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Increased serum catalytic iron may 
mediate tissue injury and death 
in patients with COVID‑19
Vipul Chakurkar1*, Mohan Rajapurkar2, Suhas Lele2, Banibrata Mukhopadhyay2, 
Valentine Lobo1, Ramakrishna Injarapu3, Muddassir Sheikh3, Bharatkumar Dholu3, 
Arpita Ghosh4,5 & Vivekanand Jha4,5,6

The pathophysiology and the factors determining disease severity in COVID-19 are not yet clear, with 
current data indicating a possible role of altered iron metabolism. Previous studies of iron parameters 
in COVID-19 are cross-sectional and have not studied catalytic iron, the biologically most active form 
of iron. The study was done to determine the role of catalytic iron in the adverse outcomes in COVID-
19. We enrolled adult patients hospitalized with a clinical diagnosis of COVID-19 and measured serum 
iron, transferrin saturation, ferritin, hepcidin and serum catalytic iron daily. Primary outcome was a 
composite of in-hospital mortality, need for mechanical ventilation, and kidney replacement therapy. 
Associations between longitudinal iron parameter measurements and time-to-event outcomes 
were examined using a joint model. We enrolled 120 patients (70 males) with median age 50 years. 
The primary composite outcome was observed in 25 (20.8%) patients—mechanical ventilation was 
needed in 21 (17.5%) patients and in-hospital mortality occurred in 21 (17.5%) patients. Baseline 
levels of ferritin and hepcidin were significantly associated with the primary composite outcome. The 
joint model analysis showed that ferritin levels were significantly associated with primary composite 
outcome [HR (95% CI) = 2.63 (1.62, 4.24) after adjusting for age and gender]. Both ferritin and serum 
catalytic iron levels were positively associated with in-hospital mortality [HR (95% CI) = 3.22 (2.05, 
5.07) and 1.73 (1.21, 2.47), respectively], after adjusting for age and gender. The study shows an 
association of ferritin and catalytic iron with adverse outcomes in COVID-19. This suggests new 
pathophysiologic pathways in this disease, also raising the possibility of considering iron chelation 
therapy.

As of writing, a total of 241 million individuals have been infected with the novel beta-coronavirus SARS-CoV-2 
worldwide, with over 4 million deaths1. COVID-19 (coronavirus disease 2019) has varied clinical manifestations, 
ranging from asymptomatic infection to severe acute respiratory failure, multi-organ dysfunction, and death. The 
mortality is high amongst patients with severe disease, especially those who develop respiratory failure or acute 
kidney injury (AKI)2. The pathophysiology and the factors that determine the disease severity are not yet clear, 
with the main pathways postulated to be responsible for tissue injury being the direct cytopathic effect of the 
virus, immune dysregulation leading to cytokine storm, endothelial cell damage, and thrombo-inflammation3.

Non-transferrin or non-ferritin bound iron, also called catalytic iron, leads to the generation of reactive 
oxygen species such as hydroxyl radicals through the Fenton reaction4. High catalytic iron levels in plasma are 
associated with mortality and adverse clinical events in patients with a variety of acute illnesses, including acute 
coronary syndromes5,6, cardiogenic shock7, and multi-organ failure with AKI8,9.

Previous cross-sectional studies of iron parameters in COVID-19 have reported an association between one-
time measurements of these parameters with the poor outcomes10–16. Severe COVID-19 is also thought to be one 
of the hyperferritinemic syndromes. There is evidence showing an association between high levels of hepcidin 
and ferritin and the severe forms of this disease10–12. Nai et al. in a study of 111 Italian patients with COVID-19, 
found high hepcidin levels to be associated with death11. In another study of 50 patients, Zhou et al. showed that 
patients with severe COVID-19 had higher levels of hepcidin and ferritin12.
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We hypothesized that serum catalytic iron (SCI) levels increase in COVID-19 and are associated with 
increased disease severity and adverse outcomes, including death.

Results
Of the total of 160 patients admitted with SARS-CoV2 infection at King Edward Memorial Hospital, Pune, 134 
consented. The final analysis included 120 participants (Fig. 1). The baseline characteristics of the participants 
are presented in Table 1. Their median age was 50 years (interquartile range (IQR) = 35.8, 64 years), 70 (58.3%) 
of them were males, 35 (29.2%) were diabetic, and 41 (34.2%) were hypertensive. Patients presented to the hos-
pital at a median of 4 days (IQR = 3, 5 days) after symptom onset. Of the 120 patients, 93 (77.5%) were positive 
by SARS-CoV-2 real-time polymerase chain reaction (RT-PCR), and the remaining 27 (22.5%) were clinically 
suspected of having COVID-19 on the basis of fever, acute severe respiratory illness and an abnormal chest 
roentgenogram.

Outcomes.  Over the course of hospital stay, 70 (58.3%) patients required oxygen therapy; 40 (33.3%) needed 
ICU care with a median length of ICU stay of 8.5 days (IQR = 5, 14 days). The median length of stay in hospi-
tal was 9 days (IQR = 6, 11.25 days). The primary composite outcome was observed in 25 (20.8%) patients, 21 
patients (17.5%) died, 21 (17.5%) needed mechanical ventilation, 12 (10%) developed AKI and 7 (5.8%) required 
kidney replacement therapy (KRT). The baseline characteristics of the patients who met with the primary com-
posite outcome and death are described in Table 1.

26 Unwilling to participate 

Patients suspected to have COVID-19 
N= 160 

Inclusion in the study 
N= 134

RT-PCR Positive 
N= 103 

RT-PCR Negative 
N= 31

2nd Swab

RT-PCR Negative 
N= 27 

RT-PCR Positive 
N= 4 

Total Positive= 107 

Noting of the clinical events till death or discharge from hospital. Daily collection of blood 
sample for iron parameters (n=120) 

Excluded 
Protocol violations = 9 
Withdrew consent = 5

Figure 1.   Shows the flow of the study.
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Iron parameters.  Participants who met with the primary composite outcome had lower baseline levels of 
serum iron (SI) [23.3 (15.5, 40.5) vs. 31.9 (20.0, 61.7), p = 0.03] and total iron-binding capacity (TIBC) [225.1 
(191.0, 254.5) vs. 268.2 (219.6, 322.2), p < 0.01] and higher baseline levels of ferritin [720.6 (251.6, 1406.0) vs. 
260.3 (94.3, 507.9), p < 0.01] and hepcidin [221.6 (150.6, 315.3) vs. 92.2 (36.0, 232.2), p < 0.01], as compared to 
those who had not met with the outcome (Table 2). Comparison of those who died with the survivors revealed 
higher ferritin and hepcidin levels and lower serum iron and TIBC levels at baseline. No difference in baseline 
levels of SCI was detected between the groups who met with the outcome and those who did not (Table 2).

Severity of the disease.  A total of 22 patients had mild disease, whereas 57 and 41 patients were classified 
into moderate and severe categories, respectively. The group characteristics are described in Table 3. Patients 
with severe disease were older and included more hypertensives compared to those with mild disease. Base-
line CRP and neutrophil-to-lymphocyte ratio were associated with disease severity. RBC counts did not differ 
between the groups, and no excess bleeding was observed in the severe group. The levels of ferritin, hepcidin, 
and TIBC differed significantly across the groups while those of SI, TSAT, and SCI did not (Table 3).

Association of baseline iron parameters with time‑to‑event outcomes.  In an unadjusted analy-
sis, baseline ferritin and hepcidin were associated with the composite primary outcome and in-hospital mortal-
ity [(hazard ratio- HR (95% confidence interval CI) for log-transformed ferritin and hepcidin = 1.94 (1.34, 2.80) 
and 1.84 (1.19, 2.85), respectively for the primary composite outcome and 2.21 (1.36, 3.59) and 1.92 (1.11, 3.33), 
respectively for in-hospital mortality]. After adjustment for age and gender, both the parameters retained their 
association with the outcomes [adjusted HR (95% CI) = 1.85 (1.24, 2.74) and 1.64 (1.03, 2.60), respectively for the 
primary composite outcome and 2.18 (1.31, 3.61) and 1.75 (1.01, 3.06), respectively for in-hospital mortality]. 
Additionally, after adjusting for age and gender, baseline SCI levels were associated with the primary composite 
outcome and in-hospital mortality [adjusted HR for log-transformed SCI = 1.36 (1.00, 1.85) for primary com-
posite outcome and 1.68 (1.17, 2.42) for in-hospital mortality] (Table 4). Mean and maximum iron parameters 
measured over the study period are described in Table E1.

Table 1.   Baseline characteristics of study participants, by study outcomes. *Primary composite outcome is a 
composite of in-hospital mortality, need for mechanical ventilation and need for kidney replacement therapy. 
Values are expressed as median (interquartile range) or count (percentage). The values of CRP, N: L ratio, IL-6 
and iron parameters mentioned here are baseline measurements. CRP, N: L ratio and IL-6 are missing for 11, 3 
and 36 participants. CRP-C-Reactive Protein; IL-6- interleukin-6; N:L ratio- neutrophil-to-lymphocyte ratio; 
RT-PCR-real time polymerase chain reaction.

Characteristics Entire cohort (n = 120)
Patients having primary composite outcome* 
(n = 25) Non-survivors (N = 21)

Age 50.0 (35.8, 64.0) 60.0 (44.0, 72.0) 60.0 (51.0, 74.0)

Male sex, n (%) 70 (58.3) 16 (64) 13 (61.9)

Diabetes, n (%) 35 (29.2) 6 (24) 4 (19)

Hypertension, n (%) 41 (34.2) 12 (48) 11 (52.4)

Ischemic heart disease, n (%) 11 (9.2) 3 (12) 2 (9.5)

Lung disease, n (%) 7 (5.8) 1 (4) 1 (4.7)

RT-PCR positive, n (%) 93 (77.5) 19 (76) 17 (81)

Days since symptom onset 4.0 (3.0, 5.0) 4.0 (4.0, 5.0) 4.0 (4.0, 5.0)

N:L Ratio 3.2 (2.2, 6.0) 6.2 (3.1, 13.3) 6.2 (3.1, 11.7)

CRP (mg/L) 57.7 (20.0, 142.0) 153.0 (84.5, 160.0) 148.0 (85.2, 160.0)

IL-6 (pg/ml) 59.0 (36.5, 135.0) 110.0 (57.0, 206.8) 112.5 (59.8, 242.2)

Table 2.   Distribution of iron parameters, by outcome status. *Primary composite outcome is a composite of 
in-hospital mortality, need for mechanical ventilation and need for kidney replacement therapy. Values are 
expressed as median (interquartile range). SI- serum iron; SCI- serum catalytic iron; TIBC- total iron binding 
capacity, TSAT- transferrin saturation.

Iron parameter

Primary composite outcome* Death

No (n = 95) Yes (n = 25) P-value No (n = 99) Yes (n = 21) P-value

SI (μg/dl) 31.9 (20.0, 61.7) 23.3 (15.5, 40.5) 0.03 31.9 (19.7, 61.7) 23.3 (18.4, 29.9) 0.04

TIBC (μg/dl) 268.2 (219.6, 322.2) 225.1 (191.0, 254.5)  < 0.01 267.7 (220.9, 320.4) 216.5 (191.0, 254.5)  < 0.01

TSAT (%) 12.7 (8.2, 24.3) 9.9 (7.8, 20.1) 0.31 12.7 (7.8, 24.3) 9.9 (8.6, 20.1) 0.41

Ferritin (ng/ml) 260.3 (94.3, 507.9) 720.6 (251.6, 1,406.0)  < 0.01 251.6 (103.0, 507.9) 725.7 (280.5, 1,406.0)  < 0.01

Hepcidin (ng/ml) 92.2 (36.0, 232.2) 221.6 (150.6, 315.3)  < 0.01 105.8 (37.3, 232.2) 225.1 (163.4, 315.3)  < 0.01

SCI (μmol/L) 0.39 (0.3, 0.64) 0.4 (0.34, 0.66) 0.35 0.39 (0.3, 0.64) 0.43 (0.36, 0.67) 0.24
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Longitudinal iron measurements.  Trajectories of natural logarithms of iron parameters were plotted 
from the day of admission. Fitted trajectories were plotted for patients with or without primary composite out-
come and also for survivors and non-survivors. It was noted that patients who died had an increasing trend of 
SCI & ferritin levels while patients who recovered did not experience this rising trend (Fig. 2).

Joint modeling.  In order to assess the effect of longitudinal measurements of iron parameters on time-
to-event outcomes, we used joint modeling. The association is presented as HR (95% CI) adjusted for age and 
gender in Table 5. Ferritin was positively associated with primary composite outcome: a one-unit increase in fer-
ritin on the log scale resulted in a 2.sixfold increased hazard of primary composite outcome (95% CI 1.62, 4.24). 
Both log ferritin [adjusted HR (95% CI) = 3.22 (2.05, 5.07)] and log SCI levels [1.73 (1.21, 2.47)] had a significant 
association with mortality as well. Findings were similar when we adjusted for additional covariates at baseline—
medical history of diabetes, hypertension, heart disease, lung disease, day of presentation after symptom onset 
and RT-PCR status (Table E2).

Sensitivity analysis for very high SCI levels.  We found several SCI values to be much higher compared 
to our previous experience in various critically ill populations. In the past, we have not observed values of more 
than 10 μmol/L; hence a possibility of inadvertent iron contamination could not be reasonably ruled out. Values 

Table 3.   Baseline characteristics of study participants according to disease severity (per the highest WHO 
Score). Continuous data were compared using Kruskal–Wallis ANOVA and categorical data were compared 
using chi-square test or Fisher’s exact test. Summaries are expressed as median (interquartile range) or counts 
(percentage). The values of CRP, N:L ratio and iron parameters mentioned here are done at baseline. Mild 
disease: Highest WHO score 0–3; moderate disease: 4 & 5; Severe: 6 or above. CRP- C-Reactive Protein; IL-6- 
interleukin-6; N:L ratio- neutrophil-to-lymphocyte ratio; RT-PCR- real time polymerase chain reaction; SI- 
serum iron; SCI- serum catalytic iron; TIBC- total iron binding capacity, TSAT- transferrin saturation.

Severity

Mild (n = 22) Moderate (n = 57) Severe (n = 41) P-value

Age 36.0 (30.2, 48.8) 50.0 (36.0, 61.0) 59.0 (48.0, 70.0)  < 0.01

Male sex 14 (63.6) 30 (52.6) 26 (63.4) 0.48

Diabetes 3 (13.6) 21 (36.8) 11 (26.8) 0.12

Hypertension 2 (9.1) 19 (33.3) 20 (48.8)  < 0.01

RT-PCR positive 22 (100.0) 40 (70.2) 31 (75.6)  < 0.01

Days since symptom onset 2.0 (1.2, 3.0) 4.0 (3.0, 5.0) 4.0 (3.0, 5.0)  < 0.01

N:L Ratio 2.3 (1.5, 2.6) 3.2 (2.2, 6.1) 4.9 (3.0, 11.0)  < 0.01

RBC Count 4.70 (0.74) 4.59 (0.72) 4.50 (0.77) 0.63

CRP (mg/L) 16.8 (3.5, 48.1) 49.0 (11.2, 125.0) 136.5 (55.7, 160.0)  < 0.01

IL-6 (pg/ml) 65.0 (43.8, 201.2) 47.5 (24.5, 116.2) 84.0 (37.8, 145.0) 0.22

SI (μg/dl) 37.0 (27.0, 62.8) 28.6 (17.6, 60.0) 28.7 (18.8, 43.9) 0.19

TIBC (μg/dl) 294.6 (267.9, 349.5) 261.9 (213.3, 322.7) 222.9 (190.1, 265.7)  < 0.01

TSAT (%) 11.3 (9.2, 22.9) 11.9 (7.2, 22.7) 12.7 (8.9, 22.9) 0.73

Ferritin (ng/ml) 206.9 (27.2, 281.1) 249.9 (88.0, 524.1) 537.5 (260.3, 946.5)  < 0.01

Hepcidin (ng/ml) 51.4 (25.1, 148.9) 106.5 (38.4, 240.5) 208.1 (111.5, 302.5)  < 0.01

SCI (μmol/L) 0.33 (0.3, 0.39) 0.39 (0.29, 0.59) 0.43 (0.36, 0.73) 0.058

Table 4.   Hazard ratios for baseline iron parameters from unadjusted and adjusted Cox proportional hazard 
models for primary and secondary outcomes. *Primary composite outcome is a composite of in-hospital 
mortality, need for mechanical ventilation and need for kidney replacement therapy. ¥ adjusted for age and 
gender. †  log-transformed. SI- serum iron; SCI- serum catalytic iron; TIBC- total iron binding capacity, TSAT- 
transferrin saturation.

Iron parameter†

Unadjusted model Adjusted¥ model

Primary composite outcome* Death Primary composite outcome* Death

SI 0.60 (0.32, 1.12) 0.51 (0.23, 1.12) 0.61 (0.33, 1.14) 0.52 (0.23, 1.16)

TIBC 0.34 (0.13, 0.87) 0.20 (0.06, 0.67) 0.42 (0.14, 1.26) 0.24 (0.06 0.93)

TSAT 0.85 (0.47, 1.53) 0.82 (0.40, 1.70) 0.74 (0.39, 1.40) 0.73 (0.33, 1.60)

Ferritin 1.94 (1.34, 2.80) 2.21 (1.36, 3.59) 1.85 (1.24, 2.74) 2.18 (1.31, 3.61)

Hepcidin 1.84 (1.19, 2.85) 1.92 (1.11, 3.33) 1.64 (1.03, 2.60) 1.75 (1.01, 3.06)

SCI 1.26 (0.95, 1.66) 1.43 (1.05, 1.96) 1.36 (1.00, 1.85) 1.68 (1.17, 2.42)
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greater than 10 μmol/L were seen in 13 patients, of which 7 had died. Hence joint model with sensitivity analy-
sis was done—we refitted the joint model after excluding SCI values > 10 μmol/L. In this analysis, the HR for 
primary outcome was not statistically significant [HR (95% CI) = 1.72 (0.67, 4.42)] while that for mortality was 
significant [HR (95% CI) = 2.64 (1.13, 6.14)].

Discussion
In this prospective longitudinal comprehensive analysis of multiple iron parameters in patients with COVID-
19, we show that several markers of iron metabolism are associated with adverse outcomes. Baseline levels of 
ferritin and hepcidin were associated with adverse outcomes, including death, need for mechanical ventilation 
and AKI. The association between trajectories of SCI and ferritin with adverse outcomes, including death in this 
cohort of patients, is a novel finding.

Iron is the most abundant transitional metal in the human body. Most of it is bound to macromolecules like 
hemoglobin, ferritin, transferrin, and other iron-containing proteins. A tiny amount, existing in unbound form 
and termed labile or catalytic iron, was originally considered as a transitional pool of extracellular and cellular 
iron 8. Through Fenton and Haber–Weiss reactions, catalytic iron combines with superoxide to form the reactive 
hydroxyl radical and damage lipids, proteins, and DNA.

Figure 2.   Trajectories of iron parameters, by outcome status. (a) The two black curves present fitted trajectories 
of iron parameters—the solid black curve is for patients who had the event and the dashed black curve is 
for patients who recovered. (b) The blue triangles and lines present iron measurements and trajectories of 
individual patients who had the outcome. The pink dots and lines present iron measurements and trajectories 
of individual patients who did not have the outcome. (c) Notable is the finding that levels of ferritin and SCI 
continue to rise in patients who died while the survivors did not have the rise in levels. SCI–serum catalytic iron, 
SI–serum iron, TIBC- total iron binding capacity, TSAT–transferrin saturation.

Table 5.   Hazard ratios (95% confidence interval) from joint model of longitudinal iron measurements (log-
transformed) and time-to-event data, adjusted for age and gender. *Primary composite outcome is a composite 
of in-hospital mortality, need for mechanical ventilation and need for kidney replacement therapy. †  log-
transformed. SI- serum iron; SCI- serum catalytic iron; TIBC- total iron binding capacity, TSAT- transferrin 
saturation.

Iron Parameter† Primary composite outcome* Death

SI 0.43 (0.17, 1.11) 0.77 (0.35, 1.71)

TIBC 0.22 (0.06, 0.79) 0.21 (0.05 0.95)

TSAT 0.55 (0.22, 1.38) 1.04 (0.37, 2.92)

Ferritin 2.63 (1.62, 4.24) 3.22 (2.05, 5.07)

Hepcidin 1.40 (0.87, 2.26) 1.38 (0.94, 2.03)

SCI 1.35 (0.90, 2.04) 1.73 (1.21, 2.47)
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Iron is also required for viral replication. Iron overload is associated with poorer prognosis in patients with 
hepatitis B, C, and human immunodeficiency virus infections18. It is suggested that SARS-CoV-2 might require 
iron for replication and other functions19, providing a potential mechanism for greater pathogenicity in the 
presence of high SCI. Our findings support the role of ferrotoxicity in COVID-19 and the notion that SCI is 
an indicator of poor outcomes in COVID-19. Our study did not identify the source of SCI. Elevated levels can 
result from tissue injury either from a direct cytopathic effect or as a result of inflammation or ischemia leading 
to a sudden release of intracellular stores of iron.

The elevation in ferritin was identified early in the course of the pandemic. Association of high ferritin levels 
with severity of the illness and mortality2,10,20–22 led to the practice of routine measurement of serum ferritin 
in COVID-19. However, the reason for the early elevation of ferritin is not known23. Ferritin can be an acute 
phase reactant. It could also act as a source of labile iron in the presence of superoxide produced during the 
hyperinflammatory state, or act as a protective molecule that can mitigate ferrotoxicity by binding free iron. 
Similarly, hepcidin production is upregulated in iron-overload states to block iron absorption from the gut and 
macrophage iron recycling as a protective mechanism. The absence of this elevation of hepcidin in the present 
study might indicate a failure of this protective mechanism.

Despite several clinical trials, effective treatment options for COVID-19 are few, with the only treatment 
with high-quality evidence being the use of dexamethasone24. While a number of therapeutic options are being 
explored to blunt the immunological hyperactivity, the possibility of blunting the disease severity using iron 
chelation therapy is worth considering19. Iron chelation is shown to be effective in blunting the in-vitro produc-
tion of IL-6 following infection with influenza virus and Chlamydia pneumonia. It can reduce mortality in murine 
models of septic shock25. Our study provides a rationale for considering iron chelation therapy in COVID-19.

The main strength of our study is the longitudinal measurement of a comprehensive set of iron parameters. 
Joint models are an improvement over traditional models because they consider the longitudinal observations of 
covariates that might predict of the event of interest. Thus, predictions from joint models have greater accuracy26. 
The joint model analysis was able to confirm the association between SCI levels and adverse outcomes, including 
mortality. Similarly, there was an association of ferritin levels with the same outcomes.

There are a few limitations, such as a relatively small sample size, and a smaller number of events, especially 
the need for KRT. We included patients diagnosed with COVID-19 according to the prevailing public health 
standards, which included RT-PCR negative patients who had similar clinical features and characteristic imag-
ing findings. Such clinically suspected but RT-PCR negative population was included in other large COVID-19 
clinical trials. Moreover, there was no change in the hazard ratios when we performed joint modeling of longi-
tudinal iron measurements and time-to-event data, adjusted for RT-PCR test result along with other parameters 
(Table E3). We did not measure other relevant iron markers such as plasma haptoglobin and hemopexin. Finally, 
although in the multivariate model we adjusted for several possible confounders, the possibility of residual 
confounding from unmeasured variables cannot be ruled out.

In conclusion, we show the association of several markers of iron metabolism with adverse outcomes includ-
ing death, need for mechanical ventilation, and AKI in COVID-19. In particular, the association of the trajecto-
ries of SCI and ferritin with poor outcomes may potentially play a role in the pathophysiologic pathway, raising 
the possibility of considering iron chelation therapy.

Methods
This prospective study was conducted at King Edward Memorial Hospital, Pune, India, between, June 24 and 
August 7, 2020. The study protocol was approved by the Ethics Committee of KEM Hospital Research Center, 
Pune, and was registered with Clinical Trial Registry of India (registration no. CTRI/2020/08/027,419) and con-
ducted as per Declaration of Helsinki. All adult (> 18 years of age) patients admitted with SARS-CoV2 infection 
(either confirmed by RT-PCR or clinically suspected on the basis of fever, acute severe respiratory illness and 
abnormal chest roentgenogram) were invited to participate. Those who provided a written informed consent 
were enrolled in the study. Patients known to have pre-existing chronic kidney disease stage 3 and above were 
excluded.

As per the prevalent regulations, all patients, including asymptomatic individuals were admitted and were 
treated according to the local protocols. We divided disease severity according to the highest WHO score during 
the hospital stay (maximum score 1 to 3 as mild, 4 and 5 as moderate, and 6 or more as severe)17. The decision 
to admit to the critical care unit, provide mechanical ventilation, and initiating kidney replacement therapy 
(KRT) were at the discretion of the treating teams. All patients were followed up till they were discharged or 
died. Clinical events (such as the need for oxygen therapy, non-invasive ventilation, mechanical ventilation, need 
for dialysis support, or vasopressor use) were recorded daily, and WHO class was determined each day. AKI 
was defined as per Kidney Disease Improving Global Outcomes (KDIGO) criteria27. Patients were discharged 
from the hospital if they were afebrile and did not require oxygen therapy for 3 consecutive days. Starting from 
the day of admission, 3 ml blood was collected daily in a plain vacutainer from all patients, allowed to clot, 
and centrifuged. Separated serum was transported to the analytical laboratory at Muljibhai Patel Society for 
Research in Nephro-Urology, Nadiad, Gujarat, India, and stored at -700C till analysis. All samples were labeled 
with a unique code and thawed in batches for analysis. The laboratory team was not informed about the clinical 
condition of the patients or their outcomes.

The primary outcome was a composite of in-hospital mortality, need for mechanical ventilation, and need 
for KRT. Secondary outcomes were individual components of the primary outcome (death, need for mechanical 
ventilation, KRT), and the development of severe disease (WHO score 6 or more).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19618  | https://doi.org/10.1038/s41598-021-99142-x

www.nature.com/scientificreports/

Laboratory methods used for measuring iron parameters.  Bleomycin detectable iron assay was 
used to measure SCI levels (expressed in µmoles/liter) as previously reported from our laboratory28. All reagents 
except bleomycin were treated overnight with Chelex100 (Bio-Rad) resin to remove possible iron contamina-
tion. This method is sensitive and specific to measure catalytic iron in biological fluids such as serum, and does 
not detect protein-bound iron29.

Fully automated clinical chemistry analyzer AU 480, Beckman, USA was used to analyze total SI (micrograms/
deciliter) [OSR 6286] and unsaturated iron-binding capacity (UIBC) [OSR 61,205, from Beckman Coulter, USA]. 
Total iron-binding capacity (TIBC, micrograms/deciliter) was calculated as a sum of SI and UIBC. Transferrin 
saturation (TSAT, in %) was calculated by dividing SI by TIBC.

We used an automated CLIA platform (Maglumi 2000, SNIBE, Ref: 130201001 M) to measure the serum 
ferritin level (in nanograms/milliliters). Serum hepcidin levels (in nanograms/milliliters) were measured using 
monoclonal ELISA (Intrinsic Life Sciences, La Jola, USA). The coefficients of variation and lower limits of detec-
tion of above mentioned assays are mentioned in Table E4.

Statistical analysis.  We described the sociodemographic, clinical, and laboratory characteristics using 
descriptive data [Categorical variables as counts and percentages; continuous data as either mean and standard 
deviation or median and inter-quartile range (IQR)]. Participants were categorized as having a mild, moder-
ate, and severe disease based on WHO scores17. Baseline characteristics were compared using chi-square and 
Kruskal–Wallis tests. The distributions of iron parameters at baseline in participants with and without the pri-
mary composite were compared using the Mann–Whitney U test. We used Cox proportional hazards model 
to assess the association between baseline iron parameters and time to primary composite outcome and death. 
The longitudinal data on iron parameters were described using median and IQR of summary measures—mean, 
median, minimum, and maximum over repeated measurements. We also examined the association between 
these summary measures of iron parameters and the time-to-event outcomes. Graphs showing individual and 
fitted trajectories for participants with and without the outcome are presented.

To examine the association between the longitudinal biomarkers and the time-to-event outcomes, we used 
joint analysis. We used log-transformed iron parameter values as outcomes in the linear mixed-effects model. 
Both models were adjusted for age and gender and additional covariates such as comorbidities and day of presen-
tation after symptom onset in a sensitivity analysis. To examine the sensitivity of the findings to high SCI values, 
the joint models for SCI was refitted after excluding SCI values > 10 μmol/L.

Data sharing
Statistical source code used to generate estimates can be obtained from Dr. Arpita Ghosh, aghosh@georgein-
stitute.org.in.
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