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The usage of cryptocurrencies, together with that of financial automated consultancy,

is widely spreading in the last few years. However, automated consultancy services are

not yet exploiting the potentiality of this nascent market, which represents a class of

innovative financial products that can be proposed by robo-advisors. For this reason, we

propose a novel approach to build efficient portfolio allocation strategies involving volatile

financial instruments, such as cryptocurrencies. In other words, we develop an extension

of the traditional Markowitz model which combines Random Matrix Theory and network

measures, in order to achieve portfolio weights enhancing portfolios’ risk-return profiles.

The results show that overall our model overperforms several competing alternatives,

maintaining a relatively low level of risk.

Keywords: cryptocurrencies, correlation networks, network centrality, portfolio optimization, random matrix

theory, minimal spanning tree

1. INTRODUCTION

FinTech innovations are rapidly expanding nowadays, with applications including payments,
lending, insurance and asset management, among others. Two technical reports from the Financial
Stability Board (FSB) (FSB, 2017a,b)—establish several key drivers for FinTech, i.e., the shift of
consumer preferences on the demand side, the change of financial regulations on the supply side
and the technology evolution.

In this context, services of automated financial consulting are widely spreading and, in particular
robo-advisors1. They are supposed to match the investors’ risk profile with specific class of financial
assets and thereby build an efficient portfolio allocation for each specific client. However, the
mechanisms underlying the portfolio construction are often obscure, as well as they arguably do
not properly take into account for multivariate dependencies across securities which are key to
achieve diversification and, therefore, mitigate financial risk. This is particularly true when dealing
with peculiarly volatile markets, such as the cryptocurrency one, which could be one of the future
target market of robo-advisors, given its rapidly growing influence in the financial world.

Indeed, after its introduction by Nakamoto (2008), Bitcoin was launched online in 2009 and
paved the way for many other cryptocurrencies. As a matter of fact, as of 17 October 2019, the
cryptocurrency market capitalization amounts to∼220 billion USD, with a daily trading volume of
roughly 52 billion USD.

Along with descriptive and qualitative studies, many researches dealt with quantitative analysis
applied to the cryptocurrency market. In particular, a stream of research focuses on price discovery
on Bitcoin markets, aiming to determine which are the leaders and followers of the Bitcoin

1An article published on “Statista” in 2019 states that assets under management in the robo-advisory segment amounts to
roughly 981 billion USD, as well as that they are expected to grow at an annual growth rate (CAGR 2019–2023) of 27%
(source: https://www.statista.com/outlook/337/100/robo-advisors/worldwide).
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price formation process (see Brandvold et al., 2015; Pagnottoni
and Dimpfl, 2018; Giudici and Abu-Hashish, 2019). Other related
researches studied the interconnectedness and spillover in the
cryptocurrency market (such as Corbet et al., 2018b; Giudici
and Pagnottoni, 2019a,b). Another important area regards the
study of Bitcoin derivatives—i.e., options and futures written on
Bitcoin, with studies conducted by Corbet et al. (2018a), Baur
and Dimpfl (2019), Giudici and Polinesi (2019), and Pagnottoni
(2019).

From a methodological viewpoint, we base our analysis on
an important stream of literature, which focuses on stock and
financial networks built on correlation matrices. The seminal
paper by Mantegna (1999) uses correlation matrices to infer
the hierarchical structure of stock markets, deriving a distance
measure based on correlation matrices and building the so called
Minimal Spanning Tree (MST), a graphical representation able to
connect assets which are similar in terms of returns in a pairwise
manner. After that, a research by Tola et al. (2008) uses the
Random Matrix Theory (RMT) together with several clustering
techniques and show that this significantly lowers portfolio
risks. Subsequently, other papers about portfolio construction
involving the network structure of financial assets followed (see
Zhan et al., 2015; León et al., 2017; Raffinot, 2017; Ren et al.,
2017).

To the best of our knowledge, there are no papers yet
that exploit network topologies to build portfolios composed
by cryptocurrencies. We fill this gap proposing a model that
exploits the network structure of cryptocurrencies to provide
a portfolio asset allocation that well compares with traditional
ones. Following Mantegna (1999) we use Markowitz’ asset
allocation as a benchmark, and we check whether our proposal
is able to improve on it, in terms of risk/return profile.

Indeed, the originality of the current paper is 2-fold. From
a methodological point of view, we improve the traditional
(Markowitz, 1952) portfolio allocation strategy by means of RMT
and MST and by taking network centralities specifically into
account. Moreover, throughout this technique we are able to set
a parameter of systemic risk aversion that investors can tune
to better match their investment strategies with their own risk
profile. From an empirical viewpoint, we apply our methodology
to data coming from a nascent and highly volatile market, i.e.,
the cryptocurrency one. This is particularly interesting, as the
cryptocurrencymarket is rapidly expanding and its opportunities
due to the high uncertainty (and volatility) around it are quite
appealing, and thus a greater number of investors will likely enter
it in the short run.

Our empirical findings confirm the effectiveness of our
model in achieving better cumulative portfolio performances,
while keeping a relatively low level of risk. In particular, we
show that our proposed model which employs RMT, MST and
centrality measures rapidly adapts to market conditions, and
is able to yield satisfactory performances during bull market
periods. During bear market periods—instead—our Network
Markowitz model employing RMT and MST realizes the best
performances, protecting investors from relatively high losses
which are instead generated by many other asset allocation
strategies tested. Furthermore, the riskiness of our strategy is

still lower than most of the competing model we analyze.
These outcomes suggest that a sound combination of the
proposed models should be employed in order to achieve
an efficient cryptocurrency allocation strategy, which could be
also used as robo-advisory toolboxes to improve automated
financial consultancy.

The paper proceeds as follows. Section 2 presents our
methodology and, particularly, the Random Matrix Theory, the
Minimal Spanning Tree and the portfolio construction. Section 3
illustrates our empirical results. Section 4 concludes.

2. METHODOLOGY

2.1. Random Matrix Theory
Random Matrix Theory (RMT) is widely employed in several
fields, such as quantummechanics (Beenakker, 1997), condensed
matter physics (Guhr et al., 1998), wireless communications
(Tulino et al., 2004), as well as economics and finance (Potters
et al., 2005). This technique is able to remove the noise
component from the pure signal which is embedded into
correlation matrices.

The algorithm tests subsequent empirical eigenvalues of the
correlation matrix: λk < λk+1; k = 1, . . . , n, against the null
hypothesis that they are equal to the eigenvalues of a random
Wishart matrix R = 1

TAA
T of the same size, being A a N × T

matrix containing N time series of length T. The elements of A
are i.i.d. random variables, with zero mean and unit variance.

Marchenko and Pastur (1967) show that as N → ∞ and
T → ∞, and the ratio Q = T

N ≥ 1 is fixed, there is convergence
of the sample eigenvalues’ density to:

f (λ) =
T

2π

√

(λ+ − λ)(λ − λ−)

λ
, (1)

with λ ∈ (λ−, λ+), λ± = 1+ 1
Q ± 2

√

1
Q .

Provided that, if λk > λ+ the null hypothesis is rejected from
the k-th eigenvalue onwards. Hence, through a singular value
decomposition the RM approach builds up a filtered correlation
matrix (see Eom et al., 2009).

In our specific case, consider the continuous log return time
series ri of a generic cryptocurrency i at any time point t. i.e.,

rti = logPti − logPt−1
i , (2)

where Pti is the price of the cryptocurrency i at time t.
Considering a bunch of N cryptocurrency return time series,

letC be theN×N correlationmatrix of the cryptocurrency return
time series. The random matrix approach filters the correlation
matrix, thus obtaining a new matrix C∗ as:

C∗ = V3VT, (3)

with

3 =

{

0 λi < λ+
λi λi ≥ λ+

andV being the matrix of the deviating eigenvectors linked to the
eigenvalues which are larger than λ+.
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2.2. The Minimal Spanning Tree
In order to simplify the relationships given by the filtered
correlation matrix C∗ obtained from the random matrix
approach, we apply theMinimal Spanning Tree representation of
the cryptocurrency return time series. This is consistent with the
literature on stock similarities (i.e., Mantegna and Stanley, 1999;
Bonanno et al., 2003; Spelta and Araújo, 2012).

Given the filtered correlation matrix obtained in the step
above, we may derive an Euclidean distance for each pairwise
correlation element in the matrix, i.e.,

dij =
√

2− 2c∗ij, (4)

where c∗ij is a generic element (i, j) of the matrix C∗, with i, j =
1, ...,N. Each pairwise distance can be inserted in the so-called
distance matrix D = {dij}. The MST algorithm is able to reduce

the number of links between the assets from N(N−1)
2 to N − 1

linking each node to its closest neighbor. In particular, we initially
consider N clusters associated to the N cryptocurrencies and, at
each subsequent step, we merge two generic clusters li and lj if:

d
(

li, lj
)

= min
{

d
(

li, lj
)}

,

with the distance between clusters being defined as:

d̂
(

li, lj
)

= min
{

dpq
}

,

being p ∈ li and q ∈ lj. This procedure is iteratively repeated until
we remain with just one cluster at hand.

Moreover, with the aim of explaining the evolution of
relationships evolve over time, Spelta and Araújo (2012)
proposed the so-called residuality coefficient, which compares
the relative strength of the connections above and below a
threshold distance value, i.e.,

R =

∑

di,j>L

d−1
i,j

∑

di,j≤L

d−1
i,j

(5)

with L being the highest threshold distance value ensuring
connectivity of the MST. Intuitively, the residuality coefficient
R increases when the number of links increases—meaning
the network becomes more sparse, and viceversa lowers with
decreasing number of links.

2.3. Network Centrality Measures
In this paper we employ of centrality measures in order
to develop a portfolio allocation that takes into account the
centrality of a node (cryptocurrency) in the system. Network
theory includes several centrality measures, such as the degree
centrality, counting how many neighbors a node has, as well
centrality measures based on the spectral properties of graphs
(see Perra and Fortunato, 2008). Among the spectral centrality
measures we remark Katz’s centrality (see Katz, 1953), PageRank
(Brin and Page, 1998), hub and authority centralities (Kleinberg,
1999), and the eigenvector centrality (Bonacich, 2007).

In this paper we employ of the eigenvector centrality, as it
measures the importance of a node in a network by assigning
relative scores to all nodes in the network. Relative scores are
based on the principle that being connected to few high scoring
nodes contributes more to the score of the node in question
than equal connections to low scoring nodes. In other words,
considering a generic node i, the centrality score is proportional
to the sum of the scores of all nodes which are connected to it, i.e.,

xi =
1

λ

N
∑

j=1

d̂i,jxj (6)

where xj is the score of a node j, d̂i,j is the element (i, j) of the
adjacency matrix of the network, λ is a constant. The equation
from above can be rewritten in a compact form as:

D̂x = λx (7)

where D̂ is the adjacency matrix, λ is the eigenvalue of the
matrix D̂, with associated eigenvector x, a vector of scores of
dimension N, meaning one element for each node. Note that
as our networks are based on distances between returns, the
higher the centrality measure associated to a node, the more
the node behaves dissimilarly with respect to the other nodes in
the network.

2.4. Portfolio Construction
Asset correlations are key items in investment theory and risk
measurement, in particular for optimization problems as in
the case of the widely known portfolio theory described by
Markowitz (1952). As a consequence, correlation based graphs
are useful tool to build optimal investment strategies. In this
subsection we show how portfolio construction can be enhanced
by means of a combination of the RMT, MST, and network
centrality measures described above.

Several researches have investigated the relationship between
the network structure of financial assets and portfolio strategies.
The study (Onnela et al., 2003) shows how a portfolio constructed
via Markowitz theory is mainly composed by assets that lie in the
periphery of the asset network structure, i.e., outer node assets,
and not in its core. Pozzi et al. (2013) find that peripheral assets
in the network yield to better performances and lower portfolio
risk with respect to central ones. Peralta and Zareei (2016) show
that the centrality of assets within a network are negatively
related with the optimal weights obtained through theMarkowitz
technique. Building on that, Vỳrost et al. (2018) conclude that
asset allocation strategies including the network structure of
financial asset are able to improve a portfolio’s risk-return profile.

Another stream of literature focused on proposing alternative
portfolio allocation strategies based on the network structure of
financial assets. To illustrate, Plerou et al. (2002) and Conlon
et al. (2007) use the randommatrix theory to filter the correlation
matrix to be inserted in the Markowitz minimization problem,
while Tola et al. (2008) add the MST obtaining improvements
with respect to the raw model.

In the present context we aim to study the differences in the
risk-return profiles of our strategy, which includes topological
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measures in the optimization problem, with respect to the
traditional Markowitz model, possibly yielding to better risk-
return characteristics of the portfolios. The originality of our
approach builds on the fact that we do not only use RMT and
MST as alternative approaches to quantify risk diversification, but
we employ an extension of the traditional Markowitz method by
including these techniques in the minimization problem. Indeed,
in the present case we want to solve the following problem:

min
w

wT6∗w+ γ

n
∑

i=1

xiwi (8)

subject to

{

∑n
i=1 wi = 1

µP ≥
∑n

i=1 µi

n
wi ≥ 0

where w is the vector of portfolio weights, being wi the weight
associated to the cryptocurrency i, 6∗ is the filtered variance-
covariance matrix with generic element (i, j) represented by
σiσjc

∗
i,j, γ is the parameter representing the risk aversion of

the investor, xi is the eigenvector centrality associated with the
cryptocurrency i, µP indicates the return of the portfolio and µi

the return of the generic cryptocurrency i.
Generally speaking, portfolios built upon the traditional

Markowitz theory are such that the risk is minimized for a
given expected return, using as input the raw variance-covariance
matrix of returns. In our case, the methodological improvement
is 2-fold. Firstly, wemodify the input variance-covariancematrix,
which is filtered by both RMT and MST. Secondly, we add a
component derived from the MST structure which relates to
an extra risk component the investor may want to control for.
Indeed, by modulating γ the investor can set its own level of
risk aversion toward systemic risk specifically, and not just to
the portfolio risk as in the Markowitz framework. As a matter
of fact, being centralities inversely related with distances, a small
value of γ yields to portfolios composed by less systemically risky
cryptocurrencies, which generally lie in the peripheral part of
the network. Conversely, a large value of γ makes the algorithm
select more systemically relevant cryptocurrencies, meaning
those who are in the center of the network structure. For the sake
of completeness, we will test different values of the systemic risk
aversion parameter in the course of the current application.

Starting from the cryptocurrency return time series, the steps
of the algorithm can be summarized as follows:

1. Estimation of the filtered correlation matrix C∗ by RMT
2. Reduction of the number of links in the filtered correlation

matrix C∗ by MST
3. Computation of the filtered variance-covariance matrix 6∗

associated to the filtered correlation matrix C∗ in step 2
4. Computation of the eigenvector centralities xi

5. Computation of the portfolio weights by solving the
minimization problem:

min
w

wT6∗w+ γ

n
∑

i=1

xiwi s.t.

{

∑n
i=1 wi = 1

µP ≥
∑n

i=1 µi

n
wi ≥ 0

}

The weights calculation finally yields to the portfolio
returns which we use to evaluate the performance of our
allocation method.

3. EMPIRICAL FINDINGS

3.1. Data Description and Network
Topology Analysis
In our empirical application we consider 10 time series of returns
referred to cryptocurrencies traded over the period 14 September
2017–17 October 2019 (764 daily observations). In particular,
we consider the first 10 cryptocurrencies in terms of market
capitalization as of 17 October 20192. To be precise, we analyze
the return time series of the following cryptocurrencies: Bitcoin
(BTC), Ethereum (ETH), Ripple (XRP), Tether (USDT), Bitcoin
Cash (BCH), Litecoin (LTC), Binance Coin (BNB), Eos (EOS),
Stellar (XLM), Tron (TRX).

We provide some basic descriptive statistics of our data
in Table 1. From Table 1 one may notice that average daily
returns are all close to zero, in line with the general economic
theory regarding asset returns. However, the 10 cryptocurrencies
exhibit different standard deviations, meaning that the variability
in returns differs quite strongly among cryptocurrencies. To
illustrate, USDT is the one showing the lowest relative variability;
this is in line with the fact that this cryptocurrency is classified
as stable coin, therefore its price should not deviate too
much on a daily basis. On the other hand, TRX is the one
showing the highest standard deviation; indeed, this particular
cryptocurrency witnessed a period of high fluctuations during
the considered sample period. As far as kurtosis is concerned,
most of the cryptocurrencies exhibit values which reflects the
non-Gaussian and heavy tailed behavior of their associated
distribution. This is particularly true for XLM and XRP, whose
kurtosis are relatively larger than the ones of the other time series.

To better understand the dynamics of the cryptocurrency time
series, we plot the normalized price series in Figures 1, 23. The
two figures confirm well-known features of cryptocurrencies,
such as their overall high volatility (with TRX being the most
volatile), the stability of the stable coin (USDT) as well as the low
liquidity that some of them exhibit (such as TRX).

In order to apply the filter through RMT, we divide the
dataset into consecutive overlapping windows having a width
T = 120 (4 trading months). We set the window step length
to 1 week (7 trading days), which makes up a total of 93 weekly
4-months windows.

2We exclude Bitcoin SV (BSV) in order to achieve a sufficiently large timespan,
meaning a more than 2-years time period.
3We split the plot in two different figures for scale reasons.
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TABLE 1 | Summary statistics.

Mean Std Kurtosis Skewness

BTC 0.0009 0.04 3.35 −0.07

ETH −0.0007 0.05 2.90 −0.33

XRP 0.0004 0.07 15.73 1.80

USDT 0.0000 0.01 4.28 0.22

BCH −0.0011 0.08 6.47 0.49

LTC −0.0003 0.06 8.02 0.66

BNB 0.0033 0.07 7.74 0.78

EOS 0.0017 0.07 3.93 0.60

XLM 0.0021 0.10 26.19 2.03

TRX 0.0021 0.15 13.15 0.66

The table shows relevant summary statistics for the 10 cryptocurrencies considered

related to the whole sample period, i.e., 13 September 2017–10 October 2019.

FIGURE 1 | Normalized cryptocurrency price series I. This figure shows the

normalized price series for five cryptocurrencies: XRP, BNB, EOS, XLM, TRX,

relative to the period 7 January 2018–17 October 2019.

For each time window considered, we use 15 weeks of daily
observations to estimate the model, while the last week is used for
validation purposes. In other words, we compute 93 correlation
matrices between the 10 cryptocurrency return time series, each
one based on 15 weeks of daily returns and then filter them by
means of the Random Matrix approach. Applying the Random
Matrix filtering, correlation matrices are rebuilt considering only
the eigenvectors corresponding to the deviating eigenvalues.

In order to have a better understanding of the links existing
between cryptocurrencies, the filtered correlation matrices are
then used to derive the MST representation over two main
periods of interest. In particular, we plot the MST structure
emerging from the period of the cryptocurrency price hype
(September 2017–January 2018) in Figure 3, while the MST

FIGURE 2 | Normalized cryptocurrency price series II. The figure shows the

normalized price series for five cryptocurrencies: BTC, ETH,USDT, BCH, LTC,

relative to the period 7 January 2018–17 October 2019.

FIGURE 3 | MST September 2017–January 2018. This figure shows the MST

representation relative to the period of the speculative bubble.

structure related to the latest trading period analyzed (June
2019–October 2019) in Figure 4.

As it is clear from the graph, the two networks show quite
similar features. Indeed, ETH is the cryptocurrency which always
lies in the center of the structure, indicating its central role
in the cryptocurrency market. The only difference between the
two graphical representations concerns USDT, which during
the price hype is not connected directly to ETH as the other
cryptocurrencies, but to LTC. This is linked to the fact that USDT
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FIGURE 4 | MST June 2019–October 2019. This figure shows the MST

relative to the period June 2019–October 2019.

FIGURE 5 | MST thresholds and residuality coefficients. The black line shows

the Max link distance, while the red line shows the residuality coefficient,

whose values are reported, respectively on the left and right y axis.

is a stable coin and, therefore, behaves dissimilarly from the
other cryptocurrencies considered, being it much less volatile.
However, this difference in behavior levels out during the latest
period, as it emerges from Figure 4.

To better understand the dynamics of the MST among
cryptocurrencies, we investigate the evolution of the links over
time. Indeed, we compute two different measures: the Max link,
i.e., the value of the maximum distance between two pairs of

FIGURE 6 | Performances of different portfolio strategies. The plot reports the

profits and losses of a portfolio with initial value of 100 USD obtained by the

CRIX benchmark index [Benchmark (CRIX)], the optimization using the

Markowitz approach with the variance-covariance matrix filtered by Glasso

(Glasso Markowitz), the naive portfolio (Equally Weighted), our optimization

using RMT and MST applied to the variance-covariance matrix (Network

Markowitz), our model based on different values of γ (γ=0.005, 0.025, 0.05,

0.15, 0.7, 1), and the standard Markowitz portfolio (Classical Markowitz). The

portfolio values are plotted for the period 7 January 2018–17 October 2019.

FIGURE 7 | Performances of selected portfolio strategies. The plot reports the

profit and losses of a portfolio with initial value of 100 USD obtained by the

CRIX benchmark index [Benchmark (CRIX)], the optimization using the

Markowitz approach with the variance-covariance matrix filtered by Glasso

(Glasso Markowitz), the naive portfolio (Equally Weighted), our optimization

using RMT and MST applied to the variance-covariance matrix (Network

Markowitz) and the standard Markowitz portfolio (Classical Markowitz). The

portfolio values are plotted for the period 7 January 2018–17 October 2019.
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TABLE 2 | Cumulative Profits and Losses.

Period CRIX GM EW CM NW γ = 0.005 γ = 0.025 γ = 0.05 γ = 0.15 γ = 0.7 γ = 1

Jan-2018 −0.14 −0.13 −0.16 0.04 −0.22 −0.21 −0.26 −0.27 −0.36 −0.43 −0.43

May-2018 −0.67 −0.62 −0.60 −0.12 −0.79 −0.78 −0.73 −0.66 −0.83 −1.08 −1.10

Sep-2018 −1.37 −1.37 −1.43 −0.88 −0.83 −1.02 −1.24 −1.23 −1.40 −1.60 −1.64

Jan-2019 −1.85 −1.78 −1.78 −1.32 −0.87 −1.50 −1.86 −1.98 −2.19 −2.29 −2.31

May-2019 −1.35 −1.25 −1.27 −1.01 −0.74 −1.22 −1.33 −1.29 −1.44 −1.55 −1.57

Sep-2019 −0.99 −1.45 −1.49 −1.02 −0.54 −1.19 −1.34 −1.44 −1.86 −2.13 −2.15

This table shows the cumulative 4-months Profits and Losses of portfolios under different strategies. Particularly, Profits & Losses are computed for the CRIX benchmark index

(CRIX), the Glasso Markowitz (GM), the naive portfolio (EW), the Network Markowitz (NW), the classical Markowitz (CM), and the proposed models with different values of γ

(γ = 0.005, 0.025, 0.05, 0.15, 0.7, 1). All values are expressed in percentage terms.

nodes in the tree, and the residuality coefficient, meaning the
ratio between the number of links which are dropped and the
number of those who are kept by the MST algorithm. The two
metrics, computed over the whole sample period, are illustrated
in Figure 5.

From Figure 5 one may notice that the Max link increases
during the Bitcoin price hype and fluctuates around relatively
large values until roughly mid 2018, meaning that during this
period correlations between cryptocurrency returns are strongly
misaligned. After that, the index bounces back toward its
previous values and even below, suggesting that cryptocurrency
returns start to behave more similarly during the latest period.
Furthermore, the residuality coefficient increases during the very
beginning of the sample period, while it sharply declines during
the price hype phase. After the decrease, the coefficient stays quite
stable and then gently increases not without fluctuations from
mid 2018 to the end of the sample period. This suggests that the
number of links until mid 2018 was quite limited, and therefore,
returns misaligned, whereas the same number started to increase
after that phase, meaning there were more connections and thus
more synchronicity across cryptocurrency returns.

3.2. Portfolio Construction
In this subsection we illustrate the results related to the proposed
portfolio strategies. The optimal portfolio weights are obtained
through the constrained minimization of the objective function
in Equation 8. For the sake of completeness, we use different
values of the systemic risk aversion parameter γ , meaning γ =

0.005, 0.025, 0.05, 0.15, 0.7, 1. These values have been chosen,
without loss of generality, to be representative of different
aversion profiles. While γ = 0 indicates no aversion, γ = 1
indicates a high aversion, with systemic risk being given the same
importance as non-systemic one.

We use fifteen weeks, i.e., to compute the optimal portfolio
weights as described in section 2. We then use the last
week associated to each window to evaluate the out-of-sample
performance of our technique, meaning to compute the portfolio
returns and, therefore, the resulting Profit & Losses. We then
compute portfolio returns for the period 7 January 2018–
17 October 2019, accounting for rebalancing costs, which are
supposed to amount to 10 basis points.

In Figure 6 we plot the returns of our investment strategies
for the different values of γ mentioned above as well as for γ =

TABLE 3 | VaR.

Period CRIX EW NW GM CM

Jan-2018 0.11 0.13 0.15 0.14 0.03

May-2018 0.04 0.05 0.02 0.05 0.03

Sep-2018 0.11 0.11 0.10 0.12 0.02

Jan-2019 0.07 0.10 0.05 0.07 0.01

May-2019 0.04 0.02 0.03 0.02 0.04

Sep-2019 0.05 0.05 0.02 0.05 0.01

This table shows the 4-months Value at Risk of portfolios under different strategies for a

confidence interval of 95%. In particular, the VaR is computed for the CRIX benchmark

index (CRIX), the naive portfolio (EW), the Network Markowitz (NW), the Glasso Markowitz

(GM), and the classical Markowitz (CM). All values are expressed in absolute terms

multiplied by a scale factor of 100.

0 (Network Markowitz), meaning the results of the Markowitz
portfolio strategy using the variance-covariance matrix filtered
by RMT and MST. In doing so, we plot portfolio performances
under the hypothesis of investing 100USD at the beginning of the
period, and examining how much is lost along time. The results
of our strategies are compared with the performance of several
strategies and indicators: the benchmark portfolio (CRIX4), the
Markowitz portfolio with variance-covariance matrix filtered by
the Glasso5 technique (Glasso Markowitz), the naive portfolio
(Equally Weighted) and the traditional Markowitz portfolio
(Classical Markowitz). To better highlight the results of our
best proposed model, we plot the results only for a selection of
portfolio strategies in Figure 7. To complement this information,
we report the 4-months cumulative Profits and Losses of each of
the considered strategy in Table 2.

Overall, we are considering a period in which the
cryptocurrency market witnesses a down period—except
for the first part of our analyzed timespan and several short
periods consequently occurring. Therefore, as the market is not
profitable during the studied period, we aim to achieve through

4The CRIX is a cryptocurrency market index following the Laspeyres methodology
for the construction of indexes. More information about CRIX can be found at
https://thecrix.de/
5The sparsity parameter ρ has been set to 0.01, as in the reference paper by
Friedman et al. (2008).
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TABLE 4 | Sharpe ratio.

Period GM EW CM NW γ = 0.005 γ = 0.025 γ = 0.05 γ = 0.15 γ = 0.7 γ = 1

Jan-2018 −0.05 −0.05 −0.03 −0.13 −0.12 −0.08 −0.06 −0.08 −0.09 −0.10

May-2018 −0.14 −0.14 −0.19 −0.03 −0.04 −0.08 −0.09 −0.08 −0.07 −0.07

Sep-2018 −0.10 −0.09 −0.17 −0.04 −0.17 −0.17 −0.20 −0.20 −0.18 −0.17

Jan-2019 0.10 0.09 0.11 0.09 0.06 0.08 0.11 0.12 0.12 0.12

May-2019 −0.02 −0.02 0.01 0.08 0.02 0.02 −0.00 −0.03 −0.04 −0.04

Sep-2019 −0.06 −0.06 −0.03 0.03 0.07 −0.11 −0.14 −0.14 −0.14 −0.14

This table shows the 4-months values of Sharpe ratio of portfolios under different strategies. In particular, the SR is computed for the Glasso Markowitz (GM), the naive portfolio (EW),

the classical Markowitz (CM), the Network Markowitz (NW), and for all the value of γ .

TABLE 5 | Rachev ratio.

Period GM EW CM NW γ = 0.005 γ = 0.025 γ = 0.05 γ = 0.15 γ = 0.7 γ = 1

Jan-2018 0.74 0.75 0.63 0.64 0.69 0.77 0.79 0.78 0.77 0.99

May-2018 0.73 0.75 0.95 0.83 0.74 0.77 0.83 0.87 0.87 0.55

Sep-2018 0.81 0.84 0.87 0.61 0.80 0.75 0.76 0.80 0.80 0.48

Jan-2019 1.16 1.11 1.47 1.24 1.34 1.36 1.39 1.40 1.40 1.26

May-2019 0.80 0.80 1.05 0.97 0.93 0.84 0.75 0.72 0.72 0.98

Sep-2019 0.75 0.78 1 1.14 0.43 0.38 0.38 0.38 0.37 0.78

This table shows the 4-months values of Rachev Ratio (RR) of portfolios under different strategies. In particular, the RR is computed for the Glasso Markowitz (GM), the naive portfolio

(EW), the classical Markowitz (CM), the Network Markowitz (NW), and for all the value of γ .

our allocation strategies losses which are lower than those yielded
by other competing methodologies.

On the one hand, during a first phase which lasts roughly
until mid 2018, the traditional Markowitz portfolio seems to
overperform the other portfolio allocation strategies. Indeed,
the allocation by Markowitz’ technique yields to positive
(cumulative) returns until January 2018 and just slightly negative
ones until May 2018, however still lower than the losses provided
by the other strategies in absolute terms.

On the other hand, from September 2018 onwards all
portfolios start providing strong negative returns. Indeed, the
returns yielded by the portfolio constructed via Markowitz
start to decline dramatically, together with those of the model
including the systemic risk aversion parameter. This is because
the latter model takes into account the centrality of the
cryptocurrencies in the network and is therefore more adaptive
to market conditions, regardless of whether they are favorable or
not. Indeed it can be noticed that—overall—during bull market
periods our model taking into account for risk aversion reacts
very fast to upward movements and yields to good cumulative
performances; conversely, during downmarket periods, the same
model yields to worse relative performances due to declining
market conditions.

However, during the second half of our sample period our
proposed model with the systemic risk aversion parameter γ set
to 0 (NetworkMarkowitz) clearly overwhelms the other portfolio
allocation strategies. To illustrate, if we look at the cumulative
performance of the above mentioned method, we can see that
it more than halves losses with respect to the equally weighted
portfolio, to the Glasso Markowitz portfolio and to all portfolios
including a risk aversion parameter γ > 0. Moreover, it almost
halves the losses with respect to the benchmark index (CRIX) and

to the traditional Markowitz methodology. This suggests that this
model is capable to provide a stronger coverage for losses in case
of down market periods with respect to all other considered asset
allocation strategies6.

In Table 3 we compute the 4-months Value at Risk (VaR) with
a confidence level of 0.05% for the benchmark index (CRIX),
the equally weighted portfolio, our NetworkMarkowitz portfolio,
the Glasso Markowitz and the traditional Markowitz portfolios.
This is done in order to compare, together with cumulative
returns, the potential riskiness of our strategy with respect to the
alternative portfolio allocation methods considered.

Table 3 shows that, except for the price hype period, our
proposed Network Markowitz approach generally yields to lower
values at risk with respect to the benchmark index (CRIX), the
naive portfolio and the Glasso Markowitz. The aforementioned
model is instead more risky than the traditional Markowitz
model, although the latter, overall, yields too far way larger
negative returns. In general, the riskiness of our strategy seems
to be quite satisfactory with respect to the alternative allocation
strategies analyzed.

To further support our conclusions, Table 4 presents the
Sharpe ratio under the different strategies.

Table 4 gives further evidence to support our conclusions:
the proposed Network Markowitz approach yields better
Sharpe Ratios.

To strengthen the robustness of our conclusions, Table 5
presents the Rachev ratio, with a confidence level of 10%, under
the different strategies. The Rachev ratio is a useful supplement of

6A sensitivity analysis reported in the Appendix confirms that results are
robust with respect to different choices of the starting points and rolling
estimation windows.
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FIGURE 8 | Winning strategy portfolio weights. The figure shows the portfolio weights associated to the winning strategy—i.e., the Network Markowitz (NW)—for the

analyzed time period.

the Sharpe ratio, when data is non-symmetric, as in our context.
It is calculated as the ratio between an extreme gain and an
extreme loss.

Table 5 shows that the Network Markowitz approach yields
the best performances in the initial and final periods, and the
Classic Markowitz in all other periods. The other strategies
generally show worse performances. This is consistent with our
previous findings, and with the fact that the Rachev ratio takes
higher values during periods characterized by decreasing returns,
such as the quarter preceding January 2019.

Overall, we cannot say that the proposed model overperforms
traditional approach (such as Glasso Markowitz and Classical
Markowitz). It does so in certain periods and according to certain
risk aversion parameterizations.

For the sake of completeness, we plot the portfolio weights
of the winning strategy over the evaluation time horizon in
Figure 8. As one can clearly see, the composition of the portfolio
varies quite much over time. Indeed, during the first period of
the sample, approximately until February 2018, the portfolio is
composed by various assets, with USDT gaining a high share
over time, being it the most stable across all. After that, BTC is
the cryptocurrency which is mostly selected by our algorithm,
roughly until October 2018 (with some exceptions), as it is
considered a proxy of the whole market. Finally, the algorithm

selects different cryptocurrency compositions until the end of the
sample, being the latter a highly uncertain period for the market.

Last, we present, for comparison purposes, the portfolio
weights associated with γ = 1.

While Figure 8 gives the weights relative to the situation of no
systemic risk aversion, Figure 9 gives the weight corresponding
to a very high systemic risk aversion, in which it has the same
importance as non-systemic risk.

4. CONCLUSIONS

In this paper we have proposed a methodology that aims to build
an allocation strategy which is suitable for highly volatile markets,
such as cryptocurrency ones. In particular, we have applied our
models to a set of 10 cryptocurrency return time series, selected
in terms of market capitalization. We have shown that the use of
network models can enhance portfolios’ risk-return profiles and
mitigate losses during down market periods.

We have demonstrated how the use of centrality measures,
together with tuning an investor’s systemic risk aversion, is a
suitable methodology to make profits during bull market periods,
as this method is rapidly adaptive to market conditions. We
have also shown that, to protect investors from losses during
bear market periods, the combination of RandomMatrix Theory
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FIGURE 9 | Highly risk adverse strategy portfolio weights. This figure shows the portfolio weights associated to a highly systemic risk adverse strategy—γ = 1—for

the analyzed time period.

and Minimal spanning trees can yield to acceptable risk-return
profiles and/or mitigate losses.

Our empirical findings show that, overall, the proposed
method is acceptable, even during downturn periods. However,
we cannot claim that this proposed model should always be used
in automated consultancy. It should always be compared with
competing alternatives, according to different market conditions
and different risk aversions.

We strongly believe that the proposed model should be
further tested in different contexts. For this purpose, we provide
at https://www.fintech-ho2020.eu a link to the used data and
software, so the proposed methods can be fully reproduced. The
software is written in the R language, and allows the methods to
be extended to other data and contexts.

Further research should involve, besides the application to
other contexts, the consideration of different base portfolio
allocation models. We have used Markowitz’ as is the most
employed by robot advisory platforms.
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