
RESEARCH ARTICLE

Bee Venom Phospholipase A2 Protects
against Acetaminophen-Induced Acute
Liver Injury by Modulating Regulatory T
Cells and IL-10 in Mice
Hyunseong Kim1, Dong June Keum1, Jung won Kwak1, Hwan-Suck Chung1*,
Hyunsu Bae1,2*

1. Department of Physiology, College of Korean Medicine, Kyung Hee University, 1 Hoeki-Dong,
Dongdaemoon-gu, Seoul 130-701, Republic of Korea, 2. Institute of Korean Medicine, Kyung Hee University,
1 Hoeki-Dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea

*hbae@khu.ac.kr (HB); sock21@hanmail.net (HSC)

Abstract

The aim of this study was to investigate the protective effects of phospholipase A2

(PLA2) from bee venom against acetaminophen-induced hepatotoxicity through

CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used

antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen

can cause severe hepatic failure. Tregs have been reported to possess protective

effects in various liver diseases and kidney toxicity. We previously found that bee

venom strongly increased the Treg population in splenocytes and subsequently

suppressed immune disorders. More recently, we found that the effective

component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect

against liver injury induced by acetaminophen. To evaluate the hepatoprotective

effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-102/2) mice were

injected with PLA2 once a day for five days and sacrificed 24 h (h) after

acetaminophen injection. The blood sera were collected 0, 6, and 24 h after

acetaminophen injection for the analysis of aspartate aminotransferase (AST) and

alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of

serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with

the PBS-injected control mice. However, IL-10 was significantly increased in the

PLA2-injected mice. These hepatic protective effects were abolished in Treg-

depleted mice by antibody treatment and in IL-102/2 mice. Based on these findings,

it can be concluded that the protective effects of PLA2 against acetaminophen-

induced hepatotoxicity can be mediated by modulating the Treg and IL-10

production.
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Introduction

Acetaminophen is an effective antipyretic and analgesic drug that is commonly

used. It is considered safe at its therapeutic dose, but it can cause severe hepatic

necrosis, nephrotoxicity, additional hepatic lesions, and even death in experi-

mental mice and humans when taken in high doses [1, 2]. Many researchers have

attempted to demonstrate the mechanism underlying acetaminophen-induced

acute injury, particularly the signaling pathways leading to tissue damage and

toxicity in the liver [3, 4, 5, 6].

Tregs have been known to play a pivotal role in the maintenance of tolerance in

the immune system, and Treg deficiency can be a cause of autoimmune disease

[7]. Tregs also have various functions in the control of transplantation tolerance,

tumor immunity, allergy, and infection [8, 9, 10].

Previous studies demonstrated that Tregs mediate therapeutic potential against

immune-mediated hepatic injury [11, 12, 13]. The expression of anti-inflamma-

tory factors, such as IL-10, has been found to be increased in the normal response

to drug-induced liver injury [14]. The increased susceptibility to acetaminophen-

induced hepatic injury appeared to be correlated with an elevated expression of

proinflammatory cytokines, such as TNF and IL-6 [15].

PLA2 is known to be a major component of snake venoms and hydrolyzes the

fatty acids in membrane phospholipids [16]. PLA2 from bee venom is a

prototypic group III enzyme that hydrolyzes fatty acids, and it has been reported

that melittin in bee venom enhances the activity of PLA2 [17, 18]. In addition, it

has been demonstrated that this bee PLA2 prevents neuronal cell death and spinal

cord injury [19, 20]. In this study, we demonstrate that PLA2 protects against

hepatic dysfunction and induces antiinflammatory cytokine production in

acetaminophen-injected mice by upregulation of the Treg population. Therefore,

PLA2 may have therapeutic potential in preventing acetaminophen-induced

hepatotoxicity.

Materials and Methods

Mouse

Male C57BL/6 mice (seven to eight weeks old, Charles River Korea, Seungnam,

Korea), weighing 20–21 g each, were used in most of the experiments. Male

Foxp3EGFPC57BL/6 mice (C. Cg-Foxp3tm2Tch/J, six weeks old) and IL-102/2 mice

(B10.129P2(B6)-Il10tm1Cgn/J, 7–8 weeks old) were purchased from The Jackson

Laboratory (Bar Harbor, ME, USA). The mice were maintained under specific

pathogen-free conditions with an air conditioning system and a 12-h light/12-h

dark cycle. The mice had free access to food and water during the experiments.

This research was approved by the Animal Care and Use Committee of Kyung

Hee University (KHUASP (SE)-11-041). Mice were sacrificed by CO2 asphyxia-

tion.
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Chemicals and treatment

PLA2 from honey bee venom and acetaminophen were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Before the acetaminophen injection, the mice were

intraperitoneally injected with PLA2 at a concentration of 0.2 mg/kg body weight

once a day for five days. The control group received an equal volume of PBS.

Acetaminophen was dissolved in PBS at a concentration of 20 mg/ml. Two days

after the last administration of PLA2 or PBS, all of the mice received a single

intraperitoneal (i.p.) injection of acetaminophen (500 mg/kg). The mice were

sacrificed by CO2 asphyxiation 24 h after the acetaminophen injection. Blood,

spleen, and liver samples were obtained for further analysis.

Flow cytometry analysis

Splenocytes were isolated from Foxp3EGFP mice for analysis of the Treg

population change by PLA2 treatment. The cells were treated with PBS or PLA2

(0.01, 0.1, 1 and 10 mg/ml) and cultured in complete RPMI 1640 media

containing 2.5 mg/ml anti-mouse CD3 antibody and 2 mg/ml anti-mouse CD28

antibody for 72 h. The cells were incubated with fluorescently tagged Abs for CD4

and CD25 staining (eBioscience, San Diego, CA, USA). The FACS data were

acquired with a FACS Calibur flow cytometer (BD Biosciences, San Jose, CA,

USA), and the data were analyzed by Cell Quest Pro (BD Biosciences, San Jose,

CA, USA).

Assessment of serum AST, ALT and IL-10

Blood samples were collected 0, 6, and 24 h after the acetaminophen injection for

the measurement of hepatic dysfunction by quantification of AST and ALT. The

blood samples were maintained at room temperature for 1 h and then centrifuged

for 10 min at 1,000 g to separate the serum. The AST and ALT levels were

measured using a Fuji Dri-Chem 3500i instrument (Fuji Photo Film Ltd., Tokyo,

Japan). The serum IL-10 level was measured by ELISA (BD Biosciences, San Jose,

CA, USA).

H&E staining

The separated livers were fixed in 4% paraformaldehyde (PFA) for 1 day and then

embedded in paraffin. The paraffin samples were sliced into 5-mm-thick slices and

then deparaffinized. To observe the tissues, we stained the samples in hematoxylin

for 90 s and dipped then slowly three times in eosin. After washing for 10 min in

running water, the samples were covered with a cover glass. The portal and

periportal areas in the liver were captured by microscopy.

Injection of anti-CD25 antibody for Treg depletion

Anti-mouse CD25 rat IgG1 (anti-CD25; clone PC61) antibody was generated

from hybridomas collected from ATCC (Manassas, VA, USA). To deplete Tregs,
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an anti-CD25 antibody (0.1 mg/mouse) was injected i.p. each day before the

PLA2 and acetaminophen injections. The depletion of Tregs was confirmed by

flow cytometry analysis using PE-anti-mouse CD25 and FITC-anti-mouse CD4

antibodies.

Assessment of proinflammatory cytokines and nitrite in the liver

Separated livers were maintained in a deep freezer (270 C̊) to measure liver tissue

inflammation after acetaminophen injection. Frozen liver tissues were homo-

genized in a protein extraction solution (PRO-PREP; Intron biotechnology,

Sungnam, Korea), incubated for 30 min on ice and then centrifuged at

13,000 rpm (4 C̊) for 10 min. The TNF and IL-6 protein levels in the liver were

measured by an enzyme linked immunosorbent assay (ELISA; BD Biosciences, San

Jose, CA, USA). To measure the nitrite levels, the samples were incubated with an

equal volume of Griess reagent (1% sulfanilamide/0.1% N-(1-naphthyl)-

ethylenediamine dihydrochloride/2.5% H3PO4) at room temperature for 10 min.

The protein concentrations of the samples were measured by a BCATH Protein

Assay Kit (Thermo Scientific, Rockford, IL, USA). The final concentrations were

calculated with the total amount of protein, and the results are expressed as pg/mg

or pmol/mg.

Statistical analysis

All of the results are expressed as the means ¡ S.E.M. The data were analyzed

using two-tailed t test or one-way ANOVA with Tukey’s test. Differences were

considered to be significant at p,0.05.

Results

Upregulation of the Treg population in splenocytes by PLA2

To evaluate the immune-modulating effect of PLA2 in splenocytes, the

splenocytes from Foxp3EGFP mice were treated with PLA2 or PBS for three days.

The Treg population was dose-dependently increased in the PLA2-treated group

compared with the PBS-treated group (Fig. 1).

Protective effects of PLA2 on acetaminophen-induced

hepatotoxicity

The mice were injected with a high dose of acetaminophen (500 mg/kg) after

PLA2 pre-treatment. Blood samples were collected at 0, 6, and 24 h to measure

the AST and ALT levels, and the liver tissues were separated 24 h after the

acetaminophen injection for H&E staining. The hepatic cell death in the

periportal area was protected by PLA2 injection. In addition, AST and ALT were

significantly increased upon acetaminophen administration, and the PLA2

injection significantly suppressed the observed increases in AST and ALT (Fig. 2).
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Hepatoprotective effects of PLA2 in Treg-depleted mice

To verify whether the effect of PLA2 on acetaminophen-induced hepatotoxicity is

mediated by Tregs, we tested the PLA2 effects in a CD4+CD25+ T cell depletion

model by administering mice with an anti-CD25 antibody (0.1 mg/mouse, i.p.).

We measured the levels of AST and ALT in the serum. PLA2 treatment had no

effect on liver histopathology, AST and ALT level in Treg-depleted mice. The

hepatoprotective effects of PLA2 were diminished in Treg-depleted mice. These

results demonstrated that Treg depletion eliminated the hepatotoxic protective

effects of PLA2 and strongly suggest that the hepatoprotective effects of PLA2

were Treg-dependent (Fig. 3).

Figure 1. Increase of the Treg population in splenocytes by PLA2. Splenocytes from Foxp3EGFP mice
were treated with various concentrations of PLA2 and PBS for three days. The flow cytometry data showed a
population of Tregs in the groups of PBS-treated and PLA2 (10 mg/ml)-treated CD4+ T cells (A). The
populations of CD25+Foxp3+ Tcells treated with various concentrations of PLA2 are depicted as percentages
of the total CD4+ Tcells (B). The values shown indicate the means ¡ S.E.M. *P,0.05 vs. PBS, **P,0.01 vs.
PBS, ***P,0.01 vs. PBS.

doi:10.1371/journal.pone.0114726.g001
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Proinflammatory cytokines in the liver

To evaluate the antiinflammatory responses of PLA2 treatment in acetamino-

phen-induced hepatic injury, the levels of TNF, IL-6 and NO in the liver tissue

were measured 24 h after acetaminophen injection. Acetaminophen-treated mice

Figure 2. Protective effects of PLA2 on acetaminophen-induced hepatotoxicity. Mice were administered PLA2 (0.2 mg/kg) once a day for five days.
The control group received the same volume of PBS. After the fifth administration of PLA2 or PBS, all of the mice received a single injection of
acetaminophen (500 mg/kg). Blood samples were collected 0, 6 and at 24 h, and the mice were sacrificed under ether anesthesia 24 h after acetaminophen
injection (n510). Hepatic dysfunction was confirmed based on the AST (B) and ALT levels (C) and H&E staining (A). The values shown indicate the means
¡ S.E.M. *P,0.05 vs. APAP, **P,0.01 vs. APAP, ***P,0.001 vs. APAP.

doi:10.1371/journal.pone.0114726.g002
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exhibited increased levels of TNF, IL-6 and NO. However, the PLA2-treated mice

showed significantly lower levels of these inflammatory responses than the control

mice, and Treg depletion incapacitated the protective effects of PLA2 (Fig. 4).

Hepatoprotective effects of PLA2 were mediated by IL-10

production

It has known that IL-10 protects against acetaminophen-induced liver injury and

lethality [21]. PLA2 treatment significantly increased IL-10 production in

acetaminophen-treated mice (Fig. 5A). To examine whether the hepatoprotective

effect of PLA2 is dependent on IL-10, we used IL-10-deficient mice. We measured

the levels of AST and ALT in the serum 24 h after acetaminophen injection. The

results showed that the PLA2 effects on acetaminophen-induced hepatotoxicity

were abolished in IL-10-deficient mice, suggesting that IL-10 is essential in the

PLA2-medicated protective effects in hepatotoxicity (Fig. 5).

Figure 3. Effect of PLA2 in CD25-depleted mice. To deplete Tregs, an anti-CD25 antibody (0.1 mg/mouse) was injected i.p. each day before the PLA2 and
acetaminophen injections. Blood was collected 6 and 24 h after the acetaminophen injection for the measurement of the AST (A) and ALT levels (B) (n56).
There was no difference between the PBS-treated (APAP) and PLA2-treated (APAP + PLA2) CD25-depleted mice.

doi:10.1371/journal.pone.0114726.g003
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Discussion

The liver is the main organ in the detoxification of drugs and toxins [22]. There

are various mechanisms [23, 24] through which drugs may damage the liver

[15, 25, 26]. Above all, an overdose of the analgesic drug acetaminophen often

causes severe acute hepatotoxicity in experimental animals and humans

[27, 28, 29].

In a previous study, Tregs attenuated inflammation in liver injury [30, 31]. The

adoptive transfer of Tregs into mice successfully inhibits acute liver injury,

whereas the depletion of Tregs aggravated the hepatic toxicity [14]. In our

research, we demonstrated that bee venom attenuates inflammatory immune

diseases through Treg regulation [32, 33, 34]. In particular, PLA2 from bee venom

Figure 4. Proinflammatory cytokines in the liver. The proinflammatory cytokines and NO in the liver tissue from normal and CD25-depleted mice were
measured by ELISA and the Griess method, respectively. The hepatic TNF (A), IL-6 (B) and NO levels (C) were decreased in the PLA2-treated group (APAP
+ PLA2) compared with the PBS-treated group (APAP). However, there was no difference between the PBS-treated and PLA2-treated mice in the anti-CD25
model. The values shown indicate the means ¡ S.E.M. *P,0.05 vs. APAP, **P,0.01 vs. APAP, ***P,0.001 vs. APAP, #P,0.05 vs. Con, ##P,0.01 vs.
Con, ###P,0.001 vs. Con, NS; P.0.05 vs. APAP in anti-CD25 mice (n56–8).

doi:10.1371/journal.pone.0114726.g004

Figure 5. Hepatoprotective effects of PLA2 were mediated by IL-10 production. Mice were injected with acetaminophen (500 mg/kg, i.p.) after PBS or
PLA2 injection. Blood samples were collected 6 h after acetaminophen injection (n510). IL-10 production in the serum was measured by ELISA (A). IL-10-
deficient mice were injected with acetaminophen (500 mg/kg, i.p.) after PBS or PLA2 injection. Blood samples were collected 24 h after acetaminophen
injection (B,D, n54). Hepatic dysfunction was reflected by the levels of AST (C) and ALT (D). There was no difference between the PBS-treated (APAP)
and PLA2-treated (APAP + PLA2) IL-102/2 mice (B,D).

doi:10.1371/journal.pone.0114726.g005
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distinctly increased the Treg population in splenocytes. Based on these results, we

hypothesized that PLA2 could have protective effects on acetaminophen-induced

hepatotoxicity through Treg modulation.

Fifteen distinct groups of PLA2 have been discovered, and these are categorized

into four groups: secreted sPLA2s, cytosolic cPLA2s, calcium-independent

iPLA2s, and platelet-activating factor acetyl hydrolase/oxidized lipid lipoprotein-

associated PLA2s [35]. Bee venom PLA2 (group III), Indian cobra (group IA)

PLA2 and the new world rattlesnake PLA2 (group II) belong to secreted sPLA2.

PLA2 is the second most abundant component of bee venom after melittin, and

there are many therapeutic effects of bee venom called apitherapy. Although there

is a previous report on the hepatoprotective effect of bee venom [36], it did not

show which component was responsible for this effect. Other researchers have

previously demonstrated the ability of bee venom PLA2 to activate T helper Type

2 cells and the importance of enzymatic activity to this effect [37, 38]. Palm et al.,

showed that bee venom PLA2 induces the Th2 response through the cleavage of

membrane phospholipids and production of lysophospholipids, such as

lysophosphatidylcholine [38]. It should be elucidated whether the enzymatic

activity of PLA2 is critical for Treg differentiation as a further study.

AST and ALT are secreted into the blood stream in acute liver injury and are

important indicators of hepatotoxicity [39, 40, 41]. PLA2-injected mice showed

lower levels of AST and ALT in acetaminophen-induced hepatotoxicity compared

with PBS-injected mice (Fig. 2). An increased ALT level is associated with hepatic

expression of inducible NO synthase (iNOS). The high levels of NO within the

liver by iNOS may also promote damage via interference with mitochondrial

respiration [42]. NO is an important mediator of acetaminophen-induced

hepatotoxicity [43, 44, 45]. PLA2-injected mice exhibited a lower level of NO

compared with PBS- treated mice (Fig. 3).

To analyze whether the effect of PLA2 is dependent on Tregs, an anti-CD25

antibody was used to deplete Tregs, and the hepatoprotective effect of PLA2

disappeared as a result. This finding indicates that the hepatoprotective effect of

PLA2 is mediated through Tregs. Tregs are associated with the secretion of IL-10

in inflammatory responses [46, 47] and inhibit the secretion of proinflammatory

cytokines, such as TNF and IL-6, in liver injury [21, 48]. It has been reported that

IL-10 is crucial for tolerance induction in hepatitis and is mainly expressed by

Tregs and Kupffer cells. Treg adoptive transfer prevented liver injury, and the

depletion of Tregs resulted in reduced plasma IL-10 levels. These findings

suggested that Tregs are crucial for primary IL-10 production and augmentation

in tolerized mice [14]. It has also been reported that IL-10 protects against

acetaminophen-induced liver injury and lethality [21]. Moreover, Louis et al.

demonstrated that the administration of recombinant IL-10 protects against

hepatotoxicity in a galactosamine and lipopolysaccharide mouse model [49].

Thus, we used IL-10-deficient mice to confirm whether the hepatoprotective

effect of PLA2 is dependent on IL-10. The results show that the protective effect of

PLA2 was abolished in IL-10-deficient mice (Fig. 5). These results suggest that the

protective effect of PLA2 is mediated by IL-10 secretion via Tregs.
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The hepatotoxicity of APAP has been attributed to the formation of a highly

reactive metabolite N-acetyl p-benzoquinonimine (NAPQI) by the hepatic

cytochrome P-450. Substantial amounts of NAPQI are secreted by conjugation

with glutathione (GSH). However, in the case of over-dose of APAP, the

sulfonation reaction becomes saturated and the over-production of NAPQI

depletes GSH in the liver, causing further accumulation of NAPQI. Unconjugated

NAPQI binds to proteins and induces cell death that can lead to liver injury [50].

N-acetyl-cysteine (NAC) which is known to stimulate the production of GSH is

used as an antidote for overdose of APAP. PLA2 might not have any effects on the

APAP metabolism unlike NAC, because protective effects of PLA2 was

disappeared in IL-102/2 (Fig 5B,D) or Treg depleted (Fig 3 and 4) APAP mice

suggesting that the hepatoprotective effects of PLA2 were not directly associated

with APAP metabolites. It is proposed that PLA2 could be used as an alternative

drug for NAC or simultaneously treated with NAC to reduce liver injury by

acetaminophen.

In conclusion, PLA2 induces the secretion of IL-10 through Treg modulation

and inhibits acute injury in the liver. We suggest that PLA2 has hepatoprotective

effects in acetaminophen-induced acute toxicity through modulation of Tregs and

IL-10 in mice.
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