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Recent transcriptomics and metagenomics studies showed that tissue-infiltrating immune
cells and bacteria interact with cancer cells to shape oncogenesis. This interaction and its
effects remain to be elucidated. However, it is technically difficult to co-quantify immune
cells and bacteria in their respective microenvironments. To address this challenge, we
herein report the development of a complete a bioinformatics pipeline, which accurately
estimates the number of infiltrating immune cells using a novel Particle Swarming
Optimized Support Vector Regression (PSO-SVR) algorithm, and the number of
infiltrating bacterial using foreign read remapping and the GRAMMy algorithm. It also
performs systematic differential abundance analyses between tumor-normal pairs. We
applied the pipeline to a collection of paired liver cancer tumor and normal samples, and
we identified bacteria and immune cell species that were significantly different between
tissues in terms of health status. Our analysis showed that this dual model of microbial
and immune cell abundance had a better differentiation (84%) between healthy and
diseased tissue. Caldatribacterium sp., Acidaminococcaceae sp., Planctopirus sp.,
Desulfobulbaceae sp.,Nocardia farcinica as well as regulatory T cells (Tregs), resting
mast cells, monocytes, M2 macrophases, neutrophils were identified as significantly
different (Mann Whitney Test, FDR< 0.05). Our open-source software is freely available
from GitHub at https://github.com/gutmicrobes/PSO-SVR.git.
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INTRODUCTION

Contrary to the intuition of most people, bacteria are present in
almost every part of the human body, with over 1,000 species in
the gut alone. Our commensal bacteria maintain a dynamic
balance with each other, and their imbalance can lead to a variety
of diseases in the human body, including many cancers (1).
Indeed, approximately 20% of all lethal cancers in humans are
induced by or associated with microorganisms (2). As a
component of the tumor microenvironment (TME), bacteria
can actively promote tumor development, as well as
autoimmunity, contributing to mortality (3, 4).

Liver cancer is a malignant tumor and approximately 780,000
people were diagnosed with liver cancer worldwide yearly (5).
Previous studies analyzed microbes inferred from the whole-
genome sequencing data of liver cancer biopsies. They revealed a
strong association between the occurrence of liver cancer and
certain bacterial flora. For examples: Moffatt et al. found that the
bacterium Porphyromonas gingivalis promotes hepatocellular
carcinoma by affecting host cell signaling and thus cytokine
response, cell cycle, and apoptosis (6); Garner et al. found that
methoxysterigmatocystin, O-methylsterigmatocystin, and other
metabolites induced DNA repair-deficient bacterial lesions and
thus initiates hepatocellular carcinogenesis (7); Mangul et al.
found that Escherichia coli, Streptococcus faecalis, and
Clostridium parvum could act together to significantly promote
liver tumorigenesis. However, such activity could be inhibited by
the addition of intestinal bacteria (e.g., Bifidobacterium longum
and Lactobacillus acidophilus) and rectal fungi (8).

However, these studies were mostly focused on the effects of
intestinal bacteria upon hepatocellular carcinoma (HCC) while
few have examined the bacteria present within hepatocellular
carcinoma tissues. Tumor-infiltrating bacteria could be analyzed
using sequencing reads of non-human source, however, these
unmapped foreign reads are often overlooked. In fact, it is
possible to accurately estimate microbial abundance in tissue
biopsies using foreign reads remapping (9). In this study, we
applied our previously developed GRAMMy (10) tool to identify
the bacteria that are associated with liver cancer by adding a
series of analyses on unmapped foreign reads filtered from RNA-
seq data so as to estimate the relative abundance of infiltrating
bacteria present within the tissue.

Studies have also shown that the infiltration of various
immune cell populations, including monocytes/macrophages,
natural killer cells (NK), NKT cells and T cells, is the main
pathogenic feature for oncogenesis or other lesions in liver (11).
Rohr-Udilova et al. observed considerable differences in the
composition of immune cells between HCC and healthy liver.
Pushpa Hegde et al. found a decrease in circulating mucosal-
associated invariant T cells in patients with alcoholic or
nonalcoholic fatty liver disease-related cirrhosis (12). Functional
immune level changes were detected in a group of healthy people
and liver transplant recipients (13). Microbial infection is very
likely to occur in the clinical treatment of liver diseases, especially
in the treatment of liver transplantation; bacterial infection being
the most common (incidence of 31.45%) (14). Monitoring the
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immune status of transplant recipients is essential to predict the
risk of infection.

Thus, researchers have just begun to understand the
regulatory role of bacteria in the development of cancer, as
well as oncogenesis at the interface of bacteria/immune cell
interaction. Immune cells alone are a key component of the
TME and play a critical role in cancer development and
immunization. Therefore, in order to understand the dynamics
of the TME, it is equally important to understand the presumed
synergistic dynamics between bacteria and tissue-infiltrating
immune cells. Computational deconvolution methods have
become a convenient choice to assess tissue-infiltrating
immune cells by formulating the problem as a system of
equations used to describe the gene expression of a sample as a
weighted sum of the expression profiles of mixed cell types. That
is, once given the immune cell-type characteristic matrix and
overall gene expression, by solving the deconvolution problem,
immune cell types and levels can be reasonably co-quantified
with bacteria using mRNA-seq data without resorting to
additional experiments.

The deconvolution problem could be solved in several ways,
such as by Support Vector Regression (SVR) (e.g., CIBERSORT)
(15), linear least squares regression (e.g., TIMER) (16) and
constrained least squares regression (e.g., EPIC and MCP-
counter) (17, 18). CIBERSORT uses v-SVR linear regression to
solve the linear equation model based on microarray data (RNA-
seq data can also be used). The coefficient of the regression model
represents the relative proportion of 22 immune cell types.
TIMER calculates the abundance of six immune cells including
CD4 T cells, CD8 T cells and B cells based on the constrained
least square method, which better solved the multicollinearity
problem caused by high-dimensional features. EPIC uses least
square regression to infer the mRNA number of six immune cells
and other cell types, and then converts the mRNA number into
the relative proportion of related immune cells. Finally, through
the verification of tumor active genes and clinical data of many
patients, it is found that epic results are clinically applicable.
Finally, the murine Microenvironment Cell Population counter
(MCP-counter) was based on highly specific transcriptomic
markers, allows a robust quantification of the count number of
eight immune cell types and two stromal cell populations in
heterogeneous tissues based on transcriptomic data, which
represent the cell content.

At present, the main method of optimizing the SVR
deconvolution problem uses an heuristic algorithm. Particle
swarm optimization (PSO) is simple and easy to operate
algorithm, and the optimization search process of PSO take
into account the local search ability and global search ability,
which can greatly improve the accuracy of SVR solution. At
present, PSO- SVR algorithm has been applied in many fields.
For example, Mingcong Deng et al. applied PSO- SVR algorithm
to robotics in 2014 to predict the ball receiving time of a robot
player (19). In 2017, the same team used PSO to optimize the
parameters of the generalized Gaussian kernel model and
confirmed that the algorithm also shows good performance in
a pneumatic bending rubber actuator control system (20).
April 2022 | Volume 13 | Article 853213
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However, few teams have applied PSO- SVR to the field of tumor
immune cell infiltration. This study aims to further study the
universality of this algorithm and its advantages or limitations
compared with other algorithms in this field through the results
of liver cancer samples under this algorithm.

Mohammadi et al. evaluated several methods for solving the
deconvolution problem and found that combining the loss
function with regularization can improve the solution
performance in the presence of highly correlated cell types in
the mixture (21). However, the effect of the size of the
regularization parameters on the effect of immune cell
counting is unknown and the SVR model accuracy is affected
by the initial parameters, such as the kernel function coefficients
and penalty factors. To increase the robustness of the algorithm
and reduce the influence of the initial self-defined parameters on
the proportional counting results of immune cells, we introduced
the particle swarm optimized support vector regression (PSO-
SVR) algorithm, which uses PSO -a powerful parameter iterative
optimization solution algorithm to improve the accuracy of the
SVR solution. The algorithm was also used to compare with
CIBERSORTX (22), EPIC, and MCP-counter on three real data
sets, which confirmed its better accuracy.

Finally, we used the PSO-SVR algorithm and foreign read
remapping to analyze a collection of paired liver cancer tumor
and normal samples, identified bacteria and immune cell species
that are significantly different between samples, and evaluated
their joint effects by predicting the tumoral or normal
pathological status of their originating tissue. The joint model
identified B cells, T cells and Caldatribacterium sp.,
Magnetobacteriaceae sp. as pathological markers and together
they were powerfully predictive for the pathologic status. Based
on results from the three cases, classification accuracy when
using only a single input feature is lower - only bacteria: 0.70,
only immune cell feature: 0.74, and both features: 0.84. Such
preliminary results are useful in resolving standing low response
issue of immune checkpoint inhibitor-based immunotherapy
(23, 24), in that microbial markers are potentially actionable
targets (25, 26). As the joint immunomodulatory effects of the
microbiome and immune cells are further elucidated for other
cancer types, we could expect to find more novel biomarkers that
could be intervened upon to improve normal tissue’s immune
response against tumor.
MATERIALS AND METHODS

The Liver Cancer mRNA Sequence
Data Set
The mRNA-seq raw sequence data in BAM format of liver cancer
patients’ normal and tumor tissue biopsies for this study were
downloaded from the Seven Bridges Cancer Genomics Cloud
(CGC https://www.cancergenomicscloud.org/). The data set
included 98 samples (49 pairs of RNA-Seq sequencing samples
of primary liver cancer tumor tissue and adjacent normal tissue).
The read sequences that did not map to the reference genome
GRCH38 were extracted from the BAM files. These foreign reads
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were then mapped to the RefSeq (NCBI Reference Sequence
Database) (https://www.ncbi.nlm.nih.gov/refseq/) - a large
collection of bacterial genomes. The mapping results were then
input to the GRAMMy pipeline for the relative abundance
estimation of infiltrating bacteria. The obtained expression and
microbial profiles were used for downstream analysis. The data
processing flow is shown in Figure 1.

We first filtered the reads that were not matched to the
human genome reference GRCH38 from the RNA-Seq samples
in BAM format with SAMtools, which included reads that were
not mapped at both ends and reads that were not mapped at one
end (mapped at one end but not at the other). Apply Fastp to
remove low-quality reads and partial reads, and excise poor
quality bases. Use the BWA tool to remap the unmapped reads to
a comprehensive microbial reference library RefSeq, containing
the full genome sequence of 23,790 bacteria and archaea. We
then applied GRAMMy algorithm to estimate the bacteria
relative abundance.

The mRNA analysis pipeline begins with the Alignment
Workflow, which is performed using a two-pass method with
STAR. STAR aligns each read group separately and then merges
the resulting alignments into one. Following alignment, BAM
files are processed through the RNA Expression Workflow to
determine RNA expression levels. The reads mapped to each
gene are enumerated using HT-Seq-Count. Expression values are
provided in a tab-delimited format.

Validation Data Sets for Immune
Cell Infiltration
Three real data sets were used to validate the PSO-SVR algorithmas
compared to the CIBERSORTX, EPIC, and MCP-counter
algorithms. The first validation data set from the CIBERSORT
article consists of thegeneexpressionprofiles of20peripheral blood
mono nuclear cells (PBMC) samples and the ratio of immune cells
determined through flow cytometry for the same samples. The
second data set comes from the National Center for Biotechnology
Information Search database (NCBI database) under the GEO
Datasets GSE64385. It consists of the gene expression profile of
10 colorectal cancer (CRC) samples and the composition of
immune cells as determined by immunohistochemistry of the
same samples. The third data set from CIBERSORTX consists of
the gene expression profiles of 19 melanoma samples and the
composition of immune cells obtained through single-cell
sequencing technique of the same samples. The full description of
these data sets is shown in Supplementary Table 1.

Extracting Unmapped Reads
We first filtered the reads that did not matched to the human
genome reference GRCH38 from the RNA-Seq samples in BAM
format using SAMtools (27). The filtered reads included those
that were not mapped at both ends and those that were not
mapped at one end (mapped at one end but not the other). The
process was as follows:

Extracting unmapped single reads: we used the command
“samtools view -u -f 4 -F 264” to extract single-end unmapped
reads in the format of FASTQ (28).
April 2022 | Volume 13 | Article 853213
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Extracting unmapped paired-end reads: we used the
command “samtools view -u -f 12 -F 256” to extract paired-
end unmapped reads with the format FASTQ.

Sequencing Quality Control
Sequencing quality issues like low-confidence bases and
sequence-specific bias complicate mRNA-seq analyses (29). We
applied comprehensive quality control (QC) before analyses
(30). We applied Fastp (31) to remove low-quality reads and
partial reads, and to excise poor quality bases.

For the extracted unmapped paired-end reads, we used the
command “fastp -q 0 -u 100 -n 10 -l 36 -A -G -M 0 -i” to delete
sequences with base quality lower than 40% of Q15, sequences
with N greater than 5, sequences with length less than 36, and
broke up sequences, respectively. For the extracted unmapped
single reads, we used the command “fastp -q 0 -u 100 -n 10 -l 36
-A -G -M 0 -i” to perform the same QC process on single-ended
sequenced sequences. To merge the extracted single-end and
paired-end unmapped reads, we used the SMS2 (32) software to
add a reverse complementary sequence to the unmapped single
reads. We then converted the resulting FASTQ formatted reads
into the FASTA (33) format through SeqKit (34).

We then used the BWA tool (35) to remap the unmapped reads
to a comprehensive microbial reference library RefSeq, containing
the full genome sequence of 23,790 bacteria and archaea. We then
Frontiers in Immunology | www.frontiersin.org 4
applied the GRAMMy algorithm to estimate the relative abundance
of bacteria to mitigate the problem of ambiguous mapping of short
reads to relative reference sequences.

Statistical Analysis
The Mann Whitney U test, also known as “Mann Whitney rank
sum test”, was proposed by H.B.mann and D.Rwhitney in 1947.
It assumes that any two samples are from two populations that
are exactly the same except the population mean, in order to test
for significant difference between the mean of the
two populations.

Assuming that the mean values of two populations exist, they
are recorded as m1,m2 respectively. With only one translation
difference between f1 and f2 at most, we get: m1 = m2 – a. The
assumptions to be tested are as follows:

H0 :m1 = m2,H1 :m1 < m2

H0 :m1 = m2,H1 :m1 > m2

(

The steps of Mann Whitney U test are:

1. Randomly select two independent random samples with
capacity of NA and NB from two populations A and B,
arrange (NA + NB) observations in order of size. If the same
observations exist, the average of their bit order is used.
FIGURE 1 | Flow chart of RNA-Seq sequencing data processing.
April 2022 | Volume 13 | Article 853213
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2. Calculate the grade and TA and TB of two samples.
3. The formula of Mann Whitney U test can be given according

to TA and TB. The two calculated U values are not equal, but
their sum is always equal toNANB, that is,UA + UB = NANB. If
NA < 20 and NB < 20, the test statistics are:

UA = NANB +NA(NA + 1)=2 − TA

UB = NANB +NB(NB + 1)=2 − TB

In the test, because the critical value table of MannWhitney U
test only gives a smaller critical value, the smaller U value in UA

and UB is used as the test statistic.
4. Select the smaller U value to compare with the critical value of

U. if U > Ua(a = 0.05, accept the original assumption H0. If U <
Ua(a = 0.05, Then rejectH0 and acceptH1. The acceptance domain
is the same as Wilcoxon test. U test can also be divided into small
samples and large samples. In case of small samples, the critical
values of U have been compiled into a table. In large samples, the
distribution of U tends to be normal, so it can be treated by
normal approximation.

The loss function is an index to measure the performance of
the prediction model in predicting the expected results. The
commonly used loss functions are mean squared error (MSE)
and root mean squared error (RMSE). Since MSE squares the
error (y – y^predicted = e), if e > 1, the value of the error will
increase a lot. If there is an outlier in our data, the value of e will
be very high and will be much greater than │e│. This will make
the model with MSE loss give a higher weight to outliers. In order
to minimize this outlier data point, we use the RMSE value,
namely root mean square error, but at the expense of the
prediction effect of other normal data points, which will
eventually reduce the overall performance of the model.

RMSE = on
i=1

(ŷ − yi)
2

n

� �1
2

Correlation analysis refers to the analysis of two or more
variable elements with correlation, so as to measure the
correlation degree of two variable factors Correlation analysis
can be carried out only when there is a certain connection or
probability between the elements of correlation.

(1) Pearson correlation coefficient
Given two continuous variables x and y, the Pearson

correlation coefficient is defined as:

r =
SN
i=1(xi − �x)(yi − �y)

½SN
i=1(xi − �x)2SN

I=1(yi − �y)2�12
Where �x and �y are the mean values of the variables x and

y respectively.
r close to 0 indicates that there is no correlation between the

two variables; whereas close 1 or - 1 indicates that the two
variables are strongly correlated.

(2) Spearman correlation coefficient
Spearman correlation coefficient is defined as Pearson

correlation coefficient r between hierarchical variables. For
samples with a sample size of N, N original data are converted
Frontiers in Immunology | www.frontiersin.org 5
into hierarchical data. Compared with Pearson correlation
coefficient, Spearman correlation coefficient is insensitive to
data errors and extreme values, which is defined as.

rs =
SN
i=1(Ri − �R)(Si − �S)

½SN
i=1(Ri − �R)2SN

I=1(Si − �S)2�12
Where R and S are the grades of observed values i

respectively, �R and �S are the average grades of variables x and
y respectively, and N is the total number of observed values.

Logistic regression, also known as log probability regression,
is a machine learning method used to solve the binary
classification problem, which is used to estimate the possibility
of something. It does not need to scale the input features, and the
interpretability of the model is very good. The influence of
different features on the final result can be seen from the
weight of features. We fit the following regularization model to
binary features as:

minb0,b −
1
no

n

i=1
yi(b0 + xTj b) − log (1 + eb0+x

T
j b )

� �

+ m
(1 − a)jjbjj22

2
+ ajjbjj1

� �

Where b is the regression coefficient. Parameter a is the
balanced lasso (L1) and ridge (L2) regularization, and l
determines their weights.

Therefore, we use the logistic regression classifier to classify
98 samples. Their corresponding bacterial relative abundance
data and immune cell proportion data were used as input
characteristics, and the sample status (normal/tumor) was used
as the prediction variable 0 or 1. 75% of the data were used for
training and 25% for testing. The association between
hepatocarcinogenesis and tumor bacteria and invasive immune
cells was analyzed through the classification results under
different input characteristics.
RESULTS AND DISCUSSION

The Particle Swarm Optimized - Support
Vector Regression Algorithm
Support Vector Regression (SVR) is a commonly used technique
for non-linear unsupervised learning. The generalization ability
and prediction accuracy of SVR depend on the choice of kernel
function coefficients and penalty factors. Due to the large feature
size, small sample size and unknown sample distribution, in
order to avoid over fitting as much as possible, we used a simple
and effective linear kernel function in order to avoid overfitting
as much as possible. We introduced the particle swarm
optimization (PSO) technique, which uses a powerful
algorithm to invoke an iterative approach to solve parameter
optimization. It can improve the accuracy of SVR results, and
increase the robustness of the results through multiple iterations.
The overall flowchart is shown in Figure 2.

We briefly introduce the SVR model for immune cell
infiltration estimation. Based on a large amount of tissue gene
April 2022 | Volume 13 | Article 853213
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expression profile data combined with a priori knowledge of
purified leukocyte subpopulation expression profile data (i.e., a
“signature matrix” representing the expression profile data of
each gene in different immune cells), the proportion of immune
cells in tumor biopsies can be accurately estimated. The idea was
first used in CIBERSORT. The gene expression profile data were
first transformed into a linear combination of marker genes for
immune cells to solve for f (representing the proportion of
immune cells) in a linear combination equation. The linear
combination equation was expressed as:

Xn�L = Sn�m � fm�L

Where Xn×L denotes the expression profile data of n genes
from L samples for deconvolution. fm×L is the proportion of
immune cells to be sought, specifically indicating the proportion
of each immune cell in L samples among the m immune cell
types. Sn×m is the signature matrix, indicating the expression
profile data of n genes in each immune cell for m immune cells.
The SVR algorithm solves the linear combinatorial equation
using a deconvolution scheme.

The accuracy of the immune cell ratio calculated through the
above SVR model is influenced by the model parameters such as
the penalty factor C, sensitivity ϵ, and kernel function coefficient
f. These parameters are crucial to an SVR model’s accuracy and
generalizability. However, in practice, these parameters are
largely manually chosen without justification. Here we propose
Frontiers in Immunology | www.frontiersin.org 6
to optimize (ϵ, C, f) parameters through iterations using the
particle swarm algorithm. In each iteration, the swarming
particles update their velocity and position vectors by tracking
two “optimal values” (pibest, gbest), where pibest denotes the
individual optimal value of the particle and gbest is the global
optimal value. In the computation, the expression data of each
gene (i.e., each row vector in the Xn×L matrix) was treated as a
particle in the swarming iteration.

vi+1 = qvi + c1r1(pibest − xi) + c2r2(gbest − xi)

xi+1 = xi + vi+1

Where vi and xi represent the velocity vector and position
vector of the ith particle respectively, each gene is regarded as a
particle respectively, and n represents the size of the population,
specifically the number of genes; q is a non-negative inertia
factor. The larger the value of q is, the stronger the global
optimization ability is and the weaker the local optimization
ability is; c1 and c2 are learning factors, general c1 = c1 = 2; r1 and
r1 both represent random coefficients belonging to [0,1]; pibest
represents the individual optimal value of the ith particle, and
gbest is the global optimal value. We provide more detailed
parameter explanation and algorithm flow in the Supplementary
Materials. Table 1 provides an explanation of key parameters.

We apply this iterative optimization process of particle swarm
to solve the SVR model, so that its optimal input parameters are
FIGURE 2 | The flow chart of PSO-SVR algorithm. SVR model was embedded into the PSO algorithm to calculate the optimal parameters; then SVR model with
optimized parameters was applied to the immune cell ratios.
April 2022 | Volume 13 | Article 853213
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optimized according to the swarm fitness metric. Upon
initialization, we specify the approximate ranges of the
parameters ϵ, C, and f as: ϵ = (0, 0.2), C = (1, 100), f = (0.01,
2.0), and qmax and qmin values are 0.9 and 0.4 for the model.
Upon convergence, we find the optimal parameter solution (ϵ, C,
f). SVR models using optimal parameters are validated using
benchmark data sets. We apply model with these parameters to
the expression data of liver cancer patients’ tissues to solve for
immune cell infiltration ratios.

The major innovation of PSO-SVR over previous SVR
deconvolution methods is that it applies the machine learning
technique – particle swarm algorithm, to do SVR iterative
optimization. In the process, the swarming algorithm searches
for SVR hyperplane formed by support vectors that capture as
many data points as possible while satisfying the given
constraints and avoiding overfitting, using a linear “w-
insensitive” loss function. The function penalizes only those
data points outside a specific error radius. The support vectors
were selected from the signature matrix of genes, and the
standard reference expression profile (signature matrix) was
selected from a composition of 22 immune cells including CD4
T, and CD8 T immune cells in CIBERSORTX, but other
signature gene sets can be applied as well.

Benchmark of the PSO-SVR Algorithm
Wegathered three data sets (see Supplementary Table 1), inwhich
the immune cell proportions were determined through orthogonal
flow cytometry (PBMC-FC), immunohistochemistry (CRC-IC),
and single-cell RNA sequencing technologies (Melanoma-
scRNA). Flow cytometry was an established technology to
identify and determine different cell types in heterogeneous cell
populations (36). immunohistochemistry is also well-established,
using chemical reaction to label antibodies and to identify and
quantify antigens within tissue cells. The genetic heterogeneity of
cells of the same tissue can be also analyzed by scRNA-Seq at the
level of individual cells to cluster and compute the composition
immune cells (37). In order to verify the accuracy of PSO-SVR
algorithm, we used data sets based on these technologies as the
orthogonal control, and studied the deviation between PSO-SVR
results and the control.

As shown in Figure 3A, for the PBMC-FC data, that the PSO-
SVRestimatedB cell, CD4T cells, CD8T cells andMonocytes levels
were very close to the flow cytometry results. Overall, the four types
of immunecells present a good correlation.TheCD8Tcells showed
relatively less consistency as compared to the other two types,
maybe because CD8T cells accounted for a relatively small number
ofT lymphocytes inPBMC(5%–20%) thus is subject to lessaccurate
estimation. As shown in Figure 3B, the PSO-SVR estimates of
Frontiers in Immunology | www.frontiersin.org 7
B cells, monocytes, NK cells, and T cells were also in good
concordance with the immunohistochemistry results. As shown
in Figure 3C, PSO-SVR estimated immune cell fractions, such as
CD4 T and CD8 T cells, also showed a good correlation with the
scRNA-seq levels.

To further evaluate the PSO-SVR estimates using the PBMC-
FC, CRC-IC and Melanoma-scRNA data sets, we used three
metrics, namely root mean square error (RMSE), Pearson
correlation coefficient, and Spearman’s correlation coefficient.
The individual indicators are shown in Table 2.

We observe in Table 2 that the error was generally larger for B
cells and that both Pearson and Spearman’s correlation coefficients
were relatively low. For CD4 T and CD8 T cells, the difference
between the results presented in the PBMC-FC and Melanoma-
scRNA is very small, and the RMSE and correlation coefficients for
both are close, proving the reliability of the algorithm in this study.

Finally, the results calculated through PSO-SVR were
compared with other algorithms such as CIBERSORTX, EPIC,
MCP-counter, for calculating the proportion of immune cells in
infiltrating tumors. From the results of PBMC-FC and
Melanoma-scRNA (refer to Supplementary Tables 2 and 5), it
can be observed that PSO-SVR outperforms CIBERSORTX,
EPIC, MCP-counter, in terms of the three indicators, RMSE,
Pearson, and Spearman correlation coefficients. However, the
results of CRC-IC (refer to Supplementary Table 3) are not as
good as the other three methods, which could be attributed to the
small amount of CRC-IC data. Overall, our algorithm was
highly accurate.

Joint Microbial- and Immune-
Effect Analysis of Hepatocellular
Carcinoma Samples
Differential Presence of Infiltrating Immune Cells
Between Tumor and Normal Tissues
We analyzed the differences in the relative proportions of
immune cells in tumor samples and normal solid tissue
samples. The non-parametric Mann-Whitney-Wilcoxon test
was conducted in R software and then corrected for p-values
with the Benjamini-Hochberg correction (FDR). Immune cells
with significant differences were identified as shown in
Supplementary Table 5 (FDR < 0.05).

As it can be seen in Figure 4 and Supplementary Table 6, the
relative proportions of regulatory T cells [confidence level=95%,
FDR= 1.58E-07] and 59.87% significantly higher in tumor
tissues, and the relative proportions of Monocytes and
Neutrophils are 150.07% and 363.69% significantly lower
[FDR= 6.77E-07, 1.37E-05], as compared to normal solid tissue
samples. These results suggested that regulatory T cells, Monocytes
TABLE 1 | PSO-SVR model parameter.

Parameter Meaning Reference range Value

k(x,y) kernel function linear k (x,y)=x·y
C Penalty factor [1,108] 3
ϵ sensitivity [0,0.2] 1.203564×10-5

F Kernel function coefficient [0.01,2.0] 0.04545455
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and Neutrophils were attracted toward tumor tissues who may act
as host defense against invasive tumor growth. These findings were
consistent with external knowledge and evidence.

As known, neutrophils provide the first line of defense for the
innate immune system by phagocytosing, killing, and digesting
bacteria and fungi (38). CD8 T cells are an important component
of the immune system, and inducing an effective memory T cell
response is a major target for vaccines against chronic infections
and tumors (39). Studies have shown that the presence of Tregs
in tumors of patients with hepatocellular carcinoma are
suppressor cells and their increased levels are associated with
immunosuppression and evasion in patients with cancer, where
the inappropriate immune responses can be prevented by
suppressing immune effector cells. In addition, the frequency
of Tregs in lymphoid tissue, peripheral blood, and in the TME is
greater than that in normal tissue (40).

Differential Presence of Infiltrating Bacteria Between
Tumor and Normal Tissues
In Table 3 and Figure 5A, we showed the most significant
differentially present bacteria between tumor and normal tissues.
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These include Caldatribacterium sp. [↑74.94%, FDR=3.15×10-11],
Acidaminococcaceae sp. [↑73.58%, FDR=1.79×10-9], among others.
We used the nonparametric Mann-Whitney U test. The p-values
were corrected for multiple testing through FDR.

Noticeably, Caldatribacterium sp., Acidaminococcaceae sp.
(amino acid cocci), and Planctopirus sp. are significantly more
abundant in infiltrating tumor tissues as compared to normal
tissues and are likely associated with the pathological
development of hepatocellular carcinoma.

These results were substantiated by external molecular
biology and clinical evidence from previous studies. For
examples it was found that the increase in Caldatribacterium
sp. leads to DNA damage in hepatic stellate cells, which then
promotes the development of hepatocellular carcinoma through
metabolites or toxins from intestinal bacteria (41). Studies also
showed the presence of Planctopirus sp. bacterial infection in
serum and tissues derived from patients with chronic liver
disease – a common presage of hepatocellular carcinoma; the
enrichment of Planctopirus sp. bacteria in the serum of patients
with chronic liver disease is significantly higher than that of
healthy individuals, suggesting that it may be associated with the
TABLE 2 | Immune cell error table of three data sets.

Cell type Root mean square error (RMSE) Pearson (r) Spearman (rs)

PBMC-FC B cells 0.028763 0.69534 0.67669
Monocytes 0.056215 0.92192 0.93684
CD4 T cells 0.073478 0.84827 0.88270
CD8T cells 0.110915 0.84207 0.82105

CRC-IC B cells 0.057609 0.39181 0.51515
Monocytes 0.018876 0.87587 0.78181
NK cells 0.116719 0.23098 0.30909
T cells 0.060646 0.18626 0.16363

Melanoma-scRNA B cells 0.019590 0.99128 0.85381
Macrophages 0.028086 0.70316 0.67192
NK cells 0.021296 0.92560 0.86315
CD4 T cells 0.034945 0.95508 0.92847
CD8 T cells 0.050518 0.97476 0.97543
April 2022 | Volume 13
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FIGURE 3 | Comparison between PSO-SVR and orthogonal technologies. Scatter plots of immune cell fractions with regression of (A) PBMC-FC; (B) CRC-IC; and
(C) Melanoma-scRNA data; r for Pearson’s correlation, rs for Spearman’s correlation.
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development of chronic hepatitis B and primary liver cancer
(42). The other bacteria identified in our study were also
supported in the literature, where multiple species including
Gemmiger formicilis, Marithrix sp., and Haemophilus sp. were
found to be over-represented in in gut microbiome in patients
with HCC (43).

We also found that the microbial diversity (Shannon Index)
in the primary tumor tissue is significantly higher than that in
normal tissue samples (see Figure 5B). This is somewhat
contrary to the discoveries of higher gut microbiome diversity
associated with healthy controls as known in many other related
cancers (44).
Joint Effects of Infiltrating
Immune Cells and Bacteria On
Hepatocellular Carcinoma
In order to further analyze the impact of tumor infiltrating
immune cells and bacteria on the occurrence and development
of liver cancer, we used the downloaded gene expression data
and transcriptome data of 98 liver cancer samples, and
calculated the corresponding bacterial abundance data by
Frontiers in Immunology | www.frontiersin.org 9
using the estimation method of microbial relative abundance
in this paper. The PSO-SVR algorithm described in Section 3.1
was used to calculate the relative proportion of immune cells in
liver cancer samples.

Then the logistic regression classification method was
applied to three cases: case 1, only bacterial abundance data
were used as the input feature; In case 2, only the immune cell
proportion data were used as the input feature; and in case 3,
both bacterial abundance and immune cell ratio were used as
input characteristics. From the classification results of the
three cases (see Table 4), the classification accuracy of using
only a single input feature is lower - only bacteria: 0.70, only
immune cell feature: 0.74, and both features: 0.84. No matter
which data feature is added, the classification accuracy can be
improved. After adding the immune cell proportion data, the
classification accuracy is improved by 20% compared with case
1; After adding bacterial abundance data, the accuracy of
classifier is improved by 13.51% compared with case 2. This
shows that the bacteria and infiltrating immune cells in liver
cancer tissue contain key characteristics for cancer diagnosis,
which can be used as a reference index for clinical
cancer diagnosis.
TABLE 3 | Bacteria with significant variability between normal and primary tumor tissues.

Species FDR Difference % State (↑↓)

Caldatribacterium sp. 3.15 × 10-11 74.94% ↑
Acidaminococcaceae sp. 1.79 × 10-9 73.58% ↑
Planctopirus sp. 2.50 × 10-9 73.66% ↑
Desulfobulbaceae sp. 2.50 × 10-9 71.10% ↑
Nocardia farcinica 8.02 × 10-9 71.20% ↑
April 2022 | Volume 13 | Arti
FIGURE 4 | Differetial analysis of immune cell infiltration in normal and tumor tissues. “**” indicates FDR < 0.01; “***” indicates FDR < 0.001.
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CONCLUSIONS

We performed a joint analysis of microbial and immune cell
abundance in liver cancer tissue using a gene expression profile
deconvolution algorithm combined with foreign read
remapping. First, we filtered out reads from the RNA-Seq data
that did not map to the human reference genome. Second, we
assembled the single-ended unmapped reads with a reverse
complementary sequence to the double-ended unmapped
reads, and the processed reads were then mapped to the
microbial reference library. Finally, the GRAMMy algorithm
was introduced to calculate the relative abundance of
microorganisms. This algorithm overcomes the problem of
mapping one read to different microbial reference sequences
owing to small reads and enables a more accurate calculation of
relative abundance.

This complete procedure was then applied to RNA-seq
samples of 98 patients with hepatocellular carcinoma, and we
found that microorganisms including Caldatribacterium sp. and
Planctopirus sp. differed significantly between normal and tumor
tissues, which was also reported in the literature.
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To study the degree of immune cell response tomicroorganisms
and the effect on liver cancer in the human microenvironment, we
introduced SVR and particle swarm algorithm to estimate the
relative proportion of infiltrating immune cells based on the
deconvolution model. The results of our study were validated by
actual data and then compared with some immune cell counting
algorithms, such as CIBESORTX, EPIC, and MCP-counter, and
were found to be relatively more reliable.

The PSO-SVR algorithm was applied to the gene expression
profile data of liver cancer samples. The differential analysis
revealed significant differences in regulatory T cells, monocytes,
and neutrophils between normal and tumor tissues. Finally,
using the classification regression algorithm within machine
learning, we found that adding microbial characteristics can
improve the accuracy of liver cancer prediction.

This study has some limitations that result from the limited sample
size. For example, a small number of samples affects statistical power,
whichweanticipate correcting in further studies.Also, liver cancer has
different cancer subtypes, which are not subdivided in this study; The
model does not take gene variation into account; otherwise, there can
be new information to improve the accuracy.
TABLE 4 | Classification effect of liver cancer samples under different input features.

Case1: Bacteria Case2: Immune cell Case3: Bacteria-Cell

CIBERSORT 0.68 0.64 0.80
0.75 0.71 0.88
0.67 0.67 0.88

Average accuracy 0.70 0.67 0.85
PSO-SVR 0.68 0.76 0.80

0.75 0.79 0.75
0.67 0.67 0.96

Average accuracy 0.70 0.74 0.84
April 2022 | Volum
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FIGURE 5 | Difference and diversity of bacteria in liver cancer samples. (A) Differentiation of bacteria between liver tumor tissue and normal tissue. “**” indicates
FDR < 0.05; “***” indicates FDR < 0.001. (B) Analysis of alpha diversity of bacteria in tumor and normal tissues. The green color on the left indicates normal samples,
the red part on the right indicates tumor samples, and the middle BASE part indicates the interquartile range.
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