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A B S T R A C T   

Most worldwide policy frameworks, including the United Nations Sustainable Development 
Goals, highlight soil as a key non-renewable natural resource which should be rigorously pre-
served to achieve long-term global sustainability. Although some soil is naturally enriched with 
heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redis-
tribution, which may entail potentially harmful environmental and/or human health effects if 
certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies 
is highly recommended. Although there are many publications dealing with the elimination of 
HMs using different methodologies, most of those works have been done in laboratories and there 
are not many comprehensive reviews about the results obtained under field conditions. 
Throughout this review, we examine the different methodologies that have been used in real 
scenarios and, based on representative case studies, we present the evolution and outcomes of the 
remediation strategies applied in real soil-contamination events where legacies of past metal 
mining activities or mine spills have posed a serious threat for soil conservation. So far, the best 
efficiencies at field-scale have been reported when using combined strategies such as physical 
containment and assisted-phytoremediation. We have also introduced the emerging problem of 
the heavy metal contamination of agricultural soils and the different strategies implemented to 
tackle this problem. Although remediation techniques used in real scenarios have not changed 
much in the last decades, there are also encouraging facts for the advances in this field. Thus, a 
growing number of mining companies publicise in their webpages their soil remediation strate-
gies and efforts; moreover, the number of scientific publications about innovative highly-efficient 
and environmental-friendly methods is also increasing. In any case, better cooperation between 
scientists and other soil-related stakeholders is still required to improve remediation performance.   

1. Introduction 

Soil is a non-renewable natural resource which can be considered as the most essential component of terrestrial ecosystems. Un-
fortunately, soil is also a major sink for pollutants of different nature like heavy metals (HMs), which are persistent contaminants since 
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they can neither be degraded nor destroyed. These elements occur naturally in the Earth’s crust in various forms of the solid phase of 
soils and sediments and also dissolved in water. Low concentrations of several HMs, i.e. iron (Fe), copper (Cu), cobalt (Co), zinc (Zn), 
nickel (Ni), manganese (Mn), selenium (Se) and molybdenum (Mo) are necessary for metabolic activity, whilst high concentrations are 
toxic for humans, plants and microorganisms. Other HMs, such as silver (Ag), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg) and 
chromium (Cr(VI)) do not have a known biological function and may provoke serious toxic and carcinogenic effects, even at low 
concentrations, and thus, they are amongst the priority metals for public health concern [1]. The most common hazards for humans 
related to soil contaminated with HMs include direct inhalation of particulate matter, dust or aerosols, and ingestion of contaminated 
water or vegetables [2,3,4]. The toxicity of HMs in soil does not only depend on their total concentration, but also on the bioavailable 
fraction. This bioavailability depends on numerous factors such as soil pH, organic matter content, temperature, etc. [5]. With all these 
considerations, it is not surprising that threshold values for HM concentrations in soil are difficult to evaluate [6]. As an example, in the 
mainland of China, the limit for Pb in agricultural soil is ≤ 250 mg kg− 1 (pH < 6.5), ≤300 mg kg− 1 (pH 6.5–7.5) and ≤350 mg kg− 1 

(pH > 7.5). In many cases, the authorities establish different thresholds for HM depending on the soil use, with more restrictive levels 
in the case of agricultural soil [7]. Regulatory concentrations of toxic metals in agricultural soil differ amongst countries; e.g., the limit 
for Pb is ≤ 300 mg kg− 1 in Australia, ≤70 mg kg− 1 in Canada, or ≤200 mg kg− 1 in the European Union. 

Some soils are naturally enriched in HMs; however, certain anthropogenic activities contribute to the redistribution of HMs, 
generating relevant environmental and/or human health risks when exceeding certain concentration levels [8,9,10,11,12,1]. Mining 
activities and mineral processing are sources of large volumes of metal-rich waste materials which generate large extensions of mine 
tailings and huge volume sludge dams (Fig. 1). Atmospheric deposition of dust emitted during mining exploitation, industrial pro-
duction, and motor vehicle usage, as well as abandoned contaminated bare soils are other important sources of contaminants [13,14]. 
Although, lately, mining industry tends to enhance its production rates by using safer and more efficient production methods for 
reconciling the increase in metal demand (as a result of both a growing world population and potential higher per-capita requirements) 
with safety [15,16], contamination episodes are inevitable. Another significant anthropogenic source of HMs in agricultural soil is 
related with certain agronomic practices such as the long-term application of pesticides, fertilizers or irrigation with wastewaters, 
among others (Fig. 1). Plants acquire metals from soil for their normal development, however, because of the lack of specificity of the 
uptake mechanisms, when growing in contaminated substrates, they may incorporate toxic concentrations of essential and 
non-essential HMs [17]. Contamination can also reach plant aerial tissues when the HMs are deposited directly on above ground 
biomass. As plants are the first compartment of the terrestrial food chain, HM content in plants should be monitored and minimized as 
soon as possible [18,7]. 

There are more than 10 million sites with polluted soil reported worldwide, with more than 50% of them contaminated with HMs 
and/or metalloids. In Europe, there are 2.8 million sites potentially contaminated with HMs; in China, 19% of the agricultural soil 
contains harmful pollutants and in India, 80% of the contaminated soil has anthropogenic origins in the states of Maharashtra, Gujarat, 
and Telangana [19,20,21]. The economic impact of HM pollution worldwide has been estimated at more than US $10 billion per year 
[13]. The cost and duration of soil remediation are technique-dependent and site-specific, but it has been estimated to be up to $500 
ton− 1 soil and 15 years [6]. Given the global increase in human population, and thus, the need to maintain soil potential and a high 
quality food and fiber production in the long term [22], the application of occasional or continuous remedial actions are clearly 

Fig. 1. Schematic representation of the main sources of anthropogenic HM contamination; mining activities generate residues that are in many 
occasions accumulated in ponds. During these mining activities, in abandoned mines or because of accidents, these HM can be spread by water or 
air, affecting the nearby areas. Agricultural processes, such as mechanical management, and use of chemical fertilizers, animal manure, or 
contaminated wastewaters, are also sources of contamination. The main remedial actions that have been demonstrated their utility at large scale are 
indicated in the lower part of the figure. 
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Table 1 
Frequently used heavy metal remediation techniques.   

Technique Main characteristics Advantages Disadvantages 

Physical methods (mainly 
used to remove the 
pollutants from soil or 
to stabilize them for 
preventing its 
uncontrolled spread in 
nature) 

Excavation and land filling (ex-situ) Transport of the contaminated 
soil to a secure landfill for 
long term disposal and/or 
further treatment  

- Complete 
amelioration of HMs  

- Time-consuming  
- High economic cost  
- Non-aesthetically 

pleasing  
- Removed 

contaminated soil 
need further 
handling and 
disposal 

Surface capping (in-situ) Coverage of the contaminated 
soil with a waterproof 
material forming a stable 
protection surface  

- Fast and easily 
applicable  

- Low economic cost  

- Generation of solid 
wastes  

- Non-aesthetically 
pleasing 

Encapsulation (in-situ) Containment of polluted soil 
with a physical barrier  

- Fast and easily 
applicable  

- Low economic cost  
- High safety  

- Non-aesthetically 
pleasing 

Thermal desorption (ex-situ) Treatment of the 
contaminated soil at a high- 
temperature (1400–2000 ◦C) 
for separation of certain 
volatile compounds, such as 
Hg and As.  

- Fast treatment 
process  

- High efficiency  
- High safety  
- Lack of secondary 

pollution  
- Recycling of soil and 

HMs  

- High economic cost  
- Requires excavation  
- The heating 

temperature and 
the oxygen content 
of the atmosphere 
may lead to side 
reactions 

Vitrification (in-situ) Heating the polluted soil with 
high power currents up to the 
melting temperature. The 
progressive heating destroys 
organic contaminants and 
removes volatile and semi- 
volatile metal compounds. 
After cooling the melt forms a 
glassy product that 
immobilizes the inorganic 
contaminants.  

- High efficiency  - High economic cost  
- Loss of soil 

environmental 
functions 

Electrokinetics (in-situ) Removal of ionized metals 
from wet contaminated 
sediments by electrical 
adsorption  

- High control of the 
process  

- Applicable to all 
metals  

- Possibility of 
treating soils of low 
permeability, 
inaccessible to other 
remediation 
techniques  

- Low soil disturbance  

- Time-consuming  
- Low efficiency  
- Potential 

acidification of the 
soil 

Chemical methods (Using 
chemical reactions (e. 
g. precipitation, redox 
transformation, ion 
exchange), to modify 
the mobility and 
bioavailability of 
contaminants) 

Chemical solubilization (in-situ) Application of amendments 
(mainly organic acids) aimed 
to increase HM solubility and 
bioavailability  

- Suitable for severely 
contaminated soil  

- May cause 
secondary pollution 

Chemical stabilization (in-situ) Application of amendments 
(e.g. activated carbon, silica, 
limestone, fly ash) to alter the 
soil chemistry for 
precipitating and/or 
sequestering HMs, minimizing 
their incorporation to plants 
as well as leaching into 
groundwater  

- Easy to implement  
- Quick results  
- Low economic cost  

- Temporary 
effectiveness 

Redox transformation (in-situ) Mobilization/immobilization 
of metallic compounds 
thorough redox reactions  

- Wide range of 
applications  

- Suitable for severely 
contaminated soil  

- High invasivity to 
the soil and the 
environment 

(continued on next page) 
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Table 1 (continued )  

Technique Main characteristics Advantages Disadvantages 

induced by addition of certain 
substrates  

- High economic cost 
due to the need for 
large quantities of 
chemicals  

- Limited efficiency 
in low permeability 
soils 

Mixed physico-chemical 
methods 

Soil washing (ex-situ) Contaminant solubilization as 
metal ions and transfer from 
soil to washing fluid for 
treatment (precipitation or 
flocculation of HMs  

- Low economic cost  
- Simple 

implementation  
- High efficiency  
- Suitable for severely 

contaminated soil  

- Contaminants are 
not destroyed and 
an additional 
treatment is 
required  

- Potential 
groundwater 
pollution 

Biological methods (To 
remove or stabilize the 
contaminant; they are 
environmentally 
friendly, aesthetic and 
economically viable. 
However, many of 
them cannot be applied 
in highly contaminated 
soils, as they depend 
on living organisms). 

Micro-organisms-mediated (ex-situ, in- 
situ) 

Biosorption: Metabolism- 
independent reactions. 
Sorption of HM ions onto the 
binding sites of microbial cell 
walls. It does not require 
nutrients and toxicity by HM 
does not affect the microbial 
performance  

- Applicable to most 
metals  

- Low economic cost  
- Non-invasive to the 

environment  

- Low efficiency  
- Not applicable for 

highly 
contaminated soil  

- Dependent on 
weather and 
climatic conditions 

Biotransformation: 
Transformation of metals, 
mainly through redox 
conversions of inorganic 
forms coupled to microbial 
processes such as metal- 
compound respiration or 
through a dissimilatory 
sulphate reduction. 
Volatilization: conversion of 
metals to volatile derivatives 
(methyl- and hydride 
derivatives) 

Plant-mediated (in-situ) Phytoextraction (or 
phytoaccumulation): metal- 
accumulating plants 
translocate and concentrate 
HMs into their different 
vegetal tissues. When HMs in 
aerial parts of plants exceed 
critical levels, this biomass 
must be harvested and treated 
adequately through a variety 
of methods such as 
composting or pyrolysis  

- Applicable to most 
metals  

- Low economic cost  
- Simple 

implementation  
- Aesthetically 

pleasing  

- Not applicable for 
highly 
contaminated soil  

- Limited to top layer  
- Low efficiency  
- Food chain could be 

adversely affected  
- Time-consuming 

Phytostabilization: reduction 
of the HM bioavailability in 
soil by the action of certain 
plant species. The metal 
pollutants are first absorbed/ 
precipitated and then 
accumulated into/onto the 
roots or in the rhizosphere. 
Phytovolatilization: Plant 
species uptake water-soluble 
HMs from the soil and release 
them by evaporation or 
volatilization into the air 
surrounding the plant 
Rhizofiltration: Absorption of 
HMs onto/into plant roots 

Ex-situ technologies require the excavation of contaminated soil, transport to the treatment area and disposal of the treated soil at permitted locations. 
In general, the process can be more controlled and can achieve better results in a shorter time than other techniques; however, they are expensive and 
soil disruptive. In-situ technologies are carried out at the contaminated site, soil disturbance is minimized, and there is less exposure of workers and 
citizens to the contaminants than in the ex-situ technologies; furthermore, the treatment is considered cost-effective. Numerous reviews are available 
for further information [54,19,40,55,37,56,57,58,59,38,60,61,39]. 
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recommended. In general, the treatments applied to HM contaminated soil aim to reduce the metal fractions of the soil (total and/or 
available) and to diminish its transfer rate to edible plant parts, as well as to improve soil structural stability to reduce erosion [23,24, 
25]. Amongst the remediation techniques available, those based on biological methods are generating great interest as demonstrated 
by the high number of scientific publications in the area [26]. However, bioremediation practices in real scenarios have not generally 
been well documented from the scientific point of view. Fortunately, industries, politicians and citizens are increasingly aware of the 
environmental risks and implementation of safety practices are commonly reported on the web pages of many industrial companies. 
This review covers information on remediation strategies of HM-contaminated soil in real scenarios, based on representative case 
studies that, at least to some degree, have been scientifically reported. We have also reviewed few cases of remediation on agricultural 
fields, although, as HM contamination of agricultural areas is an emerging problem, not many open-field experiences have been re-
ported in scientific literature so far. Finally, we present several perspectives for this field in a sustainable development context. 

2. Remediation of areas affected by mining activities 

Huge volumes of HM-rich waste are generated during mining activities (several thousand million tons per annum) and many are 
stored in vast areas as tailing dams whose management is considered challenging [27]. Repeatedly, structural problems in dams, 
produced by construction deficiencies or overload issues, have caused the collapse and the subsequent spread of HM-rich materials into 
large areas [28,29]. The continuous exposure of minerals or waste material to air and water may cause deleterious effects in mine soils 
and in the surrounding areas (Fig. 1). The mining of certain minerals (such as gold [Au], Cu, Ni) is commonly associated with sub-
sequent acid drainage problems generated by the geochemical weathering of acid-labile minerals and the chemical oxidation of pyrite 
and other sulphidic minerals when exposed to air and water [30,31]. These processes can be accelerated by the action of microor-
ganisms such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans [32] and by some of the 
chemicals used in mining operations (for example, sulphuric acid). Although every mine is unique in terms of its acid mine drainage 
(AMD), AMD is characterized by low pH and high levels of metals and sulphates. 

Once mines are not profitable anymore, the extraction activities cease and the mining facilities are dismantled. Historically, the 
application of rehabilitation programmes in these areas has not been mandatory by law, and consequently, there are huge inventories 
of abandoned mines (more than 200,000 in the USA [ [33]], or 6,000 in South Africa [ [34]]) to be restored. In these cases, land 
recovery is mainly a governmental issue, as many companies have disappeared or have declared bankruptcy, and budget constraints 
may limit the number of actions that should be undertaken. Mining areas which contain large deposits of mine waste, as well as 
polluted bare soil without plant coverage, or with conditions for plant development seriously compromised, are exposed to erosion and 
leaching episodes and pose serious environmental concern [35,36]. 

The main objective of mine soil reclamation is preventing human and wildlife exposure to contaminants and the stabilization of 

Fig. 2. Schematic representation of the main phytoremediation strategies.  
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Table 2 
Different processes performed during phytomining.   

Methods Advantages Disadvantages 

1. Phytoextraction See Table 1 
2. Concentration Composting (54–60◦C with oxygen)  - Ecofriendly  

- Reduction of the water content  
- Low cost  

- Time-consuming (2–3 months)  
- Undesirable leachates 

Pyrolysis (300-700◦C without oxygen)  - Fast process  - High energy input  
- Specialized machinery needed 

Gasification (700-1000◦C with oxygen)  - Fast process  - High energy input  
- Undesired products (tars, CO, NOx, others)  
- Environmental problems (use of syngas rich in HMs) 

Combustion (> 900◦C with oxygen)  - Fast process  - High energy input  
- Undesired products (CO, NOx, fly ash, gaseous metal 

compounds) 
Ashing (300-500◦C)  - Fast process  - High economic cost and technical requirements 

3. Extraction Pyrometallurgy (Thermal method as 
incineration, vacuum carbon-thermal 
reduction, and chlorination 
volatilization)   

- High energy input  
- Poor recovery rate  
- Release of noxious volatile gases  
- High initial investment required 

Hydrometallurgy (Metals leaching by 
using acids with later separation and 
purification by solvent extraction, ion 
adsorption, ion exchange, and 
precipitation)  

- Higher metal recovery rates  
- Better selectivity of metals  
- Low cost  
- Less contaminant  

Biometallurgy: bioleaching (using 
microorganisms)  

- Ecofriendly (low toxic emissions)  
- Low cost  

- Poor leaching rate and long operation time (tested at 
laboratory scale) 

Biometallurgy: biosorption (using 
biomaterials)  

- Ecofriendly (low toxic emissions)  
- Low cost (most affordable-cost choice for the extraction of ionic forms of 

metals from liquid phases)  
Other emerging methods:  
- Mechano- and electro-chemical 

technologies  
- Extraction with ionic liquids  
- Supercritical fluid techniques   

Different concentration and extraction methods applied during phytomining are described in this table as well as their main advantages and disadvantages. 
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mine waste products, so they no longer move or become exposed to water and air. Main physical processes commonly used in the 
management of these soils include land filling, surface capping and encapsulation (Table 1). These techniques require intense me-
chanical actions on site which may alter the physical soil structure, and also affect its natural biological activity [19,37,6,38,39], and 
are considered very disruptive to the treated site as well as relatively expensive. Nonetheless, in mining areas where the soil has already 
been disrupted, these methodologies may clearly contribute to the stabilization of the contaminants. Thermal desorption, vitrification 
and electrokinetics are other physical methods that have been proposed for the restoration of those soils (Table 1). However, to our 
knowledge, they have not been employed in mine soil reclamation, probably because their high economic cost and logistic difficulties 
for treating large surface areas. Chemical methods are mainly used for solubilization, stabilization or redox transformation of HMs 
(Table 1). Inorganic materials, such as lime, phosphate-based compounds, or fly ash, and also organic amendments such as biochar, 
biosolids, compost, or manure, are applied to buffer the soil pH, reduce HM availability and improve nutritional status, water-holding 
capacity, and soil structure [40,41,42,43,44,45,46,47,48,49]. Despite the good results obtained with different amendments and their 
relative low cost [50,51,39], these amendments should be carefully selected to avoid potential deleterious effects (i.e. production of 
secondary waste) that may hinder soil structure and biological activity, and thus, natural soil fertility in the long term [23,52]. 
Furthermore, weather, contamination depth, soil permeability and potential deep leaching of chemicals also affect the final outcome of 
the amendment [6]. Utilization of solid bio-waste from local wastewater treatment plants or livestock manure for amending tailings, 
with high concentrations of HMs, enhancing the properties of the soil to support plant growth for revegetation as well as the recovery 
of metal from waste, have also been planned by some mining companies in the context of the circular economy [53]. 

Once these mine soils have been physically and chemically stabilized, the common next step is the successful establishment of a 
plant cover (Table 1, [62]. Plants favour the ecological development of the ecosystem, enhance fertility of the soil, contribute to the 
stabilization of soil in open pits and slopes, reduce the HM bioavailability and toxicity, reduce spread of HMs by wind erosion and 
groundwater leaching and, at the same time, contribute to maintain the aesthetic values of the landscape [45]. The different techniques 
employed, commonly named as phytoremediation, consist in the use of plants (and their associated microorganisms) to clean up the 
soil [63,64], through different mechanisms: phytostabilization, phytovolatilization, phytoextraction, phytoexclusion and/or rhizo-
filtration of HMs (Fig. 2 and Table 1). The application of HM phytoremediation techniques requires the preliminary selection of plant 
species which are adapted to the local soil and climate conditions and show specific abilities for each alternative [65,66,67,68,69,70]. 
Ideally, they should tolerate high HM concentrations and extreme salinity and/or pH values, and they should show fast growth rates 
and/or high biomass production. Thus, metalliferous autochthonous plant species are a common choice because of their tolerance to 
local environmental conditions and their favourable growth capacities [71]. When using phytoextraction, the selection of plant species 
that can accumulate high concentrations of HMs in their above-ground tissues, the so-called hyper-accumulators, may be an option 
[72,73], although limitations derived from their reduced biomass, shallow root systems or their adaptation to the harsh conditions of 
the mine soil may hinder their application in field conditions [65]. The minimum concentration of a trace element that a plant must 
contain in its dry weight foliar tissue to be considered as a hyper-accumulator is: 100 mg kg− 1 for Cd, thallium (Tl) or Se; >300 mg kg− 1 

for Co, Cu or Cr; >1000 mg kg− 1 for Ni, As, Pb or rare earth elements; >3000 mg kg− 1 for Zn or > 10,000 mg kg− 1 for Mn [73]. 
Conversely, in other phytotechnologies, such as phytostabilization or phytoexclusion (Fig. 2), plants that exclude HMs are desirable 
(see below). 

Improvement in plant growth can be achieved through genetic engineering (although using transgenic plants is not universally 
allowed), or through the addition of certain amendments or soil microorganisms. The exploitation of microorganisms, by themselves or 
in combination with plants, to sequester, precipitate, or change the oxidation state of numerous HMs has been widely studied [74,75, 
57,76]. Microbes, mediators of biochemical cycling [77], influence metal speciation and transport in the environment, interacting with 
metals in reduction, oxidation, methylation and also alkylation reactions such as biosorption, complexation, and mineralization. 
Microorganisms can sequester toxic metals in their cell wall components or in metal binding proteins, transforming them into 
innocuous or less toxic compound forms (i.e. less bioavailable). However, they may produce the opposite effect, by releasing organic 
acids to the soil and the solubility of the metals may increase. Therefore, the application of microorganisms should be carefully 
evaluated in advance to avoid undesirable consequences. Plant growth promoting rhizobacteria (PGPR) and/or arbuscular mycor-
rhizal fungi (AMF) have been found to facilitate the accumulation of HMs in plant biomass, to enhance the root structure (higher 
surface and depth) and their acquisition of nutrients and water, and to increase plant tolerance to acidic pH [78,79,76,80,81]. They 
may also serve as a filtration barrier to avoid the transfer of HMs to above-ground vegetal parts [82]. AMF, mainly species belonging to 
the Glomerales, and some from the Paraglomerales and Diversisporales, have been identified in highly contaminated soil (containing 97, 
333 mg kg− 1 total of Zn and 31,333 mg kg− 1 total of Pb), suggesting that these microorganisms are highly tolerant to HMs, which 
encourages their utilization in HM bioremediation in combination with plants [83]. It has also been reported that glomalin and other 
glycoproteins released by some species of AMF, besides metal immobilization, may also improve soil stability against wind and water 
erosion [84,85]. More recently, plants and their associated microbiota have been described as a supra-organisms; holobionts [86]. 
These holobionts exchange signals to respond to external inputs. In the phytoremediation context, it has been demonstrated that 
certain plant species (e.g. Imperata cylindrica) inhibit the oxidization process of HMs-containing sulphides by limiting the number of 
bacteria capable of oxidizing Fe and sulphur (S) [87]. 

2.1. Environmental management in active and abandoned mines 

Current mining operations in most developed countries are carried out under strict regulations which, in principle, guarantee 
adequate mining methods and simultaneous remediating activities [88,62]. Increasing concerns and laws about environmental safety 
have resulted in more detailed information about relevant mining-related operational aspects becoming available, including the 
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potential environmental, social and economic impacts, and the activities proposed to mitigate them. In general, the policies of mining 
companies are aligned with sustainable development principles and include actions to manage and rehabilitate the impact on the 
mining site as well as its area of influence. These actions incorporate the constant monitoring of potential risks for soil, air and water, 
and the implementation of active strategies to minimize environmental impact. It has been accepted that a combination of physical 
containment, chemical/biological amendments and phytoremediation strategies are the best way to remediate mine soil (ITRC, 2009). 
These techniques are currently being applied by large mining companies to carry out preventative and corrective activities to preserve 
the environment and they are publicly display on their web pages. However, it has been suggested that some of the worst HM pollution 
problems in the world have resulted from small-scale operations (e.g. artisanal mining) where all these environmental safety regu-
lations are not being completely fulfilled [89]. 

Regarding rehabilitation projects, as mentioned above, they are normally enforced or carried out by governmental departments in 
different countries. There are several examples that illustrate the successful implementation of the techniques indicated above. 

2.1.1. US superfunds, United States of America 
The US Congress established in 1980 the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 

which is informally called Superfund, that allows the Environmental Protection Agency (EPA) to clean up contaminated sites (with 
private or public funds). Thousands of contaminated sites, including manufacturing facilities, processing plants, landfills and mining 
sites are included in this Superfund (https://www.epa.gov/superfund/what-superfund). One of these sites is the Formosa Mine 
(Oregon, US), where the extraction activity of silver, copper and gold stopped in 1993 and the mine (≈300.000 m2 of land) was 
abandoned. The oxidation of metal sulphides discarded on the surface caused serious acidification of water (pHH2O 2.44) and soil (pH 
3.7). The Formosa soil had high concentrations of Cd, Cu, Ni, and Zn [90,91]. The remedy actions designed by EPA include excavating 
mine impacted materials, building an on-site containment facility to prevent leaching during rain and snowmelt events, paving roads 
and contouring selected areas to direct water away from the mine waste. In addition, in some areas, a cover of clean materials or a cap 
was planned to be added, without excavating the waste (https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=1002616). It 
was demonstrated, with greenhouse pot experiments using mine soil, that amendments with biochar produced from Kentucky blue-
grass seed screenings (at ≥1%) and, with gasified biochar produced with mixed conifer wood logging residues (at ≥2%) increased 
wheat (Triticum aestivum L. ‘Madsen’) germination, while in soil without amendments only 30% of wheat seeds germinated [91]. 
Application of biochar from Miscanthus giganteus or lime, assayed using spoils from this mine, indicated that pH and EC values 
increased in both treatments when compared with control without amendment. Greater β-glucosidase activity occurred only in the 5% 
biochar plus lime treatment, whilst the N-acetyl-β-d-glucosaminidase activities were not altered. Lime additions significantly reduced 
extractable metal concentrations. Increasing biochar rates alone significantly reduced leachate DOC concentrations, and subsequently 
reduced leachable metal concentrations. Miscanthus biochar, by itself, was limited at mitigation, but when combined with lime, the 
combination was capable of further reducing extractable metal concentrations and improving β-glucosidase [92]. 

The Iron King Mine (Arizona, USA) was listed on the Superfund in 2008 (https://cumulis.epa.gov/supercpad/CurSites/csitinfo.cfm? 
id=0905049&msspp=med). The former operations of the Iron King Mine (Zn, Ag, Pb and Au) and the associated Humboldt Smelter, 
left behind a pile of about four million cubic yards of orange mine tailings with high levels of As and Pb and large piles of waste and soil 
contaminated with Pb and other metals. Tailings from the Iron King Mine and Humboldt Smelter mixed together and flowed toward 
the Agua Fria River and tailings dust has spread into the surrounding area. Tailings and sediment from the mountains continue to move 
with storm water. The priority remedy action was to clean up in the residential areas. Afterwards, a soil/gravel/rock cap (15–90 cm) 
was emplaced to be vegetated. Direct soil phytostabilization (vegetable cap using native plants) was also explored [93]. Six plant 
species, previously shown to either grow successfully in desert mine tailings or at the elevation and climate conditions at the Iron King 
Mine area, representing drought and salt-tolerant native species of the Sonoran-Arizona desert ecosystem, and belonging to three 
different functional groups: trees (mesquite [Prosopis juliflora], and cat claw acacia [Acacia greggi]), shrubs (quailbush [Atriplex len-
tiformis], and mountain mahogany [Cercocarpus montanus]) and grasses (buffalo grass [Buchloe dactyloides], and arizona fescue [Festuca 
arizonica]) were evaluated for their potential in phytostabilization of HMs with compost amendments; buffalo grass, mesquite and 
catclaw acacia showed good growth and minimal shoot accumulation of HMs. Researchers found a correlation of plant biomass with 
increases in soil pH and in the number of neutrophilic heterotrophic bacterial counts, detecting a decreased in iron oxidizer counts and 
decreased bioavailability of metal (loid)s, mainly as a result of compost amendment [94]. The canopy coverage of tailings amended 
with compost and seeded with a mix of the six native plants, evaluated previously by Ref. [94]; after 41 months, was from 21% to 61% 
in the compost-amended planted treatments while no plants grew on unamended tailings [93]. It was also demonstrated that the main 
chemical driver of microbial diversity during assisted phytostabilization of tailings from the Iron King Mine, in mesocosms, was the pH, 
with cobalt (Co) being another element highly significant for microorganisms [95]. Cobalt is an important metal in coenzyme 
cobalamin synthesis, but it can also be toxic to microbial communities. It has been reported that Co potentially inhibits 
microbially-mediated sulphate reduction in metal-contaminated environments by outcompeting Fe during the synthesis of 
metallo-proteins. As sulphate reduction processes could mitigate the acidification of mine tailing systems by preventing the generation 
of AMD [96], demonstrating that Co is one of the main drivers of microbial diversity and that is an important step toward the un-
derstanding of the mechanisms behind the efficiency of phytoremediation. Other factors that control the plant-microbe associations 
during phytostabilization of acidic mine tailings were also explored using buffalo grass grown in unamended vs compost-amended 
(10%) mine tailings. These results showed an association between domain-level bacterial root colonization and either external sub-
strate or plant condition [97]. Finally, measurements of horizontal dust flux after phytoremediation revealed that vegetated cover 
enabled an average reduction in dust deposition in comparison to the control treatment. Further, phytoremediation was effective at 
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reducing the concentration of fine particulates, which represent the greatest health risks and the greatest potential for long-distance 
transport [98]. 

2.1.2. The Iberian Pyrite Belt (IPB), Portugal and Spain 
This area has been intensively exploited during and after the second half of the 19th century. Large volumes of polymetallic sulfide 

ore were extracted in open pits or in underground work, processed without any environmental concerns, generating waste rocks and 
tailings that were deposited in the area, mainly through water erosion and aeolian dispersion. Two examples in the Portuguese sector 
of the IPB are included in this review. The Aljustrell mine was abandoned in 1980 and the main remediation actions consisted in using 
construction techniques to dig and contain the contaminated tailings and other waste materials, but the remaining soil still needs to be 
treated [99]. Several studies to assess the possibility of implementing phytoremediation strategies in this area have been published. 
Although soil from the Aljustrell mine, with a pHH20 = 3.6, contained total concentrations for Cu, Pb and Zn that exceed the overall 
concentrations for uncontaminated soils. The bioavailable fraction was shown to be very small, both for the mobile fraction and for the 
mobilizable fraction. However, using a battery of toxicity tests, the authors concluded that the mine soil had a toxic impact on the 
environment; i. e, Lepidium sativum L. (cress) growth was impaired at 40% (v/v) soil concentration compared with the control without 
mine soil; earthworm Eisenia fetida avoided the mine soil at 50% (v/v) and immobilization assays with Daphnia magna indicated the 
sensibility of these organisms to soil from this area [100]. Other studies, carried out with an autochthonal aromatic bush (Cistus 
ladanifer L.), demonstrated that this plant was able to survive and grow in soil with high concentrations of toxic HMs and to accumulate 
Mn, whilst avoiding Cu and Pb uptake, being classified as an excluder for both metals [101]. Using other autochthonous dominant 
plant species of the Aljustrell area: Pinus pinaster Aiton, Quercus rotundifolia Lam., Agrostis sp., Juncus conglomeratus L. and Juncus effusus 
L., it was demonstrated that the plants were heavily contaminated with Cu, Pb, As and Zn. However, these plants exhibited features of 
metal tolerant excluders; i.e. the trees were accumulators of Ag, whereas the graminoids were hyper-accumulators of Ag and Juncus 
effusus of Co. The translocation factor confirmed that the selected elements are immobilized in the roots except for Mn and Zn in Pinus 
pinaster and Mn in Quercus rotundifolia and Juncus conglomeratus [102]. Amendments such as municipal solid waste compost (MSWC), a 
garden waste compost (GWC) and liming materials, applied to soils from the Aljustrell mine, corrected the soil acidity, increased soil 
organic matter, available P and K levels and total N, facilitating the establishment of the plant cover with rye grass (Lolium perenne L.). 
All these factors contributed to the immobilization of the Cu and Zn in soil [103]. A semi-field experiment confirmed the good results of 
the soil amendments with mixed municipal solid waste compost (MMSWC) or GWC, combined with mineral fertilizers and liming 
materials, on soil properties and demonstrated that Agrostis tenuis was a good plant species to be used in phytoremediation as, in 
general, it did not accumulate HMs in its edible parts [104]. 

The Lousal mining operation, which ceased in 1988, was mostly underground, but it also worked with an open-pit that was partially 
flooded. Large volumes of waste (estimated in more than 1 Mt) were generated by the mining activities. The water flowing down slope 
from the waste piles represents a source of AMD into the Corona stream; furthermore, the dam, constructed to avoid the AMD input 
into the Corona stream, had an infiltration at its base and contaminated the water. The underground connection between the aban-
doned adits and wells, the ponds and the groundwater spring make this a complex system of ‘diffuse’ sources of AMD [105,106]. The 
EDM company (Empresa de Desenvolvimento Mineiro) was responsible for the remediation work at this location within the frame of 
the rehabilitation programme (RELOUSAL), which was intended to give a cultural and touristic potential to the project (http://www.e- 
sga.org/fileadmin/sga/newsletter/news31/SGANews_31.pdf). Therefore, the strategy aimed to confine the environmental toxic ele-
ments without significantly affecting the landscape, preserving the visual memory of the mining activities. Physical containment and 
revegetation were included in the remediation plans, to reinforce the topsoil and reduce soil erosion and water loss by evaporation. 
Some soil-covered impermeable capping was applied into localized areas to avoid the direct exposure of metal-rich or acid producing 
solid wastes to rainwater and superficial weathering. Some trenches and culverts, and evaporation ponds were constructed. A wetland 
system, composed of seventeen “pools”, was built between the groundwater spring and the Corona stream in order to minimize the 
complex problem of AMD. Two different groups of pools, one group with an aerobic environment used for iron precipitation, and a 
second one designed to favour the precipitation of heavy metals in an anaerobic environment were also constructed. Studies carried 
out in 2012, in farms and gardens near Lousal mine, showed that, although the levels of As, Cu, Pb and Zn in soils were relatively high, 
their levels in lettuce (Lactuca sativa), coriander (Coriandrum sativum), and cabbage (Brassica oleracea) could be considered non-toxic. 
Being cultivated soils, they had been treated with manure, which contributed to an overall raise in soil pH. The conclusion of this study 
is that gardeners or farm owners near abandoned mines, should be recommended to amend the soil with some liming material, to avoid 
metal uptake by plants [107]. 

2.1.3. Cartagena–La Unión mining district, south-eastern Spain 
This was one of the most important mining sites for Fe, Pb and Zn on western Europe that was closed in 1991. This semi-arid area 

was seriously affected during mining activity, and after more than 20 years. Waste from the tailings is still a source of HMs (mainly As, 
Cd, Cu, Pb and Zn) transfer to the surrounding areas through wind and water erosion [108,109,110,111]. In this case, the removal of 
waste for disposal was economically unviable and technically difficult. Therefore, in 1982, the mining company Peñarroya SA, sealed 
the mining tailings with a soil layer 0.5-m thick to allow the colonization of plants. However, the spread of wild plant communities 
colonizing mining tailings at the “Sierra Minera” is slow [71]. Analysis carried out thirty years after restoration showed that the levels 
of Cd and Zn in some of the most abundant and representative plant species in the area, including herbs (Teucrium capitatum, Heli-
chrysum stoechas, Hyparrhenia hirta, and Dittrichia visco), bushes (Helianthemum syriacum and Thymelaea hirsuta) and trees species 
(Acacia retinoides, Pinus halepensis, and Tetraclinis articulate) were excessively high, indicating that the topsoil of restored areas in this 
mine had not become unpolluted [109]. Laboratory works suggested that the addition of a mixture of pig manure with lime was able to 
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accelerate the process of establishment of a plant cover in these HM-rich mining soils [112]. In other studies, the halophytic shrub 
Atriplex halimus L. was used in combination with compost (application rate 60 t ha− 1) or pig slurry (application rate 60 m3 ha− 1) 
applied as soil surface amendments [113]. The amendments by themselves did not produce a significant direct effect on the solubility 
of the HMs, probably because the pH remained unaltered after their application. However, the enhancement of the properties of the 
soil (mainly the increase of soil nutrients and organic matter) favored the development of stable microbial communities and a 
A. halimus cover, and supposed a significant improvement in the stabilization of the soil, minimizing erosion, a real challenging task of 
stabilizing contaminated soil in semi-arid areas [25]. The plant cover favored the HMs immobilization in the soil reducing their 
accumulation in the above-ground plant parts. 

2.1.4. Gold mining site, South Africa 
This mine is the source of several environmental challenges such as AMD and the release of toxic HMs from the tailing sediments. 

The concentration of various metals varies from 860.3 to 862.6 mg kg− 1 for Cr; 324.9–328.4 mg kg− 1 for Al; 200.9–203.4 mg kg− 1 for 
As; 130.1–136.2 mg kg− 1 for Fe; 121.9–125.8 mg kg− 1 for Pb; 27.3–30.2 mg kg− 1 for Co; 23.8–26.8 mg kg− 1 for Ni; 7.2–9.2 mg kg− 1 for 
Ti; 7.1–9.2 mg kg− 1 for Cd; 4.0–5.6 mg kg− 1 for Zn and 0.1–0.6 mg kg− 1 for Cu. Moreover, the soil was highly acidic (pH = 3.86 to 
4.34) with a low cation exchange capacity. Agricultural activities were not supported within the vicinity of the tailings dump on 
account of the pH level and HM concentration which may impair the uptake of major nutrients by plants [114,115]. The remedy 
actions consisted in the utilization of the indigenous grass species Hyparrhenia hirta as a phytoremediator for in situ rehabilitation of 
polluted soil. This invasive plant species is a tufted and wiry perennial grass with a deep root system [114,115]. This species is often 
used for soil stabilization as it is known to possess self-fertile and drought resistant potentials for surviving under harsh conditions at 
mine dump sites. The grass species H. hirta was shown to absorb a high total metal mean concentration (4023.67 mg kg− 1). Data of 
uptake for individual metals was as follows: 46.10 mg kg− 1 for Cu; 40.08 mg kg− 1 for Zn; 859.12 mg kg− 1 for Pb; 618.26 mg kg− 1 for 
Cr; 151.70 mg kg− 1 for Co and 2308.41 mg kg− 1 for Ni. Despite the acidic conditions, the HMs occurring in the soils assayed were 
successfully absorbed by H. hirta grass species [115]. 

Although these are only a few examples of what have been done in the rehabilitation of abandoned mines, they allow us to confirm 
that the sealing of the mining contaminated soils with some physical barriers in combination with assisted-phytoremediation is a good 
strategy for the rehabilitation of mine areas. The application of organic and/or inorganic amendments or the utilization of microor-
ganisms to improve soil conditions and to reduce the bioavailability of HMs is often needed to first prepare the soil from abandoned 
mining areas for further actions such as the establishment of the plant cover [78,116,117,76,118,119,47]. Plant species to be used 
(hyperaccumulators, excluders or well-adapted plants to the area conditions) should be carefully selected to maximize the benefits. 

2.2. Tailing dam failures case studies 

The failure of tailing dams has provoked some of the main environmental disasters of the last decades. The consequences of these 
occasional and unexpected contaminating episodes may well be more serious than other sources of HM pollution. Although there is no 
complete inventory of tailing dams, it is estimated that there are around 2,000–3,500 active tailings impoundments around the world 
[120], and it is assumed that 2 to 5 “major” and 35 “minor” tailing dam failures would occur on average per year [121,122]. In total, 
more than 200 mine waste dam incidents have been reported throughout the world since 1960 [123,124] https://www.wise-uranium. 
org/mdaf.html; https://www.resolutionmineeis.us/sites/default/files/references/bowker-2019.pdf). 

Tailing dam failures obviously cause injury to people and loss of infrastructures, but they also provoke an increase in turbidity of 
the water (most of the tailings spilled into rivers) with concomitant increase in HM concentrations in the nearby water and soil [125, 
126,127], and immediate toxicity for aquatic organisms, insects, and plants as well as medium- and long-term toxic effects. Bio-
accumulation of HMs in algae and plants has been reported, with this accumulation, as indicated above, being one of the main entries 
of HMs to the food web [128]. High sulphate levels in freshwater cause salinization, which leads to a decrease in dissolved oxygen with 
potentially lethal effects on aquatic species as a result of osmoregulatory stress [129,130]. Modifications in the microbiota are also 
common in these spills; increases in the number of Fe-tolerant microorganisms were observed after the tailing dam failures Córrego de 
Feijao and Germano mines in Brazil [131,127]. The metabolic potential of the bacterial communities was altered in contaminated 
water after the Mont Polley mine accident, increasing the number of bacteria mainly involved in the cycling of S and metals, whilst that 
of the communities in undisturbed areas were associated with the cycling of N [132]. 

To illustrate the effect of tailing dam failures on agricultural land and how the restoration of the land has been or is being achieved, 
we have selected three different cases in Asia, Europe and South America with around 20 years of difference between them, to 
comment on the advances produced in the management of these serious accidents. The World Mine Tailings Failures database (https:// 
worldminetailingsfailures.org/) set a four-level severity code for mine tailing failures that is based on several variables, including the 
volume of released material, runout and deaths. The accidents selected here have been classified as very serious (level 1). 

2.2.1. The Xingping mine, Guangxi region (China), 1976 
In the Guilin region of Guangxi Province (South China), the tailing dam of the Pb/Zn Xingping mine (active from 1950 to 2012) 

collapsed in 1976 after a heavy rainfall, which lasted three days. Most of the mineral processing wastewater, which had accumulated in 
a single tailing pool, with no treatment, reached the nearby side stream and, consequently, the large agricultural area of the village, 
located 6 km away from the tailing pool and connected with this stream for irrigation purposes. Because of the land orography and 
properties, this HM-containing wastewater persisted in the agricultural soil for a long time after the flood receded, resulting in a large- 
scale soil pollution event [133]. The mean concentrations detected in the topsoil in 1986 of Zn (3936 mg kg− 1), Pb (2007 mg kg− 1), Cu 
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(239 mg kg− 1), and Cd (14 mg kg− 1), were much higher than the national standard values of 200, 50, 50, and 0.3 mg kg− 1, respectively 
[134]. 

In the first years after the accident, “remedial measures” were adopted by the local residents; deep soil, probably unaffected by the 
pollution, was excavated and relocated on the surface, whilst the polluted sludge was buried at the sub-surface [133]. From 1976 to 
1986, other remediation actions were undertaken, including cementing the river channel, mixing contaminated soil with allochtho-
nous non-contaminated soil, cultivating non-food crops, and adding lime and fertilizers to the polluted soil. Since 1986 to 2015, the 
application of lime and fertilizers and the cultivation of non-food crops, were the strategies used to decrease metal levels in the soil and 
the agricultural land was transformed into orchards [134]. In 2015, the Zn, Pb, Cu and Cd content of topsoil of the nearby village, 
evaluated by Ref. [134]; had significantly decreased when compared with the HM content in 1986, but still remained higher than the 
Chinese National Standards; with Cd being the priority contaminant when measuring available concentrations or ecological risks 
[134]. 

In 2016, a Chinese company (Beijing Ruimeide Environmental Remediation Co. LTD.) was commissioned to perform remediation 
labours in the polluted area. The first approach was focused on increasing the solubility of the metals in the soil and the bioavailability 
of metals to plants by adding citric acid (activator), to favour subsequent phytoextraction activities [135]. The phytoextraction was 
carried out by planting Amaranthus hypochondriacus just after the application of the amendment. This plant species is a fast-growing 
and easily cultivated plant, which can accumulate over 100 mg kg− 1 of Cd in the shoots [136]. A second type of chemical amendment 
was intended to stabilize the HMs in the soil (e.g. adding calcium phosphate, a passivate), to alleviate their toxicity to plants. Li and 
co-workers (2020), studied the effectiveness of these treatments using soils with different degrees of HM contamination. Several 
physiological parameters in pakchoi (Brassica campestris L. ssp. Chinensis Makino) such as seed germination, plant growth properties 
and HM accumulation, were analysed two years after the treatment (in 2018). No effects were detected in seed germination when using 
soil with different concentrations of HMs with or without chemical amendments. However, certain growth parameters and values of 
HM concentration in the biomass had increased when calcium phosphate was used as an HM immobilizing agent. Although to a lesser 
extent, the use of an amendment based on citric acid also resulted in satisfactory pakchoi growth parameters and HM extraction rate 
[137]. In the case of highly polluted soil with no chemical amendment, the development of pakchoi plants turned out to be non-viable 
[137]. In all the cases the concentration of HMs in pakchoi exceeded the threshold established in the national regulations for food 
safety (GB2762-2017). Therefore, when using pakchoi or any other plant species at field level for the phytoextraction of HMs, the 
resultant biomass should be subjected to strict monitoring and suitable management depending on metal levels detected. In this case, 
an incineration station for the appropriate treatment of resulting biomass was established near the remediated area [137]. 

Despite these remediation efforts, in 2018, the total levels of Pb, Zn, Cd, Mn and Cu, were still higher than the national standards for 
soil quality; whilst the potential ecological risk was almost negligible for Zn, Mn and Cu, but still high for Pb and Cd [133]. These 
studies also revealed that soil pH increased after the accident, a result that differs from the disturbances observed in other Pb/Zn mines 
[138,139]; this is probably due to the inherent properties of the soil in the area enriched in calcium (Ca), and poor in S [133]. The 
pollution gradient was found to affect soil microbial properties, such as soil enzymatic activity: catalase, protease, invertase and urease 
activities were lower in the samples with higher level of HMs [133]. 

The final conclusion of these studies is that, despite the remediation efforts, though it has been 40 years since the incident, the HM 
levels in soils are still not safe for agricultural practices [134,137,133]. 

2.2.2. The Aznalcóllar mining site, Sevilla-Huelva (Spain), 1998 
A toxic spill, at the time the largest in European mining history [140], occurred in the Aznalcóllar mine complex, south-western 

Spain, in late April 1998. The pond, containing saturated pyritic tailings, released around 6 × 106 m3 of sludge and acidic water 
with a high HM content [141]. In the first hours, more than 4000 ha, comprising alluvial soils of the Agrio and Guadiamar river valleys, 
were covered by a layer of variable thickness (over 30 cm in some points) of black sludge [142]. The HM contaminant history and 
remediation efforts in this incident have been extensively reported [143,144,145]. Besides the socio-economic consequences, the main 
environmental impact in the affected area consisted of the acute increase of HM concentration (Zn, Pb, Cu, As, Sb, Bi, Cd and Tl), and a 
decrease of pH [146]. The initial impact of the sludge was not uniform in the affected area but depended on several soil characteristics 
(e.g., texture), which differed from some sites to others. Within the first days after the accident, the rapid changes in the water flow 
surrounding the pond provoked the death of most aquatic animals as well as other amphibians, birds, and mammals living in the 
vicinity [141]. 

Remedial actions were carefully planned and carried out in different phases. Emergency actions, deployed immediately after the 
accident, consisted of a soil clean-up, where 6–10 × 106 m3 of sludge together with, at least, 10 cm of the top soil layer were removed to 
an open-pit mine. These first operations had an estimated cost of 170 million euros [147]. In a second phase, an intervention was 
required to neutralize the acidity [148,149] and therefore, inorganic (e.g. CaCO3-rich substrates such as sugar beet lime) and/or 
organic amendments (e.g. compost, leonardite, which is rich in aromatic and lignin-derived compounds) were applied in accessible 
areas. In general, the amendments provoked a rapid pH increase, which induced a reduction in the available HM concentrations and 
consequently, avoided the dispersion in acid/acidified soils, where the oxidation of metal sulphides could have facilitated the potential 
leaching of HMs to deeper layers [150,118]. Despite the improvement in soil properties (higher pH, increased organic carbon content 
and decreased bioavailability of HMs), which facilitated the establishment of a remarkable plant cover, the HM concentration in these 
soils was still over that in the non-affected areas [151]. Consequently, a periodical application of the same or other amendments was 
recommended to enhance the remedial process [152]; p.; [118,153]. The information obtained from the management of this spill has 
emphasised the importance of a careful management of the amendments applied to avoid undesired effects; e.g. an excessive pH 
increase when liming could reduce the ability of CaCO3 to react with acidic components, or the uncontrolled increase of organic matter 

I. Sánchez-Castro et al.                                                                                                                                                                                               



Heliyon 9 (2023) e16692

12

in soil may enhance the transfer of elements such as antimony (Sb) to plants [154,155]. 
In a last stage, phytoremediation approaches were applied, reforesting most of the contaminated area with different plant species 

[156]. Phytoextraction assays were carried out in experimental plots using several plant species, mainly belonging to the family 
Brassicaceae (Brassica napus, B. carinata, and B. juncea), selected for their notable capacity to accumulate HMs [157,113,158]. How-
ever, in the best-case scenario, the HM removal rates turned out to be from low to moderate, making this approach impracticable for 
large areas with high HM concentrations [157]. Although adding chelators (e.g. NTA, nitrilotriacetic acid or EDTA) to the soil was 
demonstrated to enhance HM phytoextraction, this practice was ruled out since most chelating compounds are known to be toxic and 
non-biodegradable [159]. The results of the phytostabilization experiments, based on the establishment of trees (e.g. Quercus ilex and 
Olea europaea), shrubs (e.g. Retama sphaerocarpa and Myrtus communis) and herbaceous species (e.g. Lupinus albus), showed that the 
transfer of HMs to above ground tissues and improvements in soil structure were greater with trees and shrubs than when using 
herbaceous plants [160,161,162,68]. Amongst the assayed shrubs, Retama sphaerocarpa showed higher rates of survival and retention 
of HMs compared to other shrubs such as Myrtus communis or Rosmarinus officinalis [163,161,164]; p.). In the case of herbaceous 
species, white lupin (Lupinus albus) was also identified as a good candidate for HM stabilization due to its high HM retention rates and 
its capacity to increase soil pH (Vázquez et al., 2006). These plant species may also have a role as nurse plants by facilitating the 
establishment of seedlings of other late-successional species (e.g. oaks) through the amelioration of extreme microclimatic conditions 
[161,165]. The possible contamination effect on soils by biomass litter enriched in HMs was also analysed. In the case of poplar litter, 
the HM concentration in soil did not increase significantly, and thus, the plant growth was not negatively affected [166,167]. 
Conversely, this litter provided organic matter to the soil which, in turn, induced the amelioration of other parameters such as soil pH 
[167,168]. 

Permanent monitoring actions have been put in place to follow the evolution of the contamination. In the first months after the 
spill, non-remediated areas suffered a progressive acidification process linked to the weathering of carbonates and the mobilization of 
certain HMs to deeper substrates [156]. In the case of river banks and beds, the bad accessibility limited the application of adequate 
remediation actions; thus, the risks related to the spread of mobile elements such as Cd and Zn remained unmanageable in these 
habitats [169]. In the affected area, after the sludge removal, most soils presented HM levels higher than those soils unaltered in the 
Guadiamar valley [161]. Determinations made almost 40 months after the accident (in 2002) found concentrations of Hg in the soil 
surface (0–5 cm) more than 8 times higher than the background value of the area, although this concentration was very variable along 
the Guadiamar river basin [170]. Through monitoring analyses, high levels of HMs were also detected in native plant species (Cynodon 
dactylon and Sorghum halepense) growing in remediated and non-remediated plots, [171]. Overall, 15 years after the accident, and 
despite remediation efforts, about 7% of the surface within the first 18 km of the polluted area were still bare soils [169,172]. In some 
spots, the concentration of certain HMs was even higher than before the restoration work; this effect was attributed to the soil 
compaction effect caused by the heavy machinery removing sludge as the first remedial action [173]. However, mechanical removal of 
sludge and polluted top soil also accelerated the natural attenuation in other areas [118]. The utilization of plants as bio-indicators of 
pollution was also studied; thus, the content of HMs on leaves of white poplars (Populus alba) was found to fit well with the availability 
of certain HMs in soil [174]. Similarly, Eucalyptus camaldulensis was shown to be a good biomonitor for Cd, Mn, and Zn in soil [162]. 
The plant-monitoring results confirmed that the presence of HMs in plants had decreased after the remediation efforts (12 years after 
the accident), reaching levels that could be considered normal for higher plants and tolerable for livestock [156]. In combination with 
these control measures, several alternative uses, such as the production of biofuel or the use for horse grazing (non-food livestock), 
were proposed and tested to take advantage of the HM enriched biomass produced in the contaminated site [175,176]. 

Overall, a progressive recovery of the ecosystem functions altered during the pollution episode was observed; enzymatic activities 
that were affected in contaminated areas, or indices such as microbial biomass carbon or microbial diversity were gradually recovered 
after remediation [177]; 2010; [152,118]. The regional administration managing the Aznalcóllar situation established a protected 
area, where certain activities such as agriculture or the collection of terrestrial snails for human consumption were limited or, in some 
cases, prohibited [144], and currently it is just a recreational area. 

2.2.3. The Germano mine, Minas Gerais (Brazil), 2015 
The accident at the Germano mine is considered one of the most serious dam failures registered because of the injuries to people, 

loss of infrastructures and the effect on vegetation and agricultural land (over 2,000 ha were affected). On November 5, 2015 the 
second of a set of three sequential tailing dams, the Fundão dam, failed and the tailings spilled into the third dam, Santarém, which 
overflowed with 60 million m3 of water and mud, destroying the town of Bento Rodrigues, and swamped the River Doce. Over the 
following weeks the mud funnelled the mining waste 650 km into the Atlantic Ocean [131]. The shape of the river changed because of 
the rapid displacement of the large volume of material in a short period of time. 

Although the composition of the tailings was not known in detail, the presence of quartz and toxic chemicals used in reverse 
cationic flotation, such as ether amine and sodium (Na), was expected because of the Fe-extraction technique used in the mine [178, 
145]. After the disaster, Samarco interrupted its activities and the non-profit Renova Foundation was created for managing the 
restoration and reconstruction programmes of the regions impacted by the disaster with estimated costs of US$54 billion [179,180]. 

The immediate impact was similar to other accidents; large depositions of waste along the Doce basin and an increase in suspended 
sediment loads (up to 33,000 mg L− 1). The levels of Fe, As, Hg, Mn exceeded sediment quality guidelines [126]. In the short term (two 
days after the accident), the pH did not change in the water column [181]. In this accident, the benthic estuarine assemblages were 
found to have significantly changed, with an increase of metal resistant taxa. Benthic communities are used as environmental markers 
for monitoring ecosystems, because beingmostly sedentary and with short life cycles they are directly impacted by organic and 
chemical disturbances [181,182]. 
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Measurements carried out one and two years after the accident (in 2016 and 2017), revealed that the riparian soils reached by the 
sediments showed a reduction in fertility, especially of the content of soil organic matter and NO3

− (but also due to other elements such 
as P, K, Ca, Mg, Cu, Fe, Mn, and Zn) with a concomitant increase in NH4

+, Na, and pH. Sodium reached values as high as 150 mg kg− 1, 
whilst metal toxicity derived from Fe, Cu, Mn, and Zn was not observed. Ether amines and Na present in the sediments had strong toxic 
effects that resulted in the depletion of total microbial biomass (measured as phospholipid fatty-acid content) and overall plant 
mortality in the impacted zone [183]. The short-term impact on microbial communities (analysed in 2016–2017) included an increase 
in Actinobacteria and Bacteroidetes and in gene sequences related to microbial virulence, motility, respiration, membrane transport, 
and Fe and N metabolism, suggesting changes in the microbial metabolic profiles [125]. 

The long-lasting effects of this accident are still unknown; however, the identification of Na and amines in these sediments will help 
to design efficient remediation strategies. 

Overall, the actuation in these three accidents indicates that the general awareness toward the noxious effects of these environ-
mental disasters have increased with time. The strategies to face this type of situations have been clearly established (removal, 
mobilization/immobilization of contaminants and phytoremediation) and the monitoring techniques have significantly advanced. 
However, the techniques applied have not changed much in twenty years, although nowadays it is well established that the 
amendments, phytoremediation approach etc. Should be determined on the basis of the specific characteristics of the contaminated 
area and that fast responses should be taken. 

3. HM accumulation during agricultural activities and remedial actions 

By 2050, the agricultural production at a global level is needed to double for reaching the expected requirements of a growing 
population [184]. Soil degradation of agricultural areas worldwide is a global threat linked to severe losses in the crop yield, which is 
especially worrying in the most vulnerable areas on earth, due to the risk of aggravation of poverty and malnutrition [185]. The 
long-term application of impure inorganic pesticides, fertilizers and/or organic amendments, such as liquid and soil manure, or their 
derivatives such as compost or sludge, containing relatively high content of metallic elements such as Cd, As, Cu, Zn, Cr, and Pb, has 
significantly contributed to the progressive HM accumulation in soil [186,187,188,189]. Irrigation of crops with wastewater, rich in C, 
N or other nutrients, is a common practice in arid or semi-arid areas, which minimizes the need for chemical fertilizers but frequently 
contributes to the accumulation of HMs in the soil, unless they have been previously treated to remove the metal load [190,191]. In 
addition, it must be taken into account the enhanced root proliferation, induced by these amendments, which enables plant access to 
larger pools of bioavailable HMs. Besides the deleterious effects of HMs on plants [18,115], HMs alter key functions in soil, minimizing 
the availability of nutrients and the biological activity of the soil, impairing soil fertility and crop productivity as well as producing 
alterations in the microbial community structure [192,193]. International institutions dependant on the United Nations, WHO (World 
Health Organization) and the FAO (Food and Agriculture Organization), strive to raise worldwide social awareness about this issue by 
launching actions addressed to prevent further pollution and to minimize the contamination problems in agricultural soil worldwide 
by using environmentally friendly techniques (UNEP, 2019). Therefore, there is a growing interest in remediation technologies 
applicable to agricultural soil. 

Most of the active remediation/preventive strategies for agricultural soil are comprised in the ecologically sustainable Gentle 
Remediation Options (GRO). Since the pollution of agricultural soil with HMs are frequently slow progressive processes, these GRO 
non-aggressive methods might be an efficient and low-cost approach. GRO mainly include the use of organic/inorganic amendments 
for the in-situ metal stabilization/inactivation, the application of selected soil management practices aimed at decreasing the 
bioavailable HM content, and/or, the use of plants (productive crops and assisting plant species) and their associated microorganisms 
with phytoremediation purposes [194,195]. 

The aim of metal stabilization through the application of organic and/or inorganic materials, is to reduce the bioavailability of HMs 
in the topsoil layer, and thus, the contaminant translocation to plant tissues [196,23]. Some amendments may also provide additional 
benefits, particularly interesting for agricultural soil, such as the enhancement of soil physic-chemical and biological properties 
through the increase of porosity, aggregate stability, organic matter content, cation exchange capacity, water-holding capacity, and 
microbial activity, as well as pH buffering; furthermore, some amendments contain essential nutrients that favour plant development 
[197,24,59,198,199,200,201,202,203]. The selection of pollutant-excluding crop cultivars to reduce the entry of toxic metals into the 
human food chain is one of the most widely used agronomical practices applied to metal-impacted soils [204,205,206,207]. This 
strategy requires the selection and utilization of crops with low HM accumulation in their harvestable tissues. Those excluder cultivars 
can be obtained by selecting specific phenotypes and incorporating them into plant breeding programmes. Finding low HM accu-
mulation cultivars (LACs) have been investigated mainly with Cd [208,206]. Investigation of LACs in the last twenty years has led to 
identification of rice, wheat and others plants that accumulate low concentrations of Cd, or rice cultivars with a low accumulation of As 
or Hg [206]. Decreasing the total HM concentration to below a safe threshold value without compromising crop yields is especially 
important in developing countries. Intercropping has emerged as an appropriate option; thus, the co-cultivation of hyper-accumulators 
with crops decreases the uptake of contaminants in crop plants. Furthermore, if the hyper-accumulators are left during the time in-
terval between the first and second cropping seasons, the HM removal will continue. Successive cultivations will progressively 
eliminate the HM content in the soil [209,210,211,212,213,214]. Nevertheless, it should be noted that the selection of some of these 
strategies may hinder the agricultural production, either by limiting the cultivation of less valuable crops during long periods of time 
due to the relatively slow phytoextraction process or limited productivity due to the intercropping strategies [215]. 

Studies carried out to investigate the HM accumulation capacity of twenty plant species grown in agricultural soil irrigated with 
wastewater for approximately 60 years, showed a high variation in metal accumulation capacity amongst all vegetables evaluated. For 
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instance, spinach, Chinese lettuce and Chinese chives showed the highest capacity and thus, the highest health risks. On the contrary, 
other crops such as tomato, potato or cabbage showed low accumulation values and thus, less health risks despite high soil HM 
pollution [216]. This study links the necessity of wastewater pre-treatment and a proper crop selection to mitigate the risks for human 
health when exploiting polluted soil for crop agriculture [216,217]. 

We have found only two field studies related with remedial actions under real conditions. In the first one, conducted in Sichuan 
Province, China, during the whole growth stages of rice crops, the authors evaluated the efficiency of eight immobilizing treatments for 
the remediation of Cd contaminated soils. All amendments, composed of mineral fertilizers and different proportions of synthetic 
zeolite, led to positive results. The mixture of the mineral fertilizer: synthetic zeolite at mass ratio of 10:6 proved to be the most 
promising material for remediation of Cd contaminated paddy soil, due to its high efficiency at metal immobilization and pH buffering, 
as well as being cost-economic [218]. In the second study, the application of amendments was tested in the vicinity of the city of 
Verdun, in north-eastern France. In the 1920s, 1.5 million chemical shells and 30,000 explosive shells were destroyed nearby causing 
the release of relevant concentrations of Zn, As, Pb and Cd. The cultivation of wheat, the traditional crop in the area, was stopped 
because the risk of human exposure to As, via the consumption of wheat derived products [219]. A schwertmannite-based adsorbent 
material, assayed for treating this soil in pot experiments, induced a reduction of As availability but an increase in that of Cd and Pb. 
Additional experiments showed that the combination of this substrate with chalk or ash solved this issue by reducing the mobile 
fraction of As in soil without affecting negatively the Cd and Pb concentrations [220]. These results support the recommendations of 
combining fertilization and liming for the effective remediation of As-rich soils [221], and the need to carefully analyse potential 
adverse secondary effects before the large-scale application of amendments. 

4. Valorization of the phytoremediation 

The final aim of phytoremediation must be to extract or stabilize contaminants in the soil to avoid their mobilization through the 
trophic chain. In the long-term, it should be pursued to achieve the progressive full recovery of the soil, which would provide envi-
ronmental, social and economic benefits. One of the main challenges of remedial technologies is the cost of the process, and therefore, 
it has been proposed that obtaining economic benefits during phytoremediation would attract companies to increase their remediation 
efforts [222,223,224]. 

4.1. Phytostabilization and bio-energy production 

When plants which have been grown in contaminated fields under remedial treatment cannot be cultivated for crops (i.e. no 
resistant or LAC crop varieties exist, elevated concentrations of HMs that are transported to the harvestable parts even in LACs), bio- 
energy crops could be a good option to generate income [225]. As phytoremediation projects often require quite long periods of time to 
be successfully completed, production of energy crops could pose an attractive economic alternative to local farmers that would allow 
a sustainable use and valorization of contaminated soil. Experiments carried out in Campine, a HM-contaminated region along the 
Dutch-Belgian border, have demonstrated that cultivating maize (Zea mays L.) resulted in an annual reduction of Zn in the top soil layer 
of about 0.4–0.7 mg kg− 1 (although removal was low for Cd and Pb). Cultivation of non-edible maize could result in 33,000–46,000 
kW h of renewable energy (electrical and thermal) per hectare and year which by substitution with fossil energy would imply a 
reduction of up to 21 × 103 kg ha− 1 y− 1 CO2 if used to substitute a coal fed power plant [226]. Similar experiments, but using a 
short-rotation willow coppice, also showed good removal of HMs. As the plant biomass was able to capture atmospheric carbon at the 
same time that the soil contamination was being reduced [227], there is a total sustainability of the process. However, the final destiny 
of the HM in these energy crops as well as the risk of HM transfer to the food web through the wild fauna should be further investigated. 

4.2. Phytomining or agromining 

Increasing demand for metals has scaled up the metal prices to unsuspected levels. Furthermore, the possession of rentable metal 
(oid)s deposits is actually a strategic resource for many countries, which causes conflicts in the world (Global Policy Forum; www. 
globalpolicy.org). In this context, phytomining is an eco-friendly strategy that consists of using plants able to extract valuable ele-
ments from the substrate and accumulate them in their above ground tissues from where they can be recovered after biomass pro-
cessing (bio-ore) (Chaney et al., 1998). In general, phytomining relies upon the availability of plants able to hyper-accumulate the 
element(s) of interest. Currently, more than 700 H M hyper accumulator plant species have been reported [73], of which most of them 
accumulate Ni. The criteria for selecting a hyper-accumulator useful for phytomining in contaminated soil is not only about the 
concentration of the metal in the plant, but also the biomass and growth rate, in order to reach high amounts of the element of interest 
per hectare [228]. Phytoextraction is only the first step of the whole metal recovery process; further steps, such as plant biomass 
reduction (for a cost-effective transportation and ulterior manipulation) and metal extraction should be implemented (Table 2; [229, 
230,231,232,233,234,235,236,237]. The term agromining considers the entire agrosystem including all the techniques and actors in 
the chain to obtain elements of interest from metal-rich substrates using plants [238,239]. Agromining has been assessed in soil 
naturally enriched in Ni (ultramafic soil; see revisions by Refs. [240,241] and can also be implemented to mine slags and sites 
contaminated with valuable HMs with the double objective of achieving soil restauration whilst obtaining profits from the commercial 
production of metals [242]. It should be noticed that agromining is an interesting strategy which, in practice, is only economically 
feasible for certain metals of high economic value that can be phytoextracted in sufficient amounts to compensate for the costs of 
biomass production and recovery of the element of interest [238]. Elements with high interest of recovery are Cu, Co, Tl and Se and 
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rare earth elements (REEs), such as neodymium, yttrium, dysprosium, europium and terbium [239], but hyper-accumulators have 
either been found to grow in very specific locations, or the contaminated soil containing these materials is quite rare. The phytomining 
of metals such as Ag or Hg is still challenging because of the lack of plants capable of accumulating them. In the case of other 
phyto-minable elements, such as or Pb, their market value is too low for considering them as potential targets for phytomining [239]. 

Currently, most of the practical demonstrations of phytoextraction or phytomining of metal (loid)s from contaminated soil are 
small-scale and short-term trials. Most of these demonstrations have been based on using hyper-accumulator species, such as Thlaspi 
caerulescens (Pb, Zn, Cd, Ni), Odontarrhena spp. (Ni, Co), and Pteris vittata (As) or fast-growing plants, such as Salix and Populus spp. that 
accumulate above-average concentrations of only a small number of the more mobile trace elements (Cd, Zn, B) [243]. The only 
complete process of agromining in contaminated soil described so far have been the recovery of nickel from brown-field sites 
[244–247]. It should be considered that agromining is a temporary activity (whilst there are high concentrations of metal in soil), and 
therefore, its main objective is the improvement of soil quality to allow food crop production whilst obtaining economic benefits [246]. 
Therefore, there is not competition with food crops for land usage. 

5. Future perspectives 

A clear challenge in remediation of metals will be the elimination of emerging inorganic contaminants [248]. Current production of 
lithium (Li) is 77,000 tons per year (USGS, 2020), mainly produced for rechargeable batteries. Gallium (Ga) and indium (In) are used 
extensively in electronic equipment. It has been reported that industrial sludge associated with electronic manufacturing contained up 
to 40–42 mg kg− 1 of In [249]. These three elements are some of the elements that are now being considered as emerging contaminants 
and are present in waste from electronic industries that have been termed as e-waste. Although not yet studied in depth, phytor-
emediation could be a good alternative in the remediation of contaminated soil or water, or in the bio-recovery from rich waste 
material. Li is entering in the food chain through various mechanisms and being taken up by all plants [250,251]. In the case of Ga and 
In, being chemically similar to aluminum (Al), it is thought that some acidophilic plants, such as Camellia spp., which accumulate Al, 
could also be used for Ga and In accumulation [248]. Further studies in this area to identify the best plant species, or even the mi-
croorganisms to be used in wastewater treatment plants, would allow the development of new technologies for the remediation and/or 
recuperation of these elements. 

Nanoremediation has recently emerged as an innovative technology aiming to enhance the efficiency in the immobilization of 
contaminants (e.g. HMs) from soil and water through the application of, engineered or biogenic, nano-sized materials (NMs) [252]. 
These materials present some interesting properties, such as high surface-to-volume ratio, low reduction potential, low cost, or po-
tential surface functionalization, which make them versatile and highly reactive entities for selectively remediating pollutants in the 
environment [253]. The performance of these NMs can be enhanced by modifying the properties of their surface by coating them with 
biopolymers (e.g. starch or ethylene glycol) or customizing their size, morphology or chemical composition by controlled chemical 
reactions [253,254,255]; Ingle et al., 2022). Nano-materials can also be generated biogenically (e.g. by plants, bacteria, algae, or 
fungi). In the field, the application of these NMs can be carried out by distributing them directly onto the polluted site or by creating the 
precise conditions for the NM formation or activation on site. For the activation of NMs, a common approach is the inoculation of 
selected microbes by spray irrigation, infiltration galleries, or injection wells if the pollutants are deep in the soil. Once in contact with 
the contaminant(s), NMs may exert a direct effect on them through adsorption/redox reactions, or indirectly, they can increase the 
efficiency of other remediation strategies (e.g. phytoremediation) through different mechanisms such as assisting plants to stabilize 
HMs by electrostatic adsorption or, simply, by stimulating plant growth [256]. 

So far, numerous types of NMs, mainly nano-particles (NPs), have been investigated for a variety of applications as HM remediation 
[257], although they have not been thoroughly evaluated under real scenarios. In particular, NMs such as TiO2-NPs and nano-scale 
zero-valent iron (nZVI) have been widely investigated for HM remediation purposes [258,259,260,261]. In the case of the NPs of 
TiO2, they have been successfully tested for Pb adsorption in soil [262], as well as for enhancing the accumulation of Cd in soybean 
plants (Glycine max). After 60 days in contact with TiO2-NP, the accumulation of Cd in soybean shoots and roots increased approxi-
mately 2–3 times (in comparison to normal accumulation values) depending on the TiO2-NPs concentration [263]. Regarding nZVI, an 
electron donor with a negative reduction potential, it has been shown to remediate Cr(VI) and Hg efficiently [264].; [259]. In addition, 
nZVI also improved the Cd and Pb phytoextraction potential in the roots, stems, and leaves of Boehmeria nivea and Lolium perenne, 
respectively [265,266]. 

Other NMs which have been investigated in this regard are magnetic NPs, whose properties could provide certain advantages in the 
remediation of metal-polluted soil. Recent studies with biogenic magnetite (Fe3O4) NPs confirmed a high potential in the remediation 
of certain pollutants such as Cr(VI) [267]. In addition, Ag-NPs in combination with PGPR have been reported to modulate the growth 
and phytoextraction capability of maize plants [268], salicylic acid NPs improved Isatis cappadocica phytoremediation in As-polluted 
soils [269], and MgO-NPs assisted the Pb accumulation in Raphanus sativus [270]. 

To sum up, nanotechnology-based strategies are expected to enhance existing remediation approaches by accelerating the clean-up 
procedure, reducing economic and environmental costs, and mainly, customizing the process to each particular polluted scenario 
(reviewed in Shahid et al., 2022) as well as for creating precise agricultural management systems (reviewed in Ref. [271]. However, 
the environmental consequences of using nano-materials should be carefully evaluated when applying this technology in-situ [272]. 
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6. Conclusions 

Despite the current trend to develop sustainable mining and agricultural practices, HM contamination of soils is still a huge problem 
affecting soil health. Although ecosystems are known to have great resilience to external alterations, the natural attenuation processes 
are usually very slow [273]; therefore, implementing environmentally sustainable remediation strategies for soil affected with high 
concentrations of HMs is still a necessity. 

All the examples summarized here reveal the complexity of using standard protocols for the remediation of soils contaminated with 
HMs. In highly contaminated environments, usually related to mining sites, and if economic constraints allow it, physical containment 
in combination with assisted-phytoremediation have been demonstrated to be the best approach for environmental restoration. Dif-
ficulties associated with the topography of these mining areas, the vast area to be remediated, economic constraints, and, sometimes, 
the need to take urgent decisions (i.e. after spills), have made difficult the field application of some of the innovative remedial 
techniques that have shown good results in the laboratory after huge research efforts. 

In agricultural soils, the problem of HM contamination has been only recently acknowledged, and thus, the optimal management 
and remedial strategies are still being investigated. So far, several approaches have been tested and discussed. In the case that agri-
cultural exploitation must be preserved during remediation actions, an approach combining different management and treatment 
possibilities is expected to reduce risks for a safe use of polluted agricultural lands. Nevertheless, in all cases, a constant eco- 
toxicological monitoring programme is essential, and cultivation should not be allowed unless intensive and periodic toxicity tests 
demonstrate the safety of the crops for consumption. 

Further research is clearly necessary to optimize the existing remedial approaches by reducing their duration and enhancing their 
applicability, as well as implementing new efficient and cost-effective treatments such as promising nanotechnology-based methods. 
These promising innovative approaches, successfully tested at laboratory level, need to be validated in the field to make them 
effectively applicable (from a technical and economical point of view) in the medium and long term. Phytomining or the use of biomass 
from phytoremediated areas for bio-energy production could help to support the costs of the remediation, however, none of these 
options have so far been extensively used or developed by industry. 
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M.-N. Pons, Á. Prieto-Fernández, M. Puschenreiter, C. Quintela-Sabarís, C. Ridard, B. Rodríguez-Garrido, T. Rosenkranz, P. Rozpądek, R. Saad, F. Selvi, M.- 
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