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Photodynamic therapy (PDT) of tumour results in the rapid induction of an inflammatory response that is considered important for
the activation of antitumour immunity, but may be detrimental if excessive. The response is characterised by the infiltration of
leucocytes, predominantly neutrophils, into the treated tumour. Several preclinical studies have suggested that suppression of long-
term tumour growth following PDT using Photofrins is dependent upon the presence of neutrophils. The inflammatory pathways
leading to the PDT-induced neutrophil migration into the treated tumour are unknown. In the following study, we examined, in mice,
the ability of PDT using the second-generation photosensitiser 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) to induce
proinflammatory cytokines and chemokines, as well as adhesion molecules, known to be involved in neutrophil migration. We also
examined the role that these mediators play in PDT-induced neutrophil migration. Our studies show that HPPH-PDT induced
neutrophil migration into the treated tumour, which was associated with a transient, local increase in the expression of the
chemokines macrophage inflammatory protein (MIP)-2 and KC. A similar increase was detected in functional expression of adhesion
molecules, that is, E-selectin and intracellular adhesion molecule (ICAM)-1, and both local and systemic expression of interleukin (IL)-
6 was detected. The kinetics of neutrophil immigration mirrored those observed for the enhanced production of chemokines, IL-6
and adhesion molecules. Subsequent studies showed that PDT-induced neutrophil recruitment is dependent upon the presence of
MIP-2 and E-selectin, but not on IL-6 or KC. These results demonstrate a PDT-induced inflammatory response similar to, but less
severe than obtained with Photofrins PDT. They also lay the mechanistic groundwork for further ongoing studies that attempt to
optimise PDT through the modulation of the critical inflammatory mediators.
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Photodynamic therapy (PDT) can efficiently and rapidly eradicate
local tumours, leading to palliation of advanced disease or cure of
early disease (Dougherty et al, 1998). The tumour response to PDT
involves a complex interplay between direct cytotoxicity to the
tumour cells and secondary damage to the tumour and adjacent
tissue. In PDT employing the photosensitiser Photofrins, the
combined effects on these tissue targets result in an intense
inflammatory response and tumour involution within 24 h. The
inflammatory response is considered an important priming event
for the development of specific antitumour immunity associated
with Photofrins PDT (Korbelik, 1996; Korbelik and Cecic, 1998;
Dougherty et al, 1998). Photofrins-PDT-induced inflammatory
changes are characterised by enhanced expression of a number of
proinflammatory cytokines, including interleukin (IL)-1b, tumour
necrosis factor (TNF)-a and IL-6 (Evans et al, 1990; Nseyo et al,
1990; Kick et al, 1995; Gollnick et al, 1997). PDT-induced infla-
mmation is accompanied by leucocyte infiltration into the treated
tumour. A major fraction of the infiltrating cells are neutrophils,

but also included are mast cells and monocytes/macrophages
(Korbelik et al, 1996; Gollnick et al, 1997). Experimental depletion
of neutrophils through the use of anti-GR1 monoclonal antibodies
(mAb) diminishes the tumour response to Photofrins-PDT (de
Vree et al, 1996a; Korbelik et al, 1996; Korbelik and Cecic, 1999).
Based on these studies, it has become widely accepted that
activated neutrophils in the treated tumour and their cellular
functions are an important component in achieving long-term
suppression of tumour growth following PDT. However, while the
inflammatory response may be important to stimulate an adaptive
antitumour response, excessive PDT-induced inflammation can
cause severe adverse effects clinically (Dougherty, 2002).

The specific inflammatory pathways stimulated by PDT in
tumour tissues in vivo have not been well defined. Recruitment of
blood-borne neutrophils to sites of infection or tissue damage is
tightly controlled by the locally produced proinflammatory
cytokines and chemokines. Therefore, it is predicted that the
same mechanisms are likely to be involved in PDT-induced
inflammatory responses. TNF-a, IL-1b and IL-6, produced by
resident macrophages and stromal cells following stimulation,
enhance the expression of vascular adhesion molecules including
E-selectin and intracellular adhesion molecule (ICAM)-1 (Butcher
and Picker, 1996; Di Carlo et al, 2002) as well as the synthesis of
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chemokines such as IL-8 (in humans, or macrophage inflamma-
tory protein (MIP-2) in rodents) and Gro-a (in humans, or KC in
rodents) (Mackay, 2001). These molecules collaboratively support
the stepwise adhesion cascade required for neutrophil extravasa-
tion.

The effort to optimise PDT treatments has generated a number
of new photosensitisers that are designed to overcome the problem
of prolonged skin phototoxicity present with Photofrins. One of
these, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH)
(Bellnier et al, 1993), is a highly effective second-generation
photosensitiser currently undergoing clinical testing. While this
agent, upon light activation, provokes both direct tumour cell
toxicity and vascular responses very similar to Photofrins

(Henderson et al, 1997), we have observed that the tumour
response differs markedly from that following Photofrins-PDT.
The inflammatory changes appear milder upon macroscopic
observation and tumour involution occurs over a prolonged
period of 48–96 h as opposed to acute effects of Photofrins-PDT
that occur within hours. Keeping in mind the balance between an
inflammatory response sufficient to activate antitumour immunity
on the one hand, and an excessive response that raises the danger
of adverse effects, we decided to examine the inflammatory
response evoked by tumour treatment with the new photosensi-
tiser HPPH. This work represents the first detailed mechanistic
analysis of the involvement of proinflammatory cytokines,
chemokines and adhesion molecules in the inflammatory response
to PDT.

MATERIAL AND METHODS

Animals and tumour system

Pathogen-free BALB/cJ and C. 129S2(B6)-Cmkar2tm1Mwm (CXCR2
KO) mice were obtained from the Jackson Laboratories (Bar
Harbor, ME, USA) and were used for all experiments. Animals
were housed in microisolator cages in a laminar flow unit under
ambient light. Six to 12-week-old animals were inoculated
intradermally on the shoulder with 2� 105 EMT6 mammary
tumour cells (Henderson et al, 1985) harvested from exponentially
growing cultures. While the EMT6 cell line is highly antigenic and
significantly immunogenic (Kurt et al, 1995), no spontaneous
tumour regressions were observed in this study. Prior to tumour
inoculation and/or light treatment, all hair was removed from the
prospective treatment site by shaving and depilation. Tumours
were used for experimentation about 10 days after inoculation
when they had reached a size of 6–8 mm in diameter. All animal
experimentation was carried out following ethical committee
approval and meet the standards required by the UKCCCR
guidelines (Workman et al, 1998).

Reagents

Clinical-grade, pyrogen-free HPPH was obtained from the Roswell
Park Pharmacy and reconstituted to 0.4 mM in pyrogen-free 5%
dextrose (D5W; Baxter Corp., Deerfield, IL, USA) containing 2%
ethanol and 0.1% Tween. Antibodies against murine KC (rat
IgG2a), MIP-1 (rat IgG2b), MIP-2 (rat IgG2b) and IL-6 (goat
polyclonal IgG) were purchased from R&D Systems (Minneapolis,
MN, USA). Rat IgG and goat IgG were obtained from Caltag (San
Francisco, CA, USA) and used as isotype controls. Antimurine
E-selectin (CD62E) mAb (10E9.6, rat IgG2ak), antimurine ICAM-1
(CD54) mAb (3E2, Armenian hamster IgG1k) and RITC-labelled
murine antihamster IgG (G70-204, G94-90.5) were purchased from
BD Pharmingen (San Diego, CA, USA). Antimurine PECAM-1
(CD31) mAb (390, rat IgG2ak) was from Beckman Coulter (Miami,
FL, USA). Goat anti-rat IgG-FITC, rat serum and hamster sera were
from Sigma, Inc. (Saint Louis, MO, USA). Goat serum was a gift

from Dr Richard Bankert (State University of New York at Buffalo,
Buffalo, NY, USA) and mouse serum was from Dr Yasmin
Thanavala (Roswell Park Cancer Institute, Buffalo, NY, USA).

In vivo PDT treatment

Animals were given intravenous injections via tail vein of
0.6mmol kg�1 HPPH, followed 24 h later with illumination at
665 nm light using an argon-dye laser system (Spectra Physics, Mt
View, CA, USA). A treatment field 1 cm in diameter, containing the
tumour, was illuminated at 75 mW cm�2 for a total light dose of
100–135 J cm�2. In some experiments, a single tumour was treated
on animals bearing tumours on both shoulders; the untreated or
contralateral tumour was used as a ‘drug only’ control. Following
PDT, animals were either observed for tumour regrowth, or were
killed and tumours were harvested at selected time intervals
following light exposure for cell and protein analysis, and
immunohistochemistry. In some experiments, animals were bled
by tail-end clipping when consecutive daily blood samplings were
needed or via heart puncture at the end of experiments. Serum
from these blood samples were subjected to immunoelectrophore-
tic quantification of haptoglobin (HP) (Baumann, 1988) or ELISA.
All experiments included control untreated animals and treated
animals with photosensitiser only. All animal experimentation was
carried out following ethical committee approval and meet the
standards required by the UKCCCR guidelines (Workman et al,
1998).

ELISA

Tumour tissues were processed immediately after harvest as
described (Gollnick et al, 1997). Total protein was determined by
the Bio-Rad protein assay (Bio-Rad Lab., Hercules, CA, USA). KC,
MIP-1, MIP-2 and IL-6 protein levels in control and treated
tumours, and/or serum were determined by ELISA. ELISA kits
specific for each protein were purchased from R&D Systems and
used according to the manufacturer’s suggestion. The assays were
performed in triplicate on samples isolated from three animals.

Flow cytometry

The cell populations present in EMT6 tumours before and after
PDT were characterised through FACS analysis, using panels of
mAbs to detect specific cell surface antigens as described
previously (Gollnick et al, 1997). mAbs conjugated directly with
fluorescein or phycoerythrin or biotin were used to quantify cells
expressing the common leucocyte antigen CD45 (GIBCO/BRL),
CD4 and CD8 T-cell antigens (PharMingen, San Diego, CA, USA),
CD11b (PharMingen), IAd (PharMingen) and Gr-1 (PharMingen).
Appropriate immunoglobulin isotypes were used as controls. In
cases where biotinylated antibodies were used, streptavidin-
cychrome (PharMingen) was added as a detection reagent.

For flow cytometric analysis, a two-laser FACStar Plus (Becton-
Dickinson, San Jose, CA, USA) flow cytometer was used, operating
in the ultraviolet (UV) and at 488 nm. Four colours and light
scattering properties could be resolved employing 420/20, 530/30
and 575/30 band-pass filters and a 640 long-pass filter. Data were
acquired from 5000 cells, stored in collateral list mode, and
analysed using the WinList processing program (Verity Software
House, Inc., Topsham, ME, USA). Results are presented as the
average percentage of total cells; a total of three animals were
analysed for each treatment group.

Immunofluorescence analysis of vascular adhesion
molecules

EMT6 murine mammary tumours were snap frozen in Tissue Tek
(Sakura, Torrance, CA, USA) and 9 mm cryostat sections were fixed
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for 10 min using a 3 : 1 methanol/acetone solution. For immuno-
fluorescence staining, tissue sections were sequentially washed in
0.02% PBS azide and 0.1% PBS Triton X-100 before blocking with
10% goat serum or 10% mouse serum diluted in a 1% fetal bovine
serum/RPMI 1640 solution (GIBCO BRL, Grand Island, NY, USA)
for 10 min. The sections were then incubated for 1 h with mAbs
specific for murine E-selectin, ICAM-1 or PECAM-1. As controls,
sections were incubated with either rat sera or hamster sera
(Sigma, Inc., Saint Louis, MO, USA). The sections were washed for
1 h in 0.02% PBS azide and then incubated with either FITC or
RITC-labelled secondary Ab for 1 h. The sections were then washed
overnight in 0.02% PBS azide and mounted using Aqua Poly/
Mount (Polysciences, Inc., Warrington, PA, USA). Images were
recorded using an Olympus BX50 upright microscope equipped
with a SPOT RT camera (Spectra Services, Webster, NY, USA) with
equivalent exposure times and image settings.

Neutrophil isolation and frozen-section adhesion assay

Human peripheral blood neutrophils were isolated from normal
donor buffy-coat leucocyte concentrates (American Red Cross,
Rochester NY, USA) by Ficoll – Hypaque centrifugation and 3%
dextran/0.9% saline-sedimentation as described (Anderson et al,
1981; Smith et al, 1989). Following hypotonic lysis of red blood
cells (RBC) in 0.2% saline, isolated neutrophils (499% pure) were
suspended at 5� 107 ml – 1 in 1% fetal calf serum (FCS)/RPMI 1640
(GIBCO BRL) and used immediately in adhesion assays.

Adhesion of isolated neutrophils to tumour microvessels in
frozen-tissue sections was assessed in vitro under mechanical
shear as described (Lewinsohn et al, 1987; Evans et al, 2001).
Briefly, a total of 5� 106 neutrophils in 100 ml of FCS/RPMI 1640
medium were overlaid onto 12 mm cryosections of tumour tissues
from PDT-treated or nontreated mice. Selected tumour tissue
specimens were pretreated with function-blocking mAb specific
for E-selectin (10mg ml�1; BD Pharmingen, San Diego, CA, USA)
or isotype-matched negative control antibodies. The assay was
performed at 41C for 30 min with mechanical rotation (112 r.p.m.;
Labline Instrument, Labline Instrument, Inc., Melrose Park, IL,
USA). After removal of nonadherent cells, sections were fixed in
3% glutaraldehyde, and stained with 0.5% toluidine/absolute
ethanol. Neutrophil adhesion was quantified by light microscopy
in a total of 100 microvessels per tumour tissue specimen; data are
the mean 7s.e. of triplicate specimens.

Antibody treatments

For chemokine, cytokine and adhesion molecule neutralisation
studies, anti-KC, anti-MIP-2, anti-IL-6, anti-E-selectin or isotype-
matched control antibodies were administered immediately
following (100 mg mouse�1; i.v.) PDT treatment or 24 and 48 h
(50mg mouse�1; i.v.) post-PDT treatment. Neutrophil depletion
was accomplished using anti-GR-1 antibodies (100 mg mouse�1;
i.v.) administered 24 h prior to PDT, immediately and 24 h post-
PDT. Tumour growth was monitored as above.

Statistical analysis

Statistical analysis was performed using a nonpaired Student’s
t-test. Statistical analysis of survival data was performed by log-
rank test. In all cases, significance was defined as Po 0.05.

RESULTS AND DISCUSSION

HPPH-PDT increases the proportion of neutrophils in
EMT6 tumours

We and others have previously shown that the local inflammatory
response following PDT with Photofrins is characterised by a

strong, time-dependent infiltration of neutrophils into the treated
tumour (Korbelik et al, 1996; Gollnick et al, 1997; Sun et al, 2002).
To determine whether HPPH-PDT also resulted in inflammatory
cell infiltration, tumour-infiltrating host cell numbers and
phenotype were analysed by flow cytometry. Two phenotypes
were predominant among CD45+ host cells, neutrophils (CD11+

GR1hi) and macrophages (CD11+GR1lo). HPPH-PDT, at a dose that
achieved long-term tumour suppression in B50% of animals,
resulted in a modest, time-dependent increase in the percentage of
neutrophils in the treated tumour (Figure 1). Within 4 h of
treatment, the percentage of neutrophils was significantly in-
creased (Po0.007 as compared to HPPH treatment in the absence
of light). The proportion of neutrophils continued to increase and
remained elevated for at least 72 h post-treatment. The differences
in neutrophil levels over the period of 6, 12, 24 and 48– 72 h
postillumination were not significant (P40.41). Moreover, the
increase was no more than three-fold over controls and rarely
exceeded 20% of total cells during the period of observation. The
percentage of macrophages (9.3%) did not change significantly
throughout the observation period. The level of lymphocytes did
not exceed 5% of total cells and that also did not change
significantly after HPPH-PDT (data not shown).

Thus, like Photofrins-PDT, HPPH-PDT results in an influx of
neutrophils into the treated tumour. The kinetics of neutrophil
migration observed were similar to those seen following Photo-
frins-PDT (Gollnick et al, 1997), although the number of
infiltrating neutrophils was considerably less following HPPH-
PDT (37% of the total cells 24 h following Photofrins-PDT vs
13.8% of the total cells 24 h following HPPH-PDT). These results
are consistent with the lower degree of inflammation seen
following HPPH-PDT as compared to Photofrins-PDT (Bellnier
et al, 1993) and may be a reflection of the kinetics of tumour
destruction. Photofrins-PDT-treated tumours have regressed
within the first 24–48 h of treatment, while HPPH-PDT-treated
tumours are not eliminated for 48 – 72 h.

HPPH-PDT enhances expression of neutrophil attractant
chemokines in EMT6 tumours

Leucocyte migration is a tightly controlled process that is regulated
by chemokines/cytokines and mediated by adhesion molecules.
Murine neutrophil migration is regulated in large part by the
chemokines MIP-2 and KC. KC is constitutively expressed and is
believed to be involved in basal neutrophil migration (Bozic et al,
1995). In contrast, MIP-2 is inducible and thought to mediate
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Figure 1 HPPH-PDT enhances neutrophil infiltration into the treated
tumour. Animals were treated with 0.6 mmol kg�1 HPPH, followed 24 h
later by 100 J cm�2 of 665 nm light. Tumours were harvested at various
times post-PDT and the infiltrating cell populations were analysed by flow
cytometry as described in Materials and Methods. Samples were collected
from control animals (no treatment, HPPH alone) at 6 h ‘post-PDT’. Results
are reported as the percentage of total cells present in the tumour that are
CD45+ and Gr-1+. A minimum of three mice were analysed at each time
point. Error bars represent the s.e.
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stress- or injury-induced neutrophil migration (Biedermann et al,
2000). Also involved in neutrophilic inflammation is MIP-1 (a and
b), which can activate granulocytes, stimulate the production of
reactive oxygen species in neutrophils and induce the generation
of proinflammatory cytokines IL-1, IL-6 and TNF (Adams and
Lloyd, 1997).

Expression of MIP-2 and KC in HPPH-PDT-treated tumours was
significantly elevated by 4 h post-treatment (Po0.009 as compared
to HPPH controls) and remained elevated for up to 24 h post-
treatment. Although the protein levels of KC present in the
tumour were higher than those for MIP-2 (Figure 2A), the fold
induction for MIP-2 was significantly higher (Po0.01) than that
for KC (Figure 2B). The induction of MIP-2 protein by PDT
corresponded to a 27.174.9-fold induction at 6 h post-treatment
as compared to HPPH controls (Po0.0004), while the increase
in KC corresponded to an 11.271.2-fold induction at 6 h post-
PDT (Po0.0001 when compared to HPPH alone controls). The
levels of KC and MIP-2 were unchanged in untreated contralateral
tumours as compared to chemokine levels in treated tumours,
indicating that the induction of MIP-2 and KC was not the result
of a systemic mediator. Thus, HPPH-PDT induced a time-
dependent, local increase in two neutrophil attractant chemokines,
MIP-2 and KC. The kinetics of expression paralleled that of
neutrophil infiltration. We also observed a trend towards
increased levels of MIP-1a in treated tumours at 24 and 48 h
post-treatment (data not shown), but the changes were not
significant (Po0.167).

HPPH-PDT induces local and systemic expression of IL-6

We have previously shown that Photofrins-PDT stimulates the
expression of IL-6 in the tumour (Gollnick et al, 1997). IL-6 is
characterised as a proinflammatory cytokine primarily because of
its role in release of acute-phase proteins (Baumann and Gauldie,
1994; Suffredini et al, 1999) and complement activation (Knittel
et al, 1997; Minta et al, 2000; Schieferdecker et al, 2000). In some
reports, IL-6 has also been implicated in neutrophil migration
(Dalrymple et al, 1995; Romano et al, 1997; Hurst et al, 2001; Suwa
et al, 2001) and has been shown to contribute to the rise in
circulating neutrophils observed following Photofrin-PDT (Cecic
and Korbelik, 2002). Figure 3A shows that HPPH-PDT strongly
enhanced the expression of IL-6 in the tumour. IL-6 levels rose
sharply up to 6 h after treatment (Po 0.0001 as compared to HPPH
treatment alone) and remained significantly elevated during the
48 h post-treatment period (Po0.0003). HPPH-PDT also induced a
significant increase in circulating levels of IL-6 (Figure 3A), which
became evident within 4 h post-treatment (Po0.0008 when
compared to HPPH only controls). The levels remained signifi-
cantly elevated up to 24 h post-treatment (Po0.018 as compared to
HPPH alone controls). The kinetics of local IL-6 induction reached
maximal levels by 6 h post-treatment, which is analogous to the
kinetics observed for the chemokines, MIP-2 and KC, as well as for
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Figure 2 Induction of MIP-2 and KC following PDT. Animals were
treated with PDT as described in Figure 1. Tumours and sera were
collected from treated animals at various times post-PDT. Tumours and
sera were collected from control animals (no treatment, HPPH alone) at
6 h ‘post-PDT’. The total amount of protein per sample was determined
using the Bio-Rad protein assay. KC and MIP-2 levels were determined by
ELISA and are reported as (A) pg mg�1 of total protein or (B) fold
induction where chemokine expression is reported in relation to the
expression found in tumours treated with HPPH alone. A minimum of
three mice were analysed at each time point. Error bars represent the s.e.
MIP-2 ; KC .
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Figure 3 Induction of local and systemic IL-6 by PDT. Samples were
collected from control animals (no treatment, HPPH alone) at 6 h ‘post-
PDT’. The total amount of protein per tumour was determined using the
Bio-Rad protein assay. (A) IL-6 levels were determined by ELISA and are
reported as either pg mg�1 of total protein (tumour) or pg ml�1 serum. A
minimum of three mice were analysed at each time point. Error bars
represent the s.e. Tumour IL-6 ; serum IL-6 . (B) EMT6
tumour-bearing mice were subjected to HPPH treatment. At 0 h, one
group of five mice was exposed to light (135 J cm�2) (filled symbols), and
another group of five mice was kept in the dark (control, open symbols).
Every 24 h, a blood sample was collected for each mouse and the serum
level of HP was determined by immunoelectrophoresis. The values were
calculated in mg ml�1 and the HP concentration for each mouse and
bleeding was reproduced.
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neutrophil migration. Similar kinetics of IL-6 expression were also
observed following Photofrins-PDT (Gollnick et al, 1997).

The bioactivity of the systemic IL-6 was determined by the level
of haptoglobin (HP) in the sera of control (HPPH only) and
HPPH-PDT-treated animals over an 8 day post-PDT treatment

Table 1 Immunofluorescence staining patterns of adhesion molecules on EMT6 microvessels following PDT

Time after PDT (h)

Adhesion molecule None HPPH 0 1 3 6 (PDT) 6 (Untx)a 8 12 24 48

E-selectin (CD62E) �b � �/7 �/7 �/+ �/+++ � �/+ �/7 �/7 �
ICAM-1 (CD54) �/7 �/7 �/+ �/+ �/++ �/7 �/++ �/++ �/+ �/+ �/7
PECAM-1 CD31 +++ +++ +++ +++ +++ ++++ +++ ++ �/++ NDc ND

aUntx refers to the contralateral tumour that was not treated with light in animals receiving HPPH and having one tumour treated with light. bStaining intensity of tumour
microvessels ranges from undetectable (�) to very high levels (++++). cND, not determined.
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Figure 4 HPPH-PDT enhances adhesion molecule expression and neutrophil adhesion in tumour microvessels. Animals were treated as in Figure 1 for
the indicated time periods and tumour cryosections were either stained for vascular adhesion molecule expression using specific mAb (A) or evaluated for
the ability to support adhesion of neutrophils under mechanical shear (B). In (A), arrows denote tumour vessels; note that fluorescence was not detected in
tumour vessels stained with isotype-matched control Ab (left panels) or in tumours that were not treated with light (i.e. no PDT, right panels). In contrast, E-
selectin and ICAM-1 were highly expressed on tumour vessels following HPPH-PDT treatment. Data in (B) are the mean +s.d. of triplicate samples and are
representative of three independent experiments. The differences between adhesion in untreated contralateral tumours and PDT-treated tumours were
significant, Po0.005 (*), Po0.0005 (**) by unpaired two-tailed Student’s t-test.
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period (Figure 3B). HP is a member of the type 2 acute-phase
proteins and the transcriptional activation of the Hp gene in liver
is dependent upon IL-6 (Baumann et al, 1989). The relative change
in expression of this acute-phase protein is proportional to the
level of inflammation (Baumann and Gauldie, 1994). The sera of
animals treated with HPPH-PDT reached peak values of 2 mg ml�1

of serum 24–48 h post-PDT. The HP concentration returned to
pretreatment levels after 8 days post-treatment period. In contrast,
the sera of control animals, which received HPPH but were not
exposed to light, maintained an HP level of o0.3 mg ml�1 over the
course of the experiment. The time course and relative change in
circulating HP was characteristic for an acute-phase reaction
observed after severe forms of tissue injury, and that involved the
mediator function of IL-6 (Kopf et al, 1994).

HPPH-PDT enhances the expression of ICAM and
E-selectin in EMT6 microvessels

In addition to a dependence on chemokines, expression of vascular
endothelial adhesion molecules is also required for neutrophil
migration. The effect of HPPH-PDT on the expression of E-selectin
and ICAM-1 was examined by immunofluorescence analysis
(Figure 4A) and the results are summarised in Table 1. HPPH-
PDT resulted in a transient time-dependent increase in E-selectin
and ICAM-1 expression on the tumour microvessels that peaked at
6 h post-treatment and returned to baseline by 48 h post-treatment.
PDT-induced expression of E-selectin and ICAM-1 was dependent
on the presence of light as adhesion molecule expression did not
increase in the untreated contra-lateral tumour. This finding also
indicates that circulating cytokines were not effective in eliciting
the change in adhesion molecules, but depended on locally
produced regulatory factors. The induction of E-selectin and
ICAM-1 was heterogeneous, ranging in staining intensity from �
to ++ at the 6 h point for example (Table 1). In this regard, some
vessels within the tumour showed a marked increase in vascular
display of E-selectin while other vessels in close proximity failed to
respond (Figure 4A). The increase in E-selectin was restricted to
the tumour microvasculature. In contrast, the increase in ICAM-1
immunofluorescent staining was more diffuse, reflecting of
enhanced expression on both vascular endothelium and infiltrat-
ing cells. Negative control staining with isotype-matched rat IgG or
hamster IgG confirmed that E-selectin and ICAM-1staining was
specific. The sections were also stained with PECAM-1 (CD31) as a
control. PECAM-1 staining was unaffected by PDT at the earlier
time points (up to 6 h); however, the staining intensity began to
diminish at 8 h post-treatment. This decrease likely reflects a loss
in vessel integrity rather than a loss of PECAM-1 expression (BWH
and SE, unpublished observations). Like the enhanced expression
of chemokines and IL-6, the kinetics of adhesion molecule
expression mirrors those of neutrophil influx.

HPPH-PDT stimulates adhesion of neutrophils to
EMT6 microvessels

The effect of PDT on the function of adhesion molecules was
monitored by determining the ability of neutrophils to adhere to
EMT6 microvessels in frozen-tissue sections under mechanical
shear following in vivo PDT treatment. As can be seen in Figure 4B,
PDT significantly enhanced neutrophil/endothelial adhesion in a
time- and light-dependent manner (drug alone vs 6 h post-
treatment: Po0.0005) with kinetics similar to those observed for
induction of adhesion molecule and chemokine expression. The
enhanced adhesion was restricted to tumours that had been treated
with PDT. No increases in neutrophil adhesion were observed in
contralateral tumours, which did not receive light, on the same
animal, implicating again a local rather than systemic mechanism.

HPPH-PDT enhanced neutrophil migration is dependent
upon E-selectin and MIP-2

The similarity in kinetics, as well as previous findings (Biedermann
et al, 2000), led us to postulate that a causal relation may exist
between the induction of chemokine/cytokine, functional adhesion
molecule expression and neutrophil migration. This hypothesis
was confirmed by blocking and depletion studies. HPPH-PDT-
enhanced neutrophil adhesion was dependent upon E-selectin as
blocking antibodies to E-selectin eliminated the adhesion of
neutrophils to EMT6 microvessels (Po0.0003; Figure 5A). Adhe-
sion was not abrogated in the presence of an isotype-matched
control antibody. Thus, the characteristic neutrophil infiltration
associated with PDT is due, at least in part, to an induction of
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Figure 5 (A) HPPH-PDT stimulates E-selectin-dependent adhesion of
neutrophils to tumour microvessels. Animals were treated with HPPH for
6 h and separated into two groups: (1) the drug only group did not receive
PDT treatment and (2) in the second group, tumours were treated with
PDT, while contralateral tumours were not treated with light. Neutrophil
adhesion to tumour microvessels was evaluated under mechanical shear in
tumour cryosections in the presence of isotype-matched negative control
Ab or function-blocking mAb specific for E-selectin (10 mg ml�1). Data are
the mean 7s.d. of triplicate samples and are representative of three
independent experiments. The difference between adhesion in untreated
contralateral tumours and PDT-treated tumours was significant, P o
0.00035 (*) by unpaired two-tailed Student’s t-test. (B) Inhibition of MIP-2
and E-Selectin expression following PDT diminishes PDT-induced
neutrophil infiltration into EMT6 tumours. Tumour-bearing animals were
treated with PDT as described under Figure 1. Anti-MIP-2, anti-E-selectin,
anti-IL-6, anti-GR-1, rat IgG (isotype control for anti-MIP-2 and anti-E-
selectin) or goat IgG (isotype control for anti-IL-6 and anti-GR-1) were
administered immediately after PDT. Tumours were isolated 24 h post-
PDT and the infiltrating cell populations were determined by flow
cytometry. The dashed line indicates the level of neutrophils found in
control tumours. Mean values from three animals of the percentage of total
cells that are CD45+ and GR-1+ are shown. Error bars represent the s.e.m.
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E-selectin. Other studies have shown that PDT-induced adherence
of neutrophils to endothelial cells in vitro (de Vree et al, 1996b)
and in vivo (Dellian et al, 1995; Adili et al, 1996; Sluiter et al, 1996;
Rousset et al, 1999) also involved b2-integrins (LFA-1) (Sluiter et al,
1996; de Vree et al, 1996b).

Blocking E-selectin and MIP-2 action through the use of
neutralising antibodies, administered immediately after comple-
tion of PDT treatment, led to a significant reduction in neutrophil
accumulation to almost baseline levels by 6 h post-treatment
(PDT+anti-MIP-2 vs PDT+rat IgG: Po0.0024; PDT+anti-E-selec-
tin vs PDT+rat IgG: Po0.04) (Figure 5B). This confirms the
importance of E-selectin in PDT-induced neutrophil migration,
and implies that the increased level of neutrophils in the tumour
was the result of recruitment via MIP-2. Administration of anti-
GR-1 antibodies also reduced neutrophil levels in both treated and
control tumours to levels below those found in when anti-MIP-2
was used (Figure 5B; PDT+anti-GR-1 vs PDT+rat IgG: Po0.0095).
No significant neutrophil reduction was achieved with anti-KC
antibodies.

Although IL-6 was shown to affect induction of systemic
neutrophilia by Photofrin-PDT (Cecic and Korbelik, 2002; Sun
et al, 2002), neutralisation of IL-6 did not significantly affect the
levels of neutrophils infiltrating the tumour post-PDT (Figure 5B;
PDT+anti-IL-6 vs PDT+goat IgG: Po0.533). Moreover, neutralisa-
tion of IL-6 did not block induction of E-selectin or ICAM-1 on
tumour microvessels or appear to play a role in long-term control
of EMT6 tumours by HPPH-PDT (data not shown). Similar results
were recently reported by Sun et al (2002). In this study,
neutralising antibodies to IL-6 were administered intraperitoneally
30 min prior to mTHPC-PDT of s.c. SCCVII tumours. No effect on
long-term tumour response was observed. These results suggest
that the role of IL-6 in PDT-induced inflammation may vary
depending on the photosensitiser used and the tumour type
studied.

The role of MIP-2 in PDT-induced neutrophil migration was
confirmed by examining neutrophil migration in mice deficient for
CXCR2, the receptor for both MIP-2 and KC (Rollins, 1997),
following HPPH-PDT. EMT6 tumours of CXCR2-deficient mice
contained very low levels of neutrophils prior to PDT treatment
(1.3770.04% of total cells). HPPH-PDT raised these to
3.9870.48% of total cells (Po0.006). This compares to neutrophil
levels of 4.10 7 0.83% of total cells in untreated tumours vs
16.973.22% of total cells in HPPH-PDT-treated tumours
(Po0.018) in wild-type mice.

These results combined indicate that PDT-enhanced neutrophil
migration is dependent upon E-selectin and MIP-2, but is not
influenced by IL-6. MIP-2 neutralisation has also been shown to
reduce neutrophil recruitment in delayed type hypersensitivity
responses (Biedermann et al, 2000).

In summary, we have shown that HPPH-PDT, like Photofrins

-PDT, initiates a local, albeit less severe, local inflammatory
response. It is characterised by an influx of neutrophils into the
treated tumour upon the presence of MIP-2 and E-selectin, which
are induced locally in a temporal manner following PDT.
Neutralisation of these MIP-2 and E-selectin eliminated neutrophil
infiltration and increased adhesiveness to tumour microvascula-
ture. Thus, HPPH-PDT-induced inflammation appears to be due,
at least in part, to the coordinated induction of chemokine and
adhesion molecule expression and activation, which results in the
migration of neutrophils into the treated tumour. Once at the
tumour site, neutrophils have been implicated in direct tumour cell
kill, recruitment of leucocytes and lymphocytes through chemo-
kine/cytokine secretion and tumour rejection in T-cell-dependent
reactions (reviewed in Di Carlo et al, 2002). In addition, some
studies have suggested that neutrophils can also promote
malignant growth and progression (Pekarek et al, 1995). The
results presented here begin to define the mechanisms behind
PDT-induced neutrophil migration, which are critical to our
understanding of the role these cells play in long-term tumour
suppression by PDT. Furthermore, an understanding of the
mechanisms leading to PDT-induced inflammation has the
potential to provide a means of optimising clinical PDT, possibly
through regulation of the mediators of the response. Studies are
currently underway to determine whether the HPPH-PDT-induced
inflammatory response is involved in the generation of antitumour
immunity observed after HPPH-PDT.
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