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Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading
cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary
and persistent injury versus the primary and transient injury has been drawing extensive attention for
study during the past few decades. The sterile neuroinflammation during the secondary phase of injury
has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have
determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering
studies have demonstrated the key roles for the innate and adaptive immune responses in regulating
sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been
recently developed for the treatment of CNS injury. This review updates the recent progress on eluci-
dating the roles of the innate and adaptive immune responses in the context of CNS injury, the devel-
opment and characterization of potential immunotherapeutics, as well as outstanding questions in this
field.
© 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University.
Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Traumatic brain injury (TBI) remains a major cause for death and
disability worldwide. In the United States alone, TBI contributes to
the deaths of nearly 50,000 people each year, with more than
282,000 hospitalizations and 2.5 million emergency department
visits in 2013.1,2 In Europe, TBI caused about 82,000 deaths with 2.1
million hospitalizations in 2012.3 In China, TBI caused 194,850
deaths (12.99/100,000 population).4 These figures may underesti-
mate the scope of the TBI epidemic because mild TBI often goes
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unreported. Those who survive a TBI can face temporary or per-
manent disabilities such as impaired cognitive function, movement,
sensation (e.g., vision or hearing), or emotional functioning (e.g.,
personality changes, depression). These issues not only affect pa-
tients, but can have lasting effects on families and communities. In
addition, TBI has linked to post-traumatic stress disorders, chronic
traumatic encephalopathy, and chronic neuroinflammation.

Additionally, traumatic spinal cord injury (SCI) has emerged as a
significant economic burden for society, with direct costs ranging
from 500,000 to 2 million US dollars accrued over the life-time for
one patient. Around the world, approximately 250,000e500,000
people suffer from SCI each year.5 In the United States, around
17,000 new cases of SCI occur each year and 240,000e337,000
people live with SCI.6 About 52% of SCI survivors are paraplegic,
while 47% are considered quadriplegic. The average age at injury
has increased from 29 years in the 1970's to 42 years in 2016.7

Both TBI and SCI affect individuals of all ages and genders. Both
of these disorders cause significant morbidity and mortality, with
initial mechanical primary injuries and persistent secondary in-
juries. The secondary injury contributes largely to the neurolog-
ical impairment seen in patients. Several mechanisms underlying
the secondary injury have been identified: excitotoxicity caused
by impaired glutamate homeostasis,8,9 free radicals/oxidative
ilitary Medical University. Production and hosting by Elsevier B.V. This is an open
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stress/lipid peroxidation,10,11 calcium overload,12,13 autophagy,14

and sterile neuroinflammation.15 Recently, the sequential activa-
tion of resident and recruited immune cells has been extensively
investigated for their participation in the secondary inflamma-
tory/immune responses after CNS injury. Many treatments for TBI
and SCI have been developed, including early neuroprotective
therapies such as surgical decompression, methylprednisolone,
and blood pressure augmentation, as well as recently developed
neuroprotective interventions such as Riluzole, Minocycline,
magnesium, therapeutic hypothermia, and cerebral spinal fluid
(CSF) drainage.16 Some promising clinical trials are also under way
for several drug targets such as Minocycline, Cethrin™, anti-
NOGO antibody, cell-based approaches, and bioengineered bio-
materials.17 In the past years, immunomodulatory strategies have
been showing great potential for success. In this review, we will
emphasize the importance of the immune response in the sec-
ondary injury and explore the future potential of immunother-
apies for the treatment of both TBI and SCI.

The paradigm shifts of CNS immunity

The CNS has been long viewed as an immune-privileged organ
due to its tolerance to antigen-induced immune responses. This
mutated or slow innate immune response may result mainly from
the presence of the bloodebrain barrier (BBB), which relative
impermeability is maintained by the tight junctions and basal
lamina of brain endothelial cells, and the end feet processes of
perivascular astrocytes. In addition, the lack of classical lymphatic
drainage and antigen-presenting cells (APC) like dendritic cells
within the brain parenchyma, as well as the low levels of major
histocompatibility complex (MHC) class I and II molecules may
contribute to the limited immune responses within the CNS.
Therefore, the presence of any immune cells with the CNS paren-
chyma was traditionally perceived as a hallmark of pathology and
the immune response plays a detrimental role after CNS injury.
However, this paradigm has been changed over the last two de-
cades.18,19 Increasing sets of evidence demonstrate that the im-
mune system keeps up a constant state of immunosurveillance,
scouting for signals not only from external pathogens, but also from
damaged tissue, particularly in the case of sterile injuries such as
TBI, SCI, stroke, etc.20 The immune system plays key role in tissue
homeostasis under healthy (physiological) conditions in addition to
the pathogenic aggravation of sterile inflammatory responses after
CNS injury.18

It is known that the resident microglia and astrocytes within the
CNS participate the innate immune responses. Under physiological
conditions, there aremillions of immune cells circulating in the CSF,
and populating the meninges and the epithelium of the choroid
plexus. These immune cells include T cells, B cells, monocyte/
macrophages, dendritic cells, and neutrophils. The meningeal
lymphatic vessels within the CNS have been discovered recently,
and function by draining meningeal immune cells and macromol-
ecules from the CSF into the deep cervical lymph nodes.21e24 This is
supported by the observation that CNS-derived antigens induce an
immune response in the deep cervical lymph nodes.25e27 Inter-
estingly, this response is skewed towards B-cells for a humoral
response, possibly to avoid a more detrimental inflammatory T-cell
response. Dendritic cells from CSF have been found to migrate to B-
cell follicles of the cervical lymph nodes.28,29

The paradigm changes for CNS immune-privilege provide a new
understanding of CNS immunity (immunosurveillance and toler-
ance) under healthy/physiological conditions. Additionally, the
preexisting immune system within the CNS may account for the
predominant role of the readily-available immune response in
initiating or mediating the secondary injury after CNS primary
injury. Both resident immune cells (microglia, astrocytes) and
infiltrating immune cells (T cells, B cells, monocytes, and macro-
phages) play beneficial and detrimental roles in CNS injury. Such
duality in the roles of the innate/adaptive immune responses relies
on the timing, types and interventions of the injury.30 For neuro-
degenerative diseases such as Multiple Sclerosis or Alzheimer's
disease, immunotherapies blocking immune/inflammatory re-
sponses has shown considerable efficacy.31,32 However, the innate
and adaptive immunity after TBI or SCI may help clear detrimental
extracellular debris such as aggregated or misfolded proteins at
certain time points after injury.33e35

Innate immune response after CNS injury

Activation of innate immune cells

The initial inflammatory response to CNS injury can be a
mechanism for the innate immune response, and is characterized
by the initial generation of danger-associated molecular patterns
(DAMPs), the production of inflammatory cytokines/chemokines by
the resident innate immune cells (microglia and astrocytes), and
the subsequent recruitment of infiltrating innate immune cells
(Fig. 1). These infiltrating innate immune cells include monocytes
(which subsequently differentiate into macrophages), mast cells,
granulocytes (basophils, eosinophils and neutrophils), dendritic
cells and natural killer cells. Within minutes after CNS injury,
alarmins such as interleukin (IL)-33, ATP, heat shock proteins
(Hsps), and high-motility group box 1 (HMGB1) are promptly
released from the damaged meninges, glial limitans, and paren-
chymal white matter.36,37 IL-33 is highly expressed in CNS, partic-
ularly in oligodendrocytes and astrocytes,38,39 and plays a crucial
role in CNS injury by recruiting microglia/macrophages.39,40 These
immediate alarmins bind to the pathogen-associated molecular
patterns (PAMPs) and DAMP sensors such as Toll-like receptors
(TLRs) and purinergic receptors in the innate immune cells,
inducing the subsequent activation of nuclear factor kB (NFkB)
signaling and stimulation of inflammatory gene expression or
cytokine release.41e43 These inflammatory alarmins also induce
complement activation and the recruitment of neutrophils,
monocytes and T cells to the injury site.15,39

HMGB1 is a nuclear-localized DNA-binding transcription factor
ubiquitously expressed. HMGB1 expression is increased after TBI
and SCI.36,44 It is released by damaged cells after CNS injury and
also actively secreted by inflammatorymacrophages.45 It is a potent
inflammatory stimulus via its receptors such as TLR4 and the re-
ceptor for advanced glycation end products (RAGE).36 Both TLR4
and RAGE participate in the innate immune/inflammatory re-
sponses via NFkB activation.46 HMGB1 promotes the development
of macrophages with a neurotoxic phenotype both in vitro and
in vivo.36

Monocytes are the major types of the initial infiltrating innate
immune cells after CNS injury and contribute to the propagation of
the sterile inflammation.47,48 Monocytes are categorized as
CD115þLy6ChiCD62þCCR2hi classical, CD115þLy6CloCD62�CCR2lo

non-classical and an intermediate subset that expresses a varying
spectrum of these markers.49,50 Classical monocytes infiltrate into
the injured sites to generate tissue macrophages.51 Non-classical
monocytes, known as patrolling monocytes, survey vascular
endothelium such as the BBB and only extravasate under patho-
logical conditions.52 The non-classical/patrolling monocytes ex-
press high levels of the CX3CR1 fractalkine receptor that allow their
migration to CX3CRL1-expressing cells after TBI.53 The roles of
monocytes appear to be significant, as global monocyte depletion
in CCR2 knockoutmice is associated with significant improvements
in brain edema, motor coordination, and working memory.54,55



Fig. 1. Time course and dual roles of innate and adaptive immune responses after CNS injury. Within hours, primary mechanical damage of CNS may cause disruption of cell
membrane, vasculature and BBB, leading to prompt release of alarmins and activation of resident immune cells, followed by secondary inflammatory/immune responses. Over the
next days/weeks, continuous infiltration and subtype conversion of immune cells cause beneficial/detrimental effects on neural regeneration, and astrocytic activation induces glial
scarring and regenerative failure. Limited neurogenesis and neural regeneration occur over months/years after CNS injury. Adapted from.2,243
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Additionally, targeting CCR2þ macrophages with CCX872, a novel
Phase I CCR2 selective antagonist, significantly reduced TBI-
induced inflammatory response and improved hippocampal-
dependent neurocognitive function.56 However, selective deple-
tion of classical monocytes alone had no effect on neutrophil
recruitment to the site of injury.47 Selective deletion of patrolling
monocytes in CX3CR1 knockout mice significantly reduces
neutrophil infiltration after TBI47 and SCI,57 implying the important
role of patrolling monocytes in mediating CNS injury. Therefore,
targeting of CX3CR1 signaling may represent a selective immuno-
therapy for CNS injury. However, patrolling monocytes are
redundent in the progression and recovery of stroke,58 or exhibit
neuroprotective function in sterile excitotoxicity model.59

The infiltrating neutrophils are highly migratory and possess
high phagocytic ability to clean the damaged elements within the
brain parenchyma after CNS injury.60,61 Neutrophils also partici-
pate in BBB breakdown and subsequent brain edema forma-
tion.62,63 The infiltrating dendritic cells can be activated by the
damaged cells and present antigens to T cells, leading to adaptive
immune response.64,65

Mast cells are myeloid cells, mainly participating in the patho-
genesis of allergic reactions. In addition to the extensive presence
within tissues exposed to the external environment, such as the
skin, gut, and respiratory tract, mast cells have been observed in the
CNS, particularly the leptomeninges66 and perivascular space.67,68

Mast cells respond to CNS injury by releasing inflammatory me-
diators including proteases and vasoactive amines such as GnRH,
tryptase, and histamine. These inflammatory mediators induce
microglia activation and neuroinflammation. The meningeal mast
cells also damage the BBB and recruit neutrophils and activated T
cells to the injury site. Therefore, inhibition of mast cells may prove
to be a neuroprotective therapy for CNS injury.69,70
Key role of inflammasomes in the secondary injury of CNS

The inflammasome is a multiprotein intracellular complex
serving as an innate immune responder to pathogenic microor-
ganisms and sterile damaging/stress signals. It regulates the acti-
vation of caspases, particularly caspase-1, leading to the generation
of highly pro-inflammatory cytokines IL-1b and IL-18. Inflamma-
some also induces an inflammasome-specific form of cell death
named pyroptosis.41,43 PAMPs or DAMPs are recognized by the
pattern recognition receptors including TLRs, nucleotide-binding
domain leucine-rich repeats (NLRs), C-type lectins and
membrane-bound, retinoic acid-inducible gene-I-like receptors.
These pattern recognition receptors are mainly expressed in innate
immune cells such as microglia, and astrocytes. Activation of TLRs
induces the priming of inflammasomes through NFkB signaling
while NLRs stimulate the assembly of inflammasome in most cell
types.41e43 Different type of TLRs detects various DAMPs and
PAMPs.71 Thirteen TLRs have been identified, although TLR11,
TLR12 and TLR13 have yet to be discovered in humans.71 TLR3, TLR7
and TLR9 recognize cellular and microbial nucleic acids. TLR2 and
TLR4 detect cellular Hsp60 and Hsp70. TLR5 detects bacterial
flagella. NLRs can be activated by endogenous cellular products
such as uric acid crystals and aggregated peptides. NLRs also detect
cytosolic ion fluxes induced by ATP-stimulated activation of puri-
nergic receptors.

Several inflammasome complexes are identified in CNS, among
which, NLRP1 and NLRP3 are the most studied.72e74 The inflam-
masome complexes exist in a pre-assembled state prior to their
activation, allowing a rapid activation of the innate immune system
after CNS injury.75 Each inflammasome complex contains a cyto-
solic sensor (i.e. NLR), an adaptor protein (i.e. apoptosis-associated
speck-like protein containing a carboxy-terminal CARD, ASC) and
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an effector caspase.76 The exact compositions of each inflamma-
some relies on environmental niche factors and injury types.77

Activation of these inflammasomes produces the mature/active
form of caspase-1 leading to the generation of proinflammatory
cytokines IL-1b and IL-18, which contribute to the secondary in-
flammatory response after CNS injury.78

Dual roles of activated microglia/macrophages and astrocytes after
CNS injury

Microglia play a key role in the innate immune response within
CNS. Microglia are phenotypically dynamic in both morphology
and function, ranging from resting ramified steady state (M0), to
the activated non-phagocytic (M1) or a phagocytic (M2) polarized
state.79 M1microglia act like APCs and are stimulated by IFN-g, IL-6
and TNFa. The M2 microglia state has recently been further cate-
gorized into M2a, M2b and M2c states based on different stimu-
lation, antigenic marker and function. The M2a state is stimulated
by IL-4 and IL-13, and works to suppress inflammation.80,81 The
M2b state is stimulated by TLRs, while M2c state is stimulated by
TGF-b, IL-10, and apoptotic cells.82,83

Microglia not only survey the CNS, but also exhibit fundamental
roles in regulating neurogenesis,84 neuronal polarization and syn-
aptic remodeling/plasticity.85 Microglia within the non-
pathological CNS monitor their environmental niche by extending
and retracting their motile processes. Microglia determine
neuronal differentiation and maturation by releasing various
growth factors. Microglia support the formation and maturation of
synapses. Under pathological conditions, microglia are very reac-
tive, undergoing rapid activation, proliferation, and structural
changes. They are the first line of immune defense against invading
pathogens and/or local damaging signals. They can sense various
types of inflammatory mediators such as cytokines/chemokines,
glycolipids, lipoproteins, peptides, nucleotides, misfolded protein
aggregates, and other abnormally processed proteins. They also
produce various types of pro- and anti-inflammatory cytokines/
chemokines, growth factors, matrix molecules and others. These
inflammatory mediators induce phenotypic changes in these
microglia and mediate their possible detrimental or beneficial
functions after CNS injury.86e88

Astrocytes not only provide trophic support for neurons, but
also play integral roles inmany processes such as synaptic pruning,
neurotoxin removal, neurogenic stimulation, blood flow regula-
tion, and potassium/sodium buffering. In response to TLR and NLR
signals, astrocytes produce the majority of innate immune/in-
flammatory mediators, including cytokines such as IL-1b, IL-6,
chemokines such as CCL2, CXCL1, CXCL10, and CXCL12 and
several complement components.89,90 Astrocytes can be activated
by various pathological factors including pro-inflammatory cyto-
kines such as IL-1b. Reactive microglia also activate astrocytes.91,92

Astrocyte-specific inflammatory signaling plays a key role in the
secondary injury after SCI and TBI.93e95 NFkB signaling has been
well known to participate the inflammatory response during the
secondary CNS injury. It plays a dual role in the pathogenesis and
functional recovery after CNS injury.96 Astroglial NFkB inhibition in
a transgenic mouse model significantly improved functional re-
covery, increased white matter preservation and axonal sparing
after SCI97,98 and ischemic brain injury.99 This protective effect
may result from the reduction of various inflammatory cytokines/
chemokines such as CXCL10, CCL2, and TGF-b97 and the promotion
of oligodendrogenesis.100 These reactive astrocytes also form a
glial scar that produces axonal growth inhibitors and prevents
axonal regeneration.101 Chondroitin sulfate proteoglycans are the
key component of astroglial scarring and are significantly down-
regulated by the astroglial NFkB inhibition.97 Therapeutic
modulation of the chondroitin sulfate proteoglycans is an attrac-
tive approach to improve neuroregeneration and functional re-
covery after CNS injury.102

Adaptive immune response after CNS injury

The adaptive immune response occurs after CNS injury, most
prominently within the deep cervical lymph nodes, the meningeal
spaces (including the CSF), and the local injury site (Fig. 1). The T
cell responses may be specific to CNS-restricted antigens. Recent
studies showed that immune T cells enter CSF and meningeal
spaces via meningeal blood vessels.23 The mechanisms underlying
the entry of the meningeal T cells into the parenchyma remain
largely unknown. It is possible that meningeal T cells infiltrate the
parenchyma through some chemokines.103 Several evidences
showed that T cells enter the meninges and the CSF through lep-
tomeningeal and dura blood vessels or through the choroid
plexus.104,105

Upon CNS injury, T cells undergo extravasation through a che-
mokine gradient and adhesion molecule upregulation on the
luminal surface of the vascular endothelium.103 The binding of
very late antigen 4 (VLA4, also named Integrin a4b1) to vascular
cell adhesion molecule 1 (VCAM1) is important for T cell extrav-
asation and homing into the CNS.106,107 Inhibition of this interac-
tion by a neutralizing antibody against VLA4 attenuates T cell
extravasation.107e109

T cells recognize antigens through their surface-bound T cell
receptor, and are generally classified into CD8þ cytotoxic T cells
and CD4þ helper T cells (Th). CD8þ T cells detect antigens pre-
sented by MHC class I (MHC I) molecules while CD4þ T cells
recognize MHC II antigens primarily presented by APCs like den-
dritic cells, macrophages and B cells.110 Upon activation by their
specific peptides, CD4þ T cells proliferate and, when exposed to
certain secondary stimuli, differentiate to combat the specific
threat.111 Upon various stimulation, Th cells differentiate into
several subtypes including Th1, Th2, Th9, Th17, T regulatory and T
follicular helper cells. The subtypes are characterized largely by the
lineage-specific cytokines.112 For example, Th1 cells generate IL-2,
and INFg, Th2 cells produce IL-4, IL-5 and IL13, Th9 cells generate
IL-9, IL-10 and IL-21, while Th17 cells produce IL-17 and IL-23. T
follicular helper cells express CD40L and secrete IL-21 and IL-4.113

Under physiological conditions, the lymphocytes (mainly T cells)
patrol the border surrounding the CNS, such as meninges, CSF and
choroid plexus, and regulate neurobehavioral function.114 For
example, genetic depletion of meningeal T cells or pharmacolog-
ical trapping of T cells in the deep cervical lymph nodes impairs
neurocognitive function in animal models.115,116 However, the
molecular mechanism underlying the patrolling role of immune
cells remains largely unknown.

The adaptive immunity response also involves B cells, which
express unique antigen-specific receptors via genome rear-
rangement and produce antibodies. Both TBI and SCI stimulated B
cells to generate pathogenic antibodies, which subsequently
contribute to the secondary tissue damage and neurological
dysfunction after SCI.117,118

Immunotherapy at the innate immune response after CNS
injury

The innate immune response plays a major role in the sterile
inflammation and neuroregenerative failure after CNS injury. The
general immunosuppression regimens using broad steroids such as
methylprednisolone have been extensively employed to treat pa-
tients with SCI or TBI for decades. Unfortunately, these immuno-
suppression regimens remain unsuccessful because they suppress
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both the pro- and anti-inflammatory activities of the innate im-
mune response.119,120 Recently, selective immunomodulatory ap-
proaches have been developed to ameliorate the pro-inflammatory
M1-like response and promote the anti-inflammatory M2-like
positive tissue remodeling. Macrophages/microglia play a key role
in the innate immune response. Thus, immunomodulatory therapy
targeting macrophages/microglia is becoming promising in treat-
ment of CNS injury.

Minocycline targeting microglia after TBI and SCI

Minocycline is a clinically available tetracycline-class antibiotic
that exhibits extensive neuroprotective effects at multiple stages
after CNS injury.121 Most mechanisms involve the capability of
suppressing innate immune responses after CNS injury, including
inhibiting microglia activation,122e124 attenuating HMGB1 trans-
location,122 suppressing caspase-1125 and downregulating the
release of pro-inflammatory mediators such as IL-1b, TNFa, and
Cox2 after CNS injury.121 Several preclinical animal studies pre-
sented highly promising therapeutic benefits of minocycline in
promoting neuroregeneration and improving neurobehavioral
outcomes after SCI121,126,127 and TBI.123,128 Additionally, Phase II
Clinical trials showed positive results in improving motor score
after SCI.129 As a result, a Phase III clinical trial entitled ‘Minocycline
in Acute Spinal Cord Injury’ has been started.130

Extracellular matrix (ECM) and exosomes at innate immune cells
after CNS injury

The xenogeneic ECM bioscaffolds have been extensively
employed to decrease scar formation and promote tissue repair.131

The autologous microglia/macrophages can be pre-polarized with
ECM or other immunomodulatory factors ex vivo to acquire an M2-
like phenotype before transplantation back into the patients.132e134

Additionally, cell therapies using autologous macrophages have
been shown to improve TBI and SCI.135 Due to potential cell-related
side effects or injection difficulties for macrophage or stem cell
injection, exosomes have been developed to replace the cell ther-
apy because of their multifaceted benefits: low immunogenicity,
high efficacy, efficient BBB permeability, active cellular communi-
cations, and microglial phagocytosis stimulation.136e138 The exo-
somes deliver various types of RNA, proteins, cytokines, lipids and
other signaling molecules. After TBI or SCI, the CSF harbors
increased number of exosomes that contain cytoskeletal proteins,
neurite-outgrowth related proteins, and synaptic proteins, ECM
proteins, and complement protein C1q subcomponent subunit
B.139e141 By altering the encapsulated components via ECM-
polarization or genetic engineering, exosomes can be selectively
produced to modulate the beneficial immune response after CNS
injury.137,142,143 For example, exosomes loaded with ASC siRNA can
cross the injured BBB in vivo and reduce the ASC protein levels in
the spinal cord after injury, leading to a significant decrease in
caspase-1 activation and IL-1b production.144 NLRP1 inflamma-
some proteins exist in exosomes derived from CSF of SCI patients144

and TBI patients.145 These inflammasome-containing exosomes
may fuse with peripheral immune cells to activate inflammatory
and immune response.72,73 Therefore, immunotherapy targeting
inflammasome-containing exosomesmight be a promising strategy
for the treatment of CNS injury.146

Lipid-lowering drugs for immunomodulation

The lipid-lowering drugs such as statins have extensive immu-
nomodulatory and anti-inflammatory properties. Among statins,
atorvastatin exhibits neuroprotective effect in many preclinical
studies on both TBI147e154 and SCI.155e158 Although many mecha-
nisms may contribute to atorvastatin's neuroprotective effects, the
microglia/macrophage polarization may play a more predominant
role.159 Acute atorvastatin administration in mice with TBI effec-
tively reduced inflammatory responses by suppressing microglia/
macrophage activation and immune cell invasion.159 Several clin-
ical trials with atorvastatin showed very promising therapeutic
effects for TBI147 and SCI,160 but some clinical studies did not
identify any improvement in functional recovery.148,160 The dis-
crepancies may result from different modeling, treatment patterns
and sample sizes. Further clinical trials with larger cohort sizes and
longer multi-center evaluation periods are needed.

Inflammasomes as therapeutic targets for CNS injury

The priming and activation of inflammasomes are the major
components of the innate immune response and sterile inflam-
mation after CNS injury.41,77,144 Thus, immunotherapies targeting
the inflammasome response might be a promising anti-
inflammatory approach for CNS injury (TBI and SCI). Although the
complexities and mechanisms underlying the inflammasome
response after CNS injury remain under extensive investiga-
tion,77,144 several proof-of-concept studies hold promising in con-
tacting the inflammasome assembly and activation.161

Early studies showed that treatment with anti-ASC neutralizing
antibody immediately after fluid-percussion brain injury in rats
significantly improves the histopathology and functional recov-
ery.162 Such treatment reduced caspase-1 activation, IL-1b pro-
duction and XIAP cleavage.162 The CSF from TBI patients can
activate neuronal AIM2 inflammasome and ASC oligomeriza-
tion.163,164 Blocking pyroptosis using caspase-1 inhibitors (Ac-
YVAD-cmk, VX-765) or pannexin-1 inhibitors (Probenecid and
Brilliant Blue FCF) prevents inflammasome-mediated inflammation
and improves CNS injury.161,163 Omega-3 fatty acids attenuate
neuroinflammation and improve neurological outcome via inhib-
iting the NLRP3 inflammasome activation.165 Propofol, a lipid-
soluble intravenous anesthetic, has been shown to protect against
TBI via inhibiting ROS-dependent activation of the NLRP3 inflam-
masome.166 The angiotensin II receptor antagonist Telmisartan re-
duces traumatic cerebral edema by inhibiting the NLRP3
inflammasome-mediated accumulation of IL-1b and IL-18.167

Melatonin treatment attenuates the early brain injury after sub-
arachnoid hemorrhage by inhibiting NLRP3 inflammasome-
associated pyroptosis.168 Treatment with estrogen or stromal cell-
derived factor-1 alpha (SDF-1a) after SCI exhibits neuroprotective
function via inhibiting local inflammasome activation.169,170

Resveratrol attenuates the inflammatory response and amelio-
rates TBI by reducing ROS production and inhibiting NLRP3 acti-
vation via SIRT1.171 The treatment with hyperbaric oxygen (HBO)
alleviates the inflammatory response in experimental TBI via
modulating microglial NLRP3 inflammasome signaling and
reducing IL-1b/IL-18 accumulation.172,173 NLRP3 inhibitors such as
BAY 11-7082 (via NFkB) or A438079 (via P2X7) have been shown to
inhibit the inflammatory response and improve functional recovery
after TBI.75,174 Mangiferin has been extensively used as an anti-
inflammatory drug and its neuroprotective effect after CNS injury
is also attributed to NLRP3 inhibition.175 Several other treatments
for neuroprotective effects against SCI have been shown to target
inflammasomes, such as heme oxygenase-1146, Rho kinase inhibitor
fasudil176, the citus flavonoid glycoside rutin177 and quercetin178,
the natural triterpenoid compound asiatic acid179 and the dopa-
mine receptor agonist A-68930.180

However, some studies using Nlrp1 (�/�) and Asc(�/�) mice
demonstrated a non-essential role of the NLRP1 inflammasome
after TBI.181 This may result from the developmental compensation
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of this specific inflammasome knockout. Since IL-1b is the major
end-point product of the inflammasome activation, the neuro-
protective effect of the therapeutic treatment targeting IL-1b with
blockers such as IL-1ra and IL-1b neutralizing antibodies after
TBI182,183 and SCI184 also support the conclusion that inflamma-
some therapy holds highly promising for the treatment of CNS
injury. Given the majority of preclinical studies targeting inflam-
masomes showed positive therapeutic benefits against TBI and SCI,
clinical trials may be immediately needed for CNS injury.185

HDAC inhibitor for SCI and TBI

The histone deacetylases (HDAC) remove acetyl groups on a
histone, allowing for tighter DNA wrapping around the histones,
thus suppressing gene transcription. HDAC inhibitors have been
widely developed and utilized to activate gene transcription. After
TBI, treatments with various HDAC inhibitors such as Valproate,
sodium butyrate, ITF2357, trichostatin-A, Scriptaid, and 4-
dimethylamino-N-[5-(2-mercaptoacetylamino) pentyl]benzamide
(DMA-PB) significantly mitigate neuroinflammation, improve mo-
tor functional recovery and promote learning/memory in several
animal models.186�190 These HDAC inhibitors preferentially upre-
gulate the transcriptional expression of many neuroprotective
genes involved in cell survival, proliferation, and differentiation.191

Both grey matter and white matter tracts are significantly pre-
served by HDAC inhibition after TBI.186,192 Similarly, several HDAC
inhibitors such as Valproate and RGFP966 have been shown to have
neuroprotective effect against SCI by suppressing inflammatory
response, promoting neurogenesis and stimulating axonal regen-
eration.193�196 The expression of HDAC3 is upregulated in the
innate immune cells (microglia/macrophages) at the injury site
after SCI.196 For both TBI and SCI, the inhibition of microglia/
macrophage activation is the major mechanism underlying the
neuroprotective benefits from HDAC inhibition therapy.186,194,196

These exciting preclinical findings provide a promising future
therapy using HDAC inhibitors targeting microglia for the treat-
ment of CNS injury.193

Nanoparticles or drugs targeting monocytes

Monocyte-derived macrophages contribute primarily to the
initial inflammatory damage after CNS injury.197 Selective blockage
of monocyte infiltration during early stage of CNS injury may pre-
vent detrimental effects of the early innate immune response while
preserving the beneficial effects of the residential microglia/mac-
rophages.198 The highly negatively charged, synthetic, 500 nm-
diameter immune-modifying nanoparticles have been used to
sequester monocytes in the spleen where they undergo caspase-3-
mediated apoptosis.199 Thus, intravenous administration of the
biodegradable nanoparticles after SCI safely and selectively limits
monocyte infiltration into the injury site and significantly improves
functional recovery after both moderate and severe SCI.198 These
immune-modifying nanoparticles may offer a promising treatment
for CNS injury because of the multifaceted advantages and
continuous improvement of the nanomedicine.200

Laquinimod is an immunomodulatory oral drug in the clinical
practice for the treatment of multiple sclerosis201,202 and other
autoimmune diseases.203 Its immunomodulation results mainly
from the inhibition of the monocytes infiltration into CNS in
neurodegenerative diseases.204 A recent study shows that laquini-
mod treatment reduces lesion volume and axonal damage and
restored neurogenesis after TBI.205 Laquinimodmight be a potential
immunotherapy for CNS injury.

A new bioengineered protein comprised of the human leuko-
cyte antigen (HLA)-DRa1 domain linked covalently to mouse MOG-
35-55 peptide (DRa1-MOG-35-55) has been shown to modulate
monocyte response206,207 and improve histological and clinical
outcomes after TBI.208

Immunotherapy at the adaptive immune response after CNS
injury

Emerging neuroprotective therapeutics targeting B cells

Intravenous immunoglobulin G (IVIG)
IVIG contains polyclonal IgG and has been extensively used as a

first-line therapy with a good pharmacological safety profile in the
clinical patients with immunodeficiency and autoimmune diseases
such as Guillain-Barre syndrome, chronic inflammatory demyelin-
ating polyneuropathy and Kawasaki disease.209,210 IVIG has been
also examined for neuroprotective effects in ischemia-type
insults.210�212 In animal studies, IVIG administration acutely after
SCI213 or TBI214 significantly improves neural functional recovery.
IVIG not only suppresses the excessive immune responses via
inhibiting inflammatory cytokine production, immune cell inva-
sion/activation and complement activation in the CNS, but also
reverses the concomitant immunosuppression against invading
pathogens after CNS injury.17,213,215�217 Given the long-term clinical
use of IVIG for the treatment of autoimmune and immunodefi-
ciency conditions and the promising efficacy for CNS injury in an-
imal studies,211,213,214 IVIG remains a potential candidate for clinical
trials in SCI and TBI.218,219

Monoclonal antibodies after CNS injury
Robust B-cell response occurs after SCI by generating pathogenic

antibodies.117,118 B cell deficiency in RAG knockout mice improves
functional recovery after SCI.220 Antibody-mediated depletion of B
cells through the glycoengineered anti-muCD20 antibody (18B12)
in a mouse model significantly inhibits the NFkB-dependent pro-
duction of pro-inflammatory mediators and improves functional
recovery after SCI.221 The therapeutic CD20 antibodies such as rit-
uximab or obinutuzumab may provide a new immunotherapy for
the treatment of CNS injury.

Targeting T cells (Peripheral and CNS)
Targeting T cell trafficking and infiltration is neuroprotective in

CNS injury.222 The chemokine CXCL10 is a potent recruiter for T
cells and has been implicated in the pathogenesis of CNS
injury.223�225 CXCL10 antagonist226 or neutralizing anti-
bodies227,228 have been shown to attenuate T cell infiltration, sup-
presses neuronal death, increase axonal regeneration and improve
functional recovery after SCI.

Fingolimod is an orally-effective immunosuppressant targeting
sphingosine 1-phosphate receptor S1P1, and clinically used for the
treatment of relapsing-remitting multiple sclerosis.229,230 It in-
duces S1P1 internalization and sequesters lymphocytes in the
lymph nodes, reducing the circulating population of lymphocytes
and their trafficking into tissues.231,232 In addition to multiple
sclerosis and other autoimmune diseases, fingolimod therapeutic
benefits have been reported in many other neurodegenerative
diseases and CNS injury. For SCI, systemic treatment with fingoli-
mod blocks neuroinflammation and improves motor function and
bladder function.233,234 Local administration of fingolimod reduces
reactive gliosis, prevents neuronal death and improves motor
functional recovery after SCI.235 A 3-day consecutive fingolimod
treatment starting at 1 h after TBI significantly reduces as many as
20 kinds of cytokines/chemokines and the infiltrated Tand NK cells,
but increases the percentage of regulatory T cells, and the con-
centration of anti-inflammatory IL-10.236 Fingolimod attenuates
the general microglia activation, BBB damage and axonal injury,
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and improves neurological functions after TBI. Given the extensive
clinical application and widely reported therapeutic efficacy, fin-
golimod or other immunosuppressor targeting T cell trafficking or
extravasation may be a promising therapy for the treatment of CNS
injury.237

However, the adaptive immune responses may also serve as
a protective autoimmunity to help neurorepair after CNS
injury.238,239 In the protective autoimmunity, the adaptive immune
cells (particularly T cells) recognize self-constituents and potentiate
an autoreactive response.240,241 Immunization with a synthetic
peptide A91 derived from the myelin basic protein shows strong
neuroprotective efficacy after SCI in preclinical studies.240,242

However, the safety, dosage and schedule of this peptide need to
be addressed before translating into clinical therapy.
Challenging questions and future directions

Both the innate and adaptive immune responses play key roles
in the secondary injury progression of both TBI and SCI. Several
immunomodulatory strategies are likely to see translation to pa-
tients within the next few decades. However, several challenging
questions could be addressed or investigated for future studies. The
patrolling immune cells, particularly T cells and monocytes at the
border between CNS and immune system play important roles in
both physiological and pathological conditions (Fig. 1). As of now,
many unknown functions remain to be determined. For example,
what factors or molecular mechanisms determine the specificity
and diversity of meningeal immune cells? Additionally, how do
these meningeal immune cells invade the CNS parenchyma during
pathological states? How does the crosstalk between the resident
and invading immune cells contribute to the initial inflammatory
damages and late neurorepair process? Various subtypes of innate
and adaptive immune cells in the CNS are identified. Their char-
acteristics and functions and the mechanisms underlying the sub-
type mutual conversion remain to be better delineated. Most
importantly, what is the timing/window and transit process for the
beneficial or detrimental role of innate and adaptive immune re-
sponses after CNS injury? Novel immunotherapeutics are needed to
guide the maladaptive immune responses to the favorable wound-
healing responses after CNS injury. The peripheral immune system
exhibits immunosuppression after CNS injury, but whether T cell
exhaustion occurs within CNS and affects neurodegeneration or
neurorepair during the chronic injury remains largely unknown.
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