamycin+ C. difficile treatment group) to a state highly simi-
lar to the original healthy state (loss of C. difficile). This result is particularly interesting from a
therapeutic design standpoint. In this case, the model results indicate that Barnesiellamay
serve as an effective probiotic. Model-driven analysis can be used to identify candidate organ-
isms for probiotic treatments. Recent work by Buffie et al. performed a proof-of-concept study
in which they used statistical models to identify candidate probiotic organisms, which were
then tested on a murine model of C. difficile infection [54]. This model-driven approach can be
favorably contrasted with the brute-force experimental approach in which successive combina-
tions of microbes are tested until a curative set is found [56]. The model-driven approach
requires far fewer experiments, and saves time and resources. While the computational model
presented here differs from that used by Buffie et al., the integration of computational models
in probiotic design has been shown to be a feasible, effective approach. Improved tools, such as
the perturbation analysis presented here, will surely accelerate the probiotic design process and
shorten the path to the clinic.

Metabolic Competition Scores Point towards a Non-metabolic
Interaction Mechanism
Genome-scale metabolic network reconstructions can be used to estimate the interactions
between microbes in a complex community based purely on genome sequence data. Our use of
genus-level metabolic network reconstructions (a union of several species-level reconstruc-
tions) may not reflect the unique, species-level interactions and heterogeneity within a commu-
nity. This higher-level model will only capture broad trends and the possible extent of
metabolic capacity within a genus. Furthermore, the draft status of these models precludes the
effective application of flux balance analysis (FBA) to estimate interactions among genera. This
is due to the established lack of precision in draft reconstructions in predictions of growth rates
and substrate utilization patterns [63], and the sensitivity of interaction models to metabolic
environment and model structure [58,64]. Future efforts to infer metabolic interactions using
FBA and well-curated metabolic networks could provide deeper insights into specific metabo-
lites that are shared (or competed for) between specific microbial pairs.

The application of competition scores demonstrated here (S5A Fig) could potentially be
used to quickly establish a rough expectation (notice the spread of competition scores for the
species pairs not connected by a path through the network) for community structure—based
solely on genomic information—that can then be tested experimentally. Interestingly, the fact
that higher competition score is associated with more positive interactions inferred from the
Boolean model relates to previous work that demonstrates that higher competition scores were
associated with habitat co-occurrence [46]. In this same work, the authors suggest that this
effect is due to habitat filtering; that is, microbes with similar metabolic capabilities tend to
thrive in similar environments. It has been shown experimentally that microorganisms from
the same environment tend to lose net productivity in batch co-culture, indicating similar met-
abolic requirements [65]. Thus, it appears that metabolically similar organisms tend to co-
locate to similar niches, and over evolutionary time, co-localized organisms tend to develop
positive relationships with each other.
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Understanding this relationship between competition score and interaction type leads to the
conclusion that negative interactions are probably not caused by metabolic competition. Of all
the genus competition scores with C. difficile, Barnesiella showed the second lowest (Fig 5A). In
other words, Barnesiella is among the least likely to share a similar metabolic niche with C. diffi-
cile, which fits with the broad trend mentioned above. The fact that the competition score
between C. difficile and Barnesiella is so low strongly suggests that the negative interaction
between them is due, not to competition for scarce resources (although it does not completely
exclude the possibility), but rather to some non-metabolic mechanism. The similarity in reaction
content between Barnesiella and Enterococcus indicates similar network structure (S5 Table),
and yet, Enterococcus does not inhibit C. difficile in the inferred interaction network (Fig 2D).
Either the differences that are present between Barnesiella (65 unique reactions) and Enterococ-
cus (36 unique reactions) are hints at the mechanism of interaction, or metabolism does not play
a significant role in C. difficile inhibition in the environment of the gut. For example, enrichment
analysis showed that that, with respect to Enterococcus, Barnesiella is more highly enriched for
d-glutamine and d-glutamate metabolism, pantothenate and CoA biosynthesis and LPS biosyn-
thesis. With respect to Enterococcus, Barnesiella is less enriched in pyrimidine metabolism, and
phenylalanine, tyrosine, and tryptophan biosynthesis. The possible role of LPS is discussed fur-
ther on. The possible roles of these other metabolic pathways in C. difficile inhibition is unclear.

There is experimental evidence that Barnesiella (and other normal flora) may combat path-
ogen overgrowth through non-metabolic mechanisms. As a first step, it has been shown that
VRE can grow in sterile murine cecal contents—indicating the presence of sufficient nutrition
to support VRE—but is inhibited in saline-treated cecal contents—indicating that live flora are
needed to suppress VRE growth, and that this suppression is not through nutrient sequestra-
tion [66]. Further, the presence of B. intestinihominis has been demonstrated to prevent and
cure VRE infection in mice [55], and is strongly correlated with resistance to C. difficile infec-
tion in mice [54]. Clearly, Barnesiella plays a key role in pathogen inhibition, and pathogen
inhibition can be caused by mechanisms other than nutrient competition.

This non-metabolic mechanism may be direct or indirect (Fig 6A). We demonstrated in
vitro that B. intestinihominis can inhibit C. difficile growth rate (Fig 5C and 5D). The fact that
C. difficile grows on B. intestinihominis spent media at all indicates that the metabolic require-
ments of the two species are different, which is consistent with our computational results sup-
porting the hypothesis that C. difficile and Barnesiella do not compete metabolically (Fig 5B).
Further, C. difficile is moderately inhibited both in co-culture with B. intestinihominis and in B.
intestinihominis-spent media, indicating a direct mechanism of inhibition. In further support
of a direct mechanism, it has been shown that Clostridium scindens inhibits growth of C. diffi-
cile through the production of secondary bile acids [54]. Perhaps Barnesiella works through an
analogous mechanism in vivo, enhancing the moderate inhibition observed in vitro.

In support of an additional indirect mechanism of bacterial interaction, Buffie and Pamer,
in a recent review, hypothesized that the normal flora (of which Barnesiella is a member) may
prevent pathogen overgrowth by stimulation of a host antimicrobial response [67] (Fig 6A).
Specifically, they point out that Barnesiella can activate host toll-like receptor TLR signaling,
which activates host antimicrobial peptide production. For example, LPS and flagellin have
been shown to stimulate the host innate immune response through toll-like receptor (TLR) sig-
naling and production of bactericidal lectins [68,69]. Barnesiella shows enrichment for LPS
biosynthesis pathways (Fig 4). However, this mechanism did not seem to be responsible for
inhibition of VRE by Barnesiella [55]. An indirect, host-mediated mechanism is further sup-
ported by the fact that members of the normal gut flora can interact differently with pathogens
depending on the host organism [54]. Regardless, any indirect mechanism is in addition to the
direct inhibitory mechanism observed in vitro. Both direct and indirect mechanisms may play
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a role in vivo, and further work is needed to clearly discern the underlying process that allows
Barnesiella to play this protective role.

We demonstrate that dynamic Boolean models capture key microbial interactions and
dynamics from time-series abundance data in a murine microbiome. We show that this
computational approach enables exhaustive in silico perturbation, which leads to fast candidate
selection for probiotic design. We further describe the use of genome-scale metabolic network
reconstructions to explore the metabolic potential attributed to community members, and to
estimate metabolic competition and cooperation between members of the microbiome com-
munity. Analysis of genome-scale metabolic network reconstructions indicates that Barnesiella
likely inhibits C. difficile through some non-metabolic mechanism. We present empirical in
vitro evidence that B. intestinihominis does in fact inhibit C. difficile growth, likely by a non-
metabolic mechanism, and our findings are in good agreement with published results. We
present this work as a demonstration of the use of dynamic Boolean models and genome-scale
metabolic reconstructions to explore the structure, dynamics, and mechanistic underpinnings
of complex microbial communities.

Supporting Information
S1 Fig. Bacterial genera abundances over time in response to clindamycin treatment and/
or C. difficile inoculation. A) Genera abundance information for the nine samples. The
“Healthy” population received spores of C. difficile (at t = 0 days) and did not undergo observ-
able microbial changes, Population 2 received a single dose of clindamycin (at t = -1 days), and
Population 3 received a single dose of clindamycin (at t = -1 days) and, on the following day,
was inoculated with C. difficile spores (at t = 0 days). Genus abundances were measured at 0, 2,
3, 4, 5, 6, 7, 9, 12, 13, 16, and 23 days; however, not all samples had measurements at all the
time points. B) Cubic spline interpolation of data points was performed such that all the same
time point measurements of bacterial abundance occurred in all samples and that single day
intervals were present in all datasets.
(TIF)

S2 Fig. Averaged binarized genera abundances using iterative k-means binarization. Itera-
tive k-means binarization was completed on all the samples 1000 times and average binariza-
tion is shown for each genus at each time point in each of the nine samples. If a node (genus) is
binarized as 0 (OFF) at a time step, then it is colored blue, and if a node (genus) is binarized as
1 (ON) at a time step, then it is colored yellow. This figure represents the average of 1000 repli-
cates of IKM binarization. Intermediate cell colors represent cases where a genus abundance at
a time point was binarized to 1 (ON) in a fraction of the replicates.
(TIFF)

S3 Fig. Averaged binarized genera abundances using iterative k-means binarization were
rounded to the most probable binarized state. The most probable binarized state of each
genus at each time point. If the average genus abundance binarization (S2 Fig) was greater than
0.5 (ON in over 500 of 1000 replicates), then that genus abundance was assumed to be 1 (ON)
for downstream analysis. If the average genus abundance binarization was less than 0.5 (ON in
less than 500 of 1000 replicates) then that genus abundance was assumed to be 0 (OFF) for
downstream analysis.
(TIFF)

S4 Fig. All possible steady states of the Boolean model of the gut microbiome. There are 23
predicted steady states in the Boolean model of the gut microbiome. Each attractor is a column
in the heatmap and is made up of the state of each genus in the network model (rows). Each
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genus can be present above an activity threshold (yellow; ON) or below an activity threshold
(blue; OFF). The steady states in the model are grouped based on their similarities to other
steady states in the same group. The first steady state of group 2 (Attractor 2) is the healthy
steady state, the first steady state of group 3 (Attractor 7) is the clindamycin treated steady
state, and the first steady state of group 4 (Attractor 12) is the clindamycin + C. difficile steady
state. These three steady states are directly corroborated by experimental metagenomic data.
(TIFF)

S5 Fig. Competition and mutualism scores by edge and path type in Boolean network. A)
Competition score values for all classes of paths through the network, including direct edges,
directed paths, and no directed path. A positive relationship was found between competition
score and direct edge type in the dynamic network (self-edges were excluded), which was not
statistically significant, perhaps due to the small sample size (p-value = 0.058 by one-sided Wil-
coxon rank sum test), but is worthy of note. B) Mutualism score values for all classes of paths
through the network, including direct edges, directed paths, and no directed path. C) Competi-
tion and mutualism score plot for the interaction edges in the network. All the interactions
reflect moderate to high competition scores and relatively low mutualism scores. All the inter-
actions have a higher competition score than mutualism score. The two negative interactions
(red circles) do not have higher competition scores, nor lower mutualism scores, than the posi-
tive interactions. In fact, the negative interaction between Barnesiella and C. difficile corre-
sponds to the highest mutualism score.
(TIF)

S1 Table. Boolean update rules for the gut microbiome network. The ruleset inferred from
metagenomic sequencing information using Boolnet.
(DOCX)

S2 Table. Basin size as % of total state space (unique basin size) for experimentally realized
network attractors.
(DOCX)

S3 Table. Genus-level genome-scale metabolic network reconstruction characteristics. In
this table we characterize the genus-level metabolic network reconstructions. Average model
size refers to the average number of reactions in the component species reconstructions within
each genus. Akkermansia is represented by a single species-level reconstruction, while several
genera are represented by 10 species-level reconstructions. The average network overlap within
a genus refers to the average number of shared reactions between any two pairs of species
within the genus. Similarly, the average fraction of unique reactions refers to the average subset
of reactions in a given species that are unique within the genus.
(DOCX)

S4 Table. Unique reactions within genera. The genus in each row has n reactions that the
genus in the columns do not have. For example, the genus-level reconstruction for Barnesiella
contains 167 reactions that the reconstruction for C. difficile does not. Conversely, the recon-
struction for C. difficile only contains 30 unique reactions that the reconstruction for Blautia
does not already contain.
(DOCX)

S5 Table. Reaction overlap between genera. The upper portion of the table contains the num-
ber of shared reaction content between all genus-level metabolic network reconstructions.
(DOCX)
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