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ABSTRACT
The development of macrocyclic binders to therapeutic proteins typically relies on large-scale screening

methods that are resource-intensive and provide little control over binding mode. Despite considerable

progress in physics-based methods for peptide design and deep-learning methods for protein design,

there are currently no robust approaches for de novo design of protein-binding macrocycles. Here, we

introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic peptide binders

against protein targets of interest. We test 20 or fewer designed macrocycles against each of four

diverse proteins and obtain medium to high-affinity binders against all selected targets. Designs against

MCL1 and MDM2 demonstrate KD between 1-10 µM, and the best anti-GABARAP macrocycle binds

with a KD of 6 nM and a sub-nanomolar IC50 in vitro. For one of the targets, RbtA, we obtain a

high-affinity binder with KD < 10 nM despite starting from the target sequence alone due to the lack of

an experimentally determined target structure. X-ray structures determined for macrocycle-bound

MCL1, GABARAP, and RbtA complexes match very closely with the computational design models, with

three out of the four structures demonstrating Ca RMSD of less than 1.5 Å to the design models. In

contrast to library screening approaches for which determining binding mode can be a major

bottleneck, the binding modes of RFpeptides-generated macrocycles are known by design, which

should greatly facilitate downstream optimization. RFpeptides thus provides a powerful framework for

rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.

MAIN TEXT
Macrocyclic peptides present a promising avenue for developing new therapeutics that bridge the gap

between small-molecule drugs and large biologics1,2. Biologics, while capable of binding diverse

therapeutic targets with high affinity and selectivity, are usually unable to cross cell membranes due to

their large size and high polarity, limiting them to extracellular targets. Conversely, small molecules can

access intracellular targets but are not ideal for targeting proteins lacking deep hydrophobic pockets. In

principle, macrocyclic peptides with sizes between small molecules and proteins can be developed to

modulate molecular targets inaccessible to traditional therapeutic modalities3. The ability to develop

custom protein-binding macrocycles for diverse protein targets would have many diagnostic and

therapeutic applications. Traditionally, the development of peptide therapeutics has relied on natural

product discovery or high-throughput screening of trillions of random peptides for target binding using

display-based techniques1,2. However, natural product discovery has several challenges, particularly

synthetic difficulties, marginal stability, and low mutational tolerance of identified hits4. While powerful,

the high-throughput screening methods are time-, cost-, and labor-intensive, and only span a small

fraction of the rich chemical and structural diversity accessible to macrocycles. Moreover, such

approaches frequently fail to simultaneously optimize for multiple biophysical properties, such as target
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binding, selectivity, and membrane permeability, due to the precise structural control required to

achieve such functional properties5.

Structure-guided design methods offer a complementary approach to the library screening approaches,

enabling rapid in silico exploration of a large chemical and structural diversity to design macrocycle

binders for therapeutic targets. We previously developed physics-based methods for designing

hyperstable constrained peptides, structured macrocycles, and binders to protein targets by borrowing

the motifs or interactions from previously described binding partners as anchors6–9. However, despite

the high accuracy observed in the design of monomeric macrocycles with these methods7, the design

of protein-binding macrocycles has had limited success, achieving only modest binding affinities and, in

many cases, with the experimentally determined structures not agreeing with the design models7,8,10.

The reliance on previously described binding partners for starting motifs also restricts such approaches

to well-studied protein targets. In recent work, we described a pipeline for hallucinating and predicting

the structures of macrocyclic peptide monomers by modifying AlphaFold2 (AF2) to include cyclic

relative positional encoding (named “AfCycDesign”)11. Other promising deep learning (DL) methods

have been described recently to predict the structures of macrocycles and macrocycle-target

complexes12,13 and to design peptide binders to protein targets14–16. However, these methods have not

been extensively structurally validated to date or shown to robustly perform atomically accurate de novo

design of macrocyclic peptide structures in complexes with diverse protein targets. Computational

methods that can accurately design high-affinity macrocycle binders de novo, using just the information

of target structure or sequence, are required for wider therapeutic applications.

We reasoned that recent breakthroughs in generative DL methods could be leveraged to develop a

robust pipeline for the accurate and efficient design of macrocycle binders. Diffusion models for protein

design, such as RFdiffusion17, are trained to generate diverse protein structures from randomly

initialized residues as starting points and have demonstrated remarkable success in designing protein

monomers, binders, and symmetric oligomers of medium to large-sized proteins. However, despite

considerable recent progress in DL-based protein design methods, these methods do not readily apply

to designing macrocyclic peptides. Developing analogous methods for peptide design from scratch has

been challenging due to limited availability of experimental data for training such models. To address

these challenges, we set out to extend the RoseTTAFold218 (RF2) structure prediction network and the

RFdiffusion17 protein backbone generation framework to incorporate cyclic relative positional encoding

and enable the generation of the macrocyclic peptide backbones.

Extending RoseTTAFold2 and RFdiffusion for macrocyclic peptides
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We began by examining the ability of the RF218 structure prediction network to model known

macrocyclic peptide structures. We implemented a modified (see Methods) cyclic relative position

encoding for RF2 (Figure 1A) and observed robust prediction of natural cyclic peptide structures (Figure

S1). Given this success, we reasoned that the same relative position encoding should enable

RFdiffusion17 to generate macrocyclic peptide structures due to its similar network architecture. We

added the cyclic positional encoding scheme to RFdiffusion and observed robust generation of diverse

macrocyclic peptides (Figure 1B-C, S2). Encouraged by the transferability of the cyclic positional

encoding, we set out to employ RFdiffusion for the de novo design of protein-binding macrocycles. We

chose RFdiffusion for several reasons: First, we expected the high experimental success rate of

RFdiffusion17,19 for protein binder design to carry over to macrocycle binder design. Second, de novo

binder design with AfCycDesign as-is would be far more computationally expensive and has not been

successfully implemented or experimentally validated. Third, the method can still take advantage of the

current built-in conditional generation functionalities of RFdiffusion, such as epitope-specific targeting

and “motif” scaffolding. Finally, the method should be directly transferable to other current and future

RoseTTAFold-based design networks, such as RFdiffusion All-Atom20, for incorporating non-peptidic

molecules (nucleic acids, ions, etc.) during design calculations.

We modified the RFdiffusion protein binder design pipeline to use cyclic relative position encodings for

the generated chain, and standard positional encodings for the target and inter binder-target indices

(Figure 1D). We then completed our design pipeline by using ProteinMPNN to design amino acid

sequences compatible with the backbones generated by RFdiffusion (Figure 1E). This pipeline readily

generated macrocycles with diverse secondary structure content against target proteins (Figure 1F),

and the inclusion of standard RFdiffusion hotspot features clearly shifted the distribution of generated

binders toward desired residues (Figure S3). We refer to this integrated pipeline as “RFpeptides”

throughout the remainder of the text.

De novo design and characterization of macrocyclic binders to MCL1 and MDM2
We selected myeloid cell leukemia-1 (MCL1) as our first target protein, given the availability of multiple

high-resolution X-ray crystal structures available to initiate the design calculations. MCL1 is also a

promising target for anti-cancer therapeutics due to its roles in autophagy, cell survival, DNA repair, and

cellular proliferation21. For targeting MCL1, we used RFpeptides to generate 9,965 diverse cyclic

peptide backbones, followed by four iterative rounds of ProteinMPNN and Rosetta Relax to design four

amino acid sequences for each generated backbone. We expected the local changes to the generated

backbone during the Rosetta Relax steps to allow for improved amino acid sequence diversity from the

MPNN steps. While there are other ways to achieve increased sequence diversity, including generating

multiple sequences per backbone from ProteinMPNN or adding noise during MPNN sequence
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generation, we did not explicitly try or compare them in this study. For downselecting the design

candidates for experimental testing, we used AfCycDesign to re-predict the designed macrocycle-target

complexes from the macrocycle sequence and the target structure as a template. We selected the

designs based on the confidence metric (interface predicted aligned error (iPAE)) and the similarity

between the original design model and the protein-macrocycle complex predicted by the AfCycDesign

(Figure S4). For further stringency in the design selection process, we also used RF2 to re-predict the

complex structures, reasoning that the design models predicted identically by two orthogonal structure

prediction networks (AfCycDesign and RF2) should have a higher likelihood of binding to the target as

designed. However, the 1,984 selected designs at this stage were still more than the number of designs

we could reasonably synthesize and test experimentally. Therefore, we next used Rosetta22 to calculate

the ‘physics-based’ metrics of interface and macrocycle quality, such as calculated binding affinity

(ddG), spatial aggregation propensity (SAP) of the designed macrocycle, and the molecular surface

area of the interface contacts (CMS) (Figure S4).

After strictly filtering the designed candidates on DL-based and physics-based metrics, we selected 27

designs for synthesis, biochemical, and biophysical characterization. Despite specifying no hotspots to

guide the generation process to a specific patch on the MCL1 structure, all selected designs bound to

the functionally-relevant MCL1-BIM interaction site (Figure S5). While all selected designs include an

α-helical segment, they feature different sequences, macrocycle placement, and target interactions

(Figure S5 and Table S1). In addition to the common helical motifs, the loop regions of the selected

macrocycles also contribute significant side chain and backbone-mediated interactions to the binding

interface. During the chemical synthesis using the Fmoc-based solid phase synthesis (see Methods),

the yields for the correctly cyclized product for 13 designs were low and insufficient for further

characterization. We tested the remaining 14 macrocycles for binding to biotinylated MCL1 using

surface plasmon resonance (SPR) single-cycle kinetics experiments (Figure S6). Three macrocycles

showed binding to the MCL1, with the best binder, MCB_D2 (refers to MCL1 Binding Design 2), (Figure

2A), demonstrating a binding affinity of 2 µM (Figure 2B). To confirm if the designed macrocycle adopts

the designed structure and engages MCL1 in the designed binding mode, we determined the X-ray

crystal structure of MCB_D2 bound to MCL1 at 2.1 Å resolution. The crystal structure is nearly identical

to the design model, with an RMSD of 0.7 Å over all the Cα atoms of the macrocycle with target chains

aligned (Figure 2C) and Cα RMSD of 0.4 Å within the macrocycles when aligned (Figure 2D). The side

chain rotamers of the interacting residues in the crystal structure also closely match the design model

(Figure 2D). The crystal structure also confirms that the binding interactions are not restricted to the

helix region of the designed macrocycle but are also contributed by the loop regions (Figure 2E-F).

While several hydrophobic interactions from the MCB_D2 helical segment are similar to those seen in

natural MCL1 binders (e.g., BH3 peptide), (Figure S7), the N-to-C orientation of the helix is flipped in

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2024. ; https://doi.org/10.1101/2024.11.18.622547doi: bioRxiv preprint 

https://paperpile.com/c/G7mP9I/4lvrq
https://doi.org/10.1101/2024.11.18.622547
http://creativecommons.org/licenses/by-nc-nd/4.0/


the case of MCB_D2. The loop region of MCB_D2 makes additional hydrophobic contacts and a

cation-π interaction with MCL1 (Figure 2E, S7D) that we did not observe in previously reported natural

MCL1 binders and their analogs. All three hits with an observable binding signal at 100 µM feature this

cation-π interaction.

Encouraged by the experimental validation of the MCL1 binding macrocycles, we next sought to design

binders to MDM2, an E3 ligase that interacts with tumor suppressor protein p53 and has multiple critical

roles in tumor growth and survival23. We generated 10,000 macrocycle backbones spanning diverse

lengths amenable to chemical synthesis (16-18 residues) and designed four amino acid sequences for

each generated backbone using iterative rounds of ProteinMPNN and Rosetta Relax protocols (see

Methods). Design models were filtered based on the confidence metrics and similarity of the

AfCycDesign predictions to the designed complexes and the interface quality metrics calculated using

Rosetta (Figure S4). AfCycDesign predicted 7,495 of the 40,000 design models to bind MDM2 with high

confidence (normalized iPAE less than 0.3), (Figure S4). In contrast to our approach for MCL1, we

chose not to do any additional filtering with RF2 as the results between AfCycDesign and RF2 were

fairly consistent. After filtering on interface metrics (see Methods), we identified 17 designs with iPAE <

0.3, ddG < -50 kcal/mol, CMS > 300, and SAP score < 35. We selected 11 top-ranked designs by ddG

for biochemical and biophysical characterization. The 11 selected designs had diverse sizes, shapes,

and sequences (Figure S8 and Table S2); however, they were all predicted to bind the same site as the

p53 transactivation domain (Figure S8). Three of the selected designs had poor yields during the

cyclization step of the chemical synthesis, preventing further experimental characterization with them.

We tested the remaining eight peptides for binding to the biotinylated MDM2 by SPR and identified

three binders with observable binding signals at 100 µM (Figure S9). The best design, MDB_D8 (Figure

2G), demonstrated a binding affinity of 1.9 µM in the SPR single-cycle kinetics experiment (Figure 2H).

The computational model for this design makes several key contacts at the interface that are similar to

interactions observed in native MDM2-p53 complex structures (Figure 2I and S10)23. Despite different

overall structures, all three hits from the SPR screen have a similar binding motif composed of

phenylalanine, tryptophan, and either leucine or methionine from the helical segment of the macrocycle.

Together, these data highlight the promising accuracy of the RFpeptides pipeline to design diverse

macrocyclic binders for selected targets of interest.

De novo design and characterization of macrocyclic binders to GABARAP
We next set out to design binders against a target with a binding site that is structurally different from

MCL1 and MDM2, and formed by a mix of α-helices and β-strands (in contrast to all α-helical pockets of

MCL1 and MDM2). We selected to target the Gamma-aminobutyric acid type A receptor-associated

protein (GABARAP), a protein responsible for mediating autophagy through its role in autophagosome
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biogenesis and recruitment of cargo, resulting in lysosomal degradation of damaged or surplus proteins

and organelles24. Peptide modulators against GABARAP could have therapeutic applications in the

treatment of late-stage cancers25 or as chimeric peptides for autophagy-mediated targeted protein

degradation (AutoTACs)26. Our target binding site for GABARAP, which is also the binding site for the

native LC3-interacting region (LIR) or Atg8-interacting motif (AIM)27, is formed by a mix of β-strand and

α-helix secondary structures (Figure 3 and S13). For designing macrocyclic binders against the human

GABARAP, we used a similar pipeline as described above for MCL1 and MDM2 (see Methods), but we

doubled the number of generated designs and defined six hotspot residues–Tyr49, Leu50, Lys48,

Lys46, Phe60, and Leu63–to guide the macrocycle backbone generation to a specific site on the target

(Figure 3A,D). We generated 20,000 macrocycle backbones and designed the amino acid sequences

using ProteinMPNN and Rosetta Relax protocols. Out of the resulting 80,000 design models, we

selected 335 macrocyclic designs based on the AfCycDesign (iPAE < 0.13) and Rosetta interface

metrics (ddG < -30 kcal/mol, CMS > 300) (Figure S4). Instead of trying to synthesize and characterize

all 335 cyclic peptides (which would have required significant time and experimental resources), we

clustered the 335 designs into 80 different clusters based on their three-dimensional structures and

selected representative designs from diverse clusters for further biochemical characterization. We

selected 13 diverse macrocycles of 12-17 residues for synthesis and experimental validation (Table S3

and Figure S11). Unlike the design candidates described above for MCL1 and MDM2, several of the

selected macrocycles for GABARAP show cyclic β-sheet structures with several edge-strand

interactions with the target (Figure S11).

We successfully synthesized six designs with high purity (> 90%) and tested them for binding to

GABARAP using SPR (Figure S12). Two designs, GAB_D8 and GAB_D23, showed binding affinities of

6 nM and 36 nM, respectively (Figure 3B,E). To further characterize the binding of GAB_D8 and

GAB_D23, we tested the ability of these designs to disrupt the interaction of GABARAP with linear

peptide K1 (a previously described binder to this site28) in AlphaScreen assays. GAB_D8 and

GAB_D23 demonstrated IC50 of 0.7 nM and 2.5 nM in the AlphaScreen assay, respectively (Figure 3I).

To our knowledge, GAB_D8 is the most potent macrocyclic GABARAP binder to date.

In crystallization trials, we did not obtain crystals of sufficiently high quality for GAB_D8 bound to

GABARAP. However, the X-ray crystal structure for GAB_D8 bound to GABARAPL1, a GABARAP

homolog with 86% sequence identity, matches very closely with the design model, with a Cα RMSD of

1.2 Å over the macrocycle when aligned by the target protein to the closest of the four copies in the

asymmetric unit (Figure 3C and Figure S13) and a Cα RMSD of 0.47 Å when aligned by macrocycle

alone (Figure 3G). Notably, the X-ray structure of the GAB_D8–GABARAPL1 complex shows two

different bound conformations of GAB_D8, one that closely matches the design model and a second
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one that partially deviates from the design model (Figure S14), with a register shift nucleated by Thr10

from the macrocycle forming main chain and side chain mediated hydrogen bonds with Lys48 on the

target. GAB_D23 crystallized readily with GABARAP and also closely matches the design model with

Cα RMSD of 1.7 Å when aligned by the target (Figure 3F) and Cα RMSD of 0.74 Å across the

macrocycle alone (Figure 3G). The X-ray crystal structure confirms the key designed interactions, such

as Trp5 and Ile8, with the main difference between the design model and the X-ray structure being the

switch from a type I β-turn from Leu1 to Gly4 in the design model to a less regular conformation in the

crystal structure, with a tendency for a type I’ β-turn from Glu2 to Trp5. While our original design models

were predicted with single sequences as inputs to AF2, we retrospectively predicted the

GAB_D8–GABARAPL1 and GAB_D23–GABARAP complex structures with multiple sequence

alignment (MSA) inputs. These MSA-based predictions of the designs matched even more closely with

the X-ray crystal structures, with Cα RMSDs of 0.5 Å and 0.9 Å for the GAB_D8–GABARAPL1 and

GAB_D23–GABARAP complexes, respectively, when aligned by the target structure (Figure S15).

Overall, these data demonstrate the ability of our de novo design pipeline to identify high-affinity binders

against targets with diverse pocket shapes and surfaces without requiring library-scale screening.

De novo design of macrocyclic binders against targets with unknown structures
Given the high accuracy and binding affinity of macrocycles designed against selected targets, we next

set out to design macrocyclic binders against targets without any experimentally determined structure.

We reasoned that the high accuracy of RFpeptides could mitigate the inherent risk of designing against

a predicted target structure. We designed macrocycles against Rhombotarget A (RbtA), a recently

identified cell surface protein from the ESKAPE pathogen, Acinetobacter baumannii. There are no

experimentally determined structures available for this protein, and sequence-based searches against

the Protein Data Bank do not return significant matches to other protein structures. We predicted the

structure of the 617 amino acid full-length protein using AF2 and RF2; both methods predicted similar

overall structures (Cα RMSD of 0.4 Å over 509 residues that exclude the signal peptide and

transmembrane domain) with high confidence (pLDDT > 90), (Figure S16). AF2 and RF2 both predict

two distinct extracellular domains: an N-terminal β-helix domain and a C-terminal Ig-like domain (Figure

S16). While there were some differences in the predicted structures from AF2 and RF2, we decided to

focus our binder design calculations on regions that were predicted nearly identically and with high

confidence by AF2 and RF2. Based on our preliminary design runs without hotspots to guide the

diffusion, we identified a patch in the N-terminal domain to pursue in our large-scale design calculations

against this target and defined hotspots Leu144, Phe202, Phe204, Tyr206, Val208, Leu231, and Ala269

for peptide backbone generation(Figure 4A). In contrast to the concave pockets targeted for MDM2 and

MCL1, this selected patch for RbtA is considerably flatter and difficult to target with conventional

computational and experimental approaches (Figure S17). We generated 20,000 backbones for
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macrocycle binders and designed four amino acid sequences for each backbone using iterative rounds

of ProteinMPNN and Rosetta Relax. Designs were filtered using AfCycDesign confidence metrics and

Rosetta interface metrics, as described in earlier sections (Figure S4). Based on these in silico metrics,

we selected 26 designs for biochemical and structural characterization with AfCycDesign iPAE < 0.28,

ddG < -40 kcal/mol, RMSD between the design model and AfCycDesign prediction < 1.5Å, and CMS

more than 300. The selected designs cover diverse sizes (13-18 amino acids), sequences, shapes, and

secondary structures (Figure S18 and Table S4). We expressed the Avi-tagged version of the RbtA

N-terminal domain (residues 20-458) and used it for binding screens using SPR. Four out of 11 designs

that were synthesized in sufficient quantity and purity showed a binding signal at 100 µM in our screens

(Figure S19). Based on further binding experiments with SPR, we determined the dissociation constant

of the best binder, RBB_D10, to be 9.4 nM (Figure 4B). The design model for RBB_D10 shows

extensive contacts to the target with several side chain-mediated polar contacts and hydrophobic

interactions (Figure 4F-H).

To confirm the structures of RbtA and RBB_D10 and the binding mode between them, we determined

the high-resolution X-ray crystal structure of apo and macrocycle-bound RbtA using X-ray

crystallography at 2 Å and 2.6 Å resolution, respectively. The apo structure of the RbtA N-terminal

domain–which is also the first experimentally determined structure from this class of bacterial

proteins–matches our AF2/RF2 predictions for this target very closely, with an overall Cɑ RMSD of 1.2

Å and 1.1 Å between the X-ray structure of the RbtA N-terminal domain and the AF2/RF2 predicted

structures, respectively (Figure 4C). The complex structure also confirms the structure and binding

mode of our designed macrocycle, RBB_D10, with the X-ray structure matching the design model with

an RMSD of 1.4 Å (Figure 4D). Notably, the conformation adopted by the macrocycle in the X-ray

structure, including the side chain rotamers involved in interactions with the target, is almost identical to

the design model with an RMSD of 0.4 Å (Figure 4E-H). Together, these data highlight the high

accuracy and success rates provided by RFpeptides even while designing macrocycles against targets

without deep pockets or targets with no known structures.

DISCUSSION
Here, we describe RFpeptides, a generative DL pipeline for precise de novo design of macrocycle

binders against a wide range of protein targets. The power of the approach is highlighted by the high

affinities (Kd < 10 nM) of the designed macrocyclic binders to GABARAP and RbtA, and the nearly

identical X-ray crystal structures and design models of the macrocycle-bound MCL1, GABARAP, and

RbtA (Cα RMSDs of 0.7 Å, 1.2 Å, and 1.4 Å, respectively). The RFpeptides approach offers several

advantages over traditional methods. First, the design approach should enable faster and more efficient

discovery of macrocyclic binders. Despite testing less than 20 designed candidates per target (in
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contrast to trillions of peptides tested in traditional library-based approaches), we achieve high-affinity

binders for two targets without requiring any further experimental optimization; to our knowledge, this is

a considerably higher success rate than achieved with any previous method. Second, in contrast to the

untargeted nature of the random library-based approaches, RFpeptides can be used for designing

custom binders to specific patches and sites, as demonstrated for GABARAP and RbtA. Finally, the

atomically accurate nature of the design models enables structure-guided optimization for properties

beyond target binding (as well as further increases in affinity), bypassing the bottleneck of complex

structure determination, which has hindered the optimization of leads from library screening. Combined

with the design principles for membrane traversal, RFpeptides could enable the design of peptides

simultaneously optimized for target binding and cell permeability or oral bioavailability.

RFpeptides also has considerable advantages over previous computational peptide design methods.

Information on known ligands and/or binding partners is not required to initiate design: RFpeptides can

design macrocycles completely de novo from just the structure or sequence (as in the case of RbtA) of

the target, enabling design against molecular targets intractable with previous methods. RFpeptides is

not limited to generating macrocycles with particular motifs or topologies: the diffusion process

generates macrocycles with diverse shapes and sizes, and selects the topologies appropriate for the

protein being targeted. Among the four targets tested here, binders for MCL1 and MDM2 have helical

motifs, binders for GABARAP have a β-sheet topology, and binders for RbtA sample loop-like

conformations that make extensive contacts with the flat surface of this target.

We anticipate RFpeptides will enable the rapid design of custom macrocyclic binders against a wide

range of molecular targets, accelerating efforts to develop peptides for diverse functional applications.

With the rapid advances in DL methods and frameworks, including the recent development of all-atom

diffusion models, we aim to extend the approach to generative design of macrocycles with

non-canonical amino acids, crosslinkers, and cyclization chemistries.
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FIGURES
Figure 1:

Figure 1: RFpeptides is a diffusion-based pipeline for the de novo design of protein-binding
macrocycles. (A) Introduction of a cyclically symmetric relative position encoding to RFdiffusion
enables the generation of macrocyclic peptide backbones with N- and C-termini covalently linked via a

peptide bond. The relative position encodings are cyclized by switching from positive relative position

encodings (i.e., “to the right”) to negative encodings (i.e., “to the left”) when index j is more than halfway

around the peptide relative to index i. (B) RFpeptides produces diverse and designable cyclic peptides

traversing α-helical, β-strand, and loop/coil secondary structures. Left, Structural clusters calculated

using t-SNE32 to reduce the dimensionality of an all-by-all TMscore matrix computed with TMalign33 on

an unfiltered set of 1200 macrocycles generated using RFpeptides. Clustering of the 1200 (now 2D)

points was then performed using a 40-component Gaussian mixture model in Scikit-learn34. Right, Six

RFpeptides outputs from differing structural clusters, all with < 1 Å backbone RMSD between the

design model (blue) and the structure predicted by AfCycDesign (gold). (C) Self-consistency

benchmark results for RFpeptides cyclic peptide design at various lengths. For each peptide length, the

fraction (with N=200 per length) of backbones with at least one out of the of eight LigandMPNN35

sequences predicted by AfCycDesign to refold with pLDDT > 0.8 and within 2.0 Å backbone RMSD of
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the designed structure. Success rates for all sampled backbones are in blue, and success rates only

counting unique structural clusters (as calculated using MaxCluster36,37 at a TMscore threshold of 0.5)

are in orange. (D) For multi-chain diffusion trajectories (e.g., macrocycle binder design), the relative

position encodings for the macrocycle chain are cyclized, whereas inter-chain and target chain relative

positional encoding are kept as standard. (E) Pipeline for the design of protein-binding macrocycles

using RFpeptides. Macrocycle backbones are generated from randomly initialized atoms by a stepwise

RFdiffusion-based denoising process, followed by fixed-backbone amino acid sequence design using

ProteinMPNN. Design models are downselected based on the computational metrics from structure

prediction using AfCycDesign and physics-based interface quality metrics using Rosetta. (F)

RFpeptides pipeline generates diverse macrocycles against selected targets. Four diverse cyclic

peptide binders against the same target were generated using RFpeptides, with AfCycDesign iPAE <

0.3 and < 1.5 Å Cα RMSD between the design model (blue) and AfCycDesign prediction (gold).
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Figure 2:

Figure 2: De novo design and characterization of macrocyclic binders to MCL1 and MDM2
(A) AfCycDesign prediction of MCB_D2 (purple) bound to MCL1 (gray surface). MCB_D2 side chains

are shown as sticks. (B) Affinity determination of MCB_D2 using SPR. SPR sensorgram from a 9-point

single-cycle kinetics experiment (2-fold dilution, highest concentration: 20 µM). Experimental data are

shown in purple and global fits are shown with black lines. The dissociation constant (KD) is also shown

on the plot. (C) Experimentally determined complex structures closely match the design model. Overlap

of the X-ray crystal structure (gold and gray) with the design model for MCB_D2 (purple); Cα RMSD for

macrocycle is 0.7 Å when experimental structure and design models are aligned by MCL1 residues.

Close-up views demonstrate strong agreement between the side chain rotamers of the design model

and the X-ray structure. (D) Overlay of the macrocycle model to the crystal structure shows a Cα RMSD

of 0.4 Å with nearly identical backbones and side chain rotamers. (E) Close-up view of the
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macrocycle-bound MCL1 structure showing the cation-π interaction at the interface. (F) Close-up view

of the macrocycle-bound MCL1 structure showing the hydrophobic contacts at the interface. (G)

AfCycDesign prediction of MDB_D8 design (blue) in complex with MDM2 (gray) shown as cartoons with

interacting side chains shown as sticks. (H) Affinity determination of MDB_D8 using SPR. SPR

sensorgram from a 9-point single cycle kinetics experiment (5-fold dilution, highest concentration: 50

µM). Experimental data are shown in blue and global fits are shown with black lines. The dissociation

constant (KD) is also shown on the plots. (I) Overall and close-up views of the AfCycDesign prediction of

the MDB_D8 design model highlighting key interactions with the MDM2.
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Figure 3:

Figure 3: De novo design of high-affinity macrocycle binders to GABARAP
(A) AfCycDesign predicted model for design GAB_D8 bound to GABARAP shown as surface, with

hotspot residues highlighted in green. (B) Affinity determination of GAB_D8 using SPR. SPR

sensorgram from 9-point single-cycle kinetics experiments (5-fold dilution, highest concentration 20

µM). Experimental data are shown in orange and global fits are shown with black lines. The dissociation

constant (KD) is also shown on the plot. (C) Superposition of chains E and F from the X-ray crystal

structure of GAB_D8 bound to GABARAPL1 and the AfCycDesign model. (D) AfCycDesign predicted

model for design GAB_D23 bound to GABARAP shown as surface, with hotspot residues highlighted in

green. (E) Affinity determination of GAB_D23 using SPR. SPR sensorgram from 9-point single-cycle

kinetics experiments (5-fold dilution, highest concentration 20 µM). Experimental data are shown in pink

and global fits are shown with black lines. The dissociation constant (KD) is also shown on the plot. (F)

Alignment of chains A and B from the X-ray crystal structure of GAB_D23 bound to GABARAP and the

AfCycDesign model. (G) Alignments of GAB_D8 and GAB_D23 macrocycle models to X-ray crystal

structures show close matches. (H) Comparison of GAB_D8 and GAB_D23 binding modes in the
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design models. (I) Competitive AlphaScreen response vs. concentration plot, IC50 from the average of

three experiments. Donor and acceptor beads in the assay are bound to GABARAP and

GABARAP-binding peptide K1, respectively.
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Figure 4:

Figure 4: Accurate de novo design of a high-affinity cyclic peptide binder against the predicted
structure of RbtA from A. baumannii
(A) AfCycDesign prediction of design RBB_D10 (violet cartoon) bound to the AF2 predicted β-helix

domain of RbtA shown in gray surface. Hotspot residues from RbtA used during the backbone design

step are shown in green. (B) SPR sensorgram from 9-point single-cycle kinetics experiment (5-fold

dilution, highest concentration 20 µM). KD determined from the SPR experiment also denoted on the

plot. (C) Close agreement of the RF2-predicted structure of RbtA (gray) with the X-ray structure (gold)

of the RbtA N-terminal domain determined here confirms the predicted structure of the target used for

the macrocycle design calculations. (D) Alignment of the design model of RbtA-bound RBB_D10

(violet/gray) to the X-ray structure (in gold) shows a close match between the design model and the

experimentally determined structure (Cɑ RMSD for macrocycle: 1.4 Å). Close-up view of the

RbtA-bound RBB_D10 with side chains shown as sticks. (E) Overlay of RBB_D10 design model (after
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the AfCycDesign prediction step) aligned to the X-ray structure without RbtA demonstrates a nearly

identical match for backbone coordinates and side chain rotamers (Cɑ RMSD: 0.4 Å). The design

model and X-ray structure are shown in violet and gold, respectively. (F-H) Close-up views of the

macrocycle-bound RbtA structure and the design model showing the accurate design of electrostatic

and hydrophobic interactions at the binding interface.
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