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Introduction
Urothelial bladder cancer (BCa) is the 10th most commonly 
diagnosed cancer worldwide with first manifestation as 
unpainful hematuria. The worldwide age-standardized inci-
dence rate is 9.0 and 2.2 per 100 000 person/years for men and 
women, respectively.1 Approximately 75% of patients with 
BC present with a disease confined to the mucosa (stage Ta, 
CIS) or submucosa (stage T1); in younger patients (<40) this 
percentage is even higher.2 It is one of the epithelial malig-
nancies that present generally as a protrusion confined to the 
bladder mucosa or lamina propria.3 The deaths caused by 
BCa reach approximately 150 000 cases each year.4 Bladder 
cancer is classically classified as muscle-invasive bladder can-
cer (MIBC) and non-muscle invasive bladder cancer 
(NMIBC). NMIBC includes different kinds of lesions, 
including Tis, Ta, and T1 according to Tumor, Node, 
Metastasis (TNM) classification system. Papillary tumors 
confined to the mucosa and invading the lamina propria are 
classified as stage Ta and T1, respectively. Flat, high-grade 
tumors confined to the mucosa are classified as Tis. 
Approximately 75% of the BCa patients are found to be 
NMIBC at initial diagnosis. All of the patients with NMIBC 
can be treated by transurethral resection of the bladder 
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(TURB) in combination with Intravesical chemotherapy. 
However, there are still part of the NMIBC respond poorly to 
without any anticipation. Therefore, the latest EAU guideline 
has emphasized the importance of reliable molecular markers 
for improving the predictive accuracy of BCa prognosis.5 
Although most of the patients are found to be in an early 
stage, there are still about 25% of patients present as MIBC 
or metastatic at the time of initial diagnosis, which tend to 
have poor prognosis.6 MIBC remains the toughest problem 
up till now in urothelial bladder cancer. Radical surgery and 
urinary diversion would be recommended for MIBC patients. 
Besides, patients suffering from MIBC are vulnerable to dis-
ease recurrence and progression, which means a high-cost 
and miserable lifespan.

The staging system is an effective way to evaluate the prog-
nosis of BCa patients, especially for MIBC patients. The 
American Joint Committee on Cancer (AJCC) TNM staging 
system is a classical system that has been validated and used 
widely to predict the risk of disease progression and help with 
treatment options. WHO 2004/2016 classifications are the 
most commonly used systems in daily routine derived from 
WHO 1973 grading system and classify BCa into high and 
low grades tumors. However, the WHO 2004/2016 classifica-
tions still show interobserver differences and less significance 
in predicting 5-year progression-free survival (PFS). The 
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precise evaluation of MIBC patients’ prognosis could largely 
affect treatment selection.7 There are emerging biomarkers 
including molecular markers, taxonomy, and gene signatures 
proved to be partly effective in predicting recurrence and tumor 
progression. As MIBC being the crux of overall survival of 
BCa patients, we intended to focus on MIBC prognosis 
prediction.

Neoadjuvant cisplatin-based chemotherapy (NAC) is the 
standard treatment for MIBC patients with stage T2-T4a, cN0 
M0 lesions prior to radical cystectomy. However, only approxi-
mately 40% of patients could benefit from NAC with a major 
response, including absence of muscle-invasive disease and 
lymph node metastasis (<pT2 and pN0).8 Several convincing 
studies have shown efficacy of immune checkpoint therapy in 
MIBC treatment. MIBC is proved to be susceptible to PD-L1 
therapy. According to the latest ESMO, PD-L1 inhibitors 
were listed as first-line choice for NAC refractory MIBC 
patients.9 Although PD-L1 expression level is theoretically 
demanded before PD-L1 inhibition therapy, PD-L1 expres-
sion is found to be not consistent enough with therapy effec-
tiveness.10 So it is urgent to find more precise prognostic factors 
to predict therapeutic reaction for immune checkpoint 
therapy.

Weighted gene co-expression network analysis (WGCNA) 
can act as a useful tool to find out differentiated genes by con-
structing gene networks to find connections between gene 
pairs and clinical characteristics.11 WGCNA has been widely 
used for processing gene expression levels and studying net-
work changes with phenotype. WGCNA can be used to delin-
eate network topologies and modules, with topological overlap 
dissimilarity used as a measure of the distance between genes. 
Overall, the genes with the most differential expression could 
be included for subsequent WGCNA analyses. Thus, we made 
use of bioinformatics tools including WGCNA to analyze 
public MIBC gene datasets in an attempt to find a prognostic 
biomarker that can help with treatment selection.

Materials and Methods
Data collection

The study workflow is presented in Figure 1. The MIBC 
microarray data of TCGA cohort was obtained from Xena 
(https://xena.ucsc.edu/) and GSE13507 was obtained from 
Gene Expression Omnibus database (GEO, http://www.ncbi.
nlm.nih.gov/geo) respectively. The clinical characteristics 
including cancer type, status, topography, lymph node, and 
metastasis (TNM) based on American Joint Committee on 
Cancer (AJCC), pathological stage were extracted, in which 
NMIBC BCa tumor samples were excluded. FPKM standard-
ized data and survival outcomes of GDC TCGA Bladder 
Cancer cohort were extracted from Xena and processed with 
log2(fpkm + 1).12 TCGA database provided 412 primary 
tumors in which 399 samples were identified as MIBC and 
GSE13507 provided 61 MIBC patients. Both of the datasets 

were set as discovery cohorts. All process was handled on the 
platform of R software (version 4.0.2; https://www.r-project.
org/).

Weighted gene co-expression network analysis 
(WGCNA) and univariate Cox regression

WGCNA is one of the most common ways in bioinformatics 
to explore the relationship between tremendous genes and 
clinical traits.11 A topological overlapping matrices (TOM) 
network was constructed for dissimilarity measurements 
between genes in the form of average linkage hierarchical 
clustering. Genes were grouped as different modules para-
metrized according to correlation strength with clinical 
parameters. In the process of WGCNA analysis, unsigned 
network and Pearson correlation were used. The overall sur-
vival over 3 years and less than 1 year of MIBC patients were 
set as clinical parameters, as well as tumor stage and grade. 
R2 = .9 was selected to ensure a scale-free network. Then we 
set the threshold as 0.4 to merge similar modules. Finally, the 
correlation between MIBC OS and modules was quantified 
and key modules were located for further analysis. Univariate 
Cox analysis of overall survival (OS) was performed to screen 
prognosis-related genes with whole transcriptome profiles. 
Venn diagram was utilized to find out the intersection of gene 
groups from WGCNA modules and univariate Cox 
analysis.13

Pathway analysis and Gene-set enrichment analysis 
(GSEA)

Information regarding the biological pathways was obtained 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
http://www.genome.jp/kegg/pathway.html) pathway database. 
GSEA was performed according to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) gene set (c2.cp.kegg) in the 
molecular signatures database (MSigDB).14 MIBC samples 
were grouped according to median risk scores as high and low. 
Cutoff of P < .05 was set as statistically significant.

Survival analysis and prognostic model

The univariate Cox analysis was used to filter the prognosis-
related genes according to gene expressions as continuous data. 
The multivariate Cox analysis was conducted to assess the 
prognostic effects of the key genes for the construction of RS. 
The correlation coefficient was obtained according to the 
weight of genes. The RS was designed as β1 × gene1 expres-
sion + β2 × gene2 expression + .  .  . + βn × gene expression, 
where β represented the correlation coefficient. In our study, 
the RS formula was designed as,

RS =
-0.36493 CLK4 -0.5611 DEDD2
+0.18251 ENO1-0.09349 SYTL1

× ×
× ×
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The expression levels of genes and RS values were classified as 
high and low groups based on the corresponding median value. 
Kaplan-Meier analysis with Log-rank regression was selected 
to validate the prognostic role of genes and risk score in MIBC 
patients. The median value of risk score was used as cutoff 
value. The predictive ability of RS was evaluated by ROC 
curves and AUC.

Statistical analysis

Chi-square test, Fisher’s exact analysis, or Cochran-Mantel-
Haenszel test were performed for categorical variables, and 
Student’s t-test or Wilcoxon signed ranks test were utilized for 
continuous variables. Spearman’s test was performed to analyze 
the correlation between gene expressions and RS. For all statis-
tical analyses, a two-tailed P value < .05 was considered statis-
tically significant.

Results
Filtration of genes with prognostic potential

WGCNA and univariate Cox regression were performed 
respectively to TCGA cohort and GSE13507 cohort (Figure 2). 
Dendrogram and corresponding clinical traits were analyzed to 

allow samples for further network analysis. The clinical cutoff 
object for WGCNA was OS and classified as less than 1 year 
and more than 3 years. In the TCGA cohort, 78 patients 
obtained OS less than 1 year and 83 patients outlived 3 years, 
while in the GSE13507 cohort, 20 patients failed to live more 
than 1 year and 16 patients lived more than 3 years. Gene co-
expression network was constructed and 30 modules were iden-
tified in the TCGA cohort (Figure 2C and D), while 37 modules 
were obtained in the GSE13507 cohort (Figure 2J). Four groups 
including 3648 genes from TCGA Cox analysis, 5022 genes 
from TCGA WGCNA analysis, 640 genes from GSE13507 
cohort Cox analysis, and 3111 genes from GSE13507 WGCNA 
analysis were identified (Figure 4A). In TCGA group, 3 mod-
ules from WGCNA including MEivory (P = .02), MElightcyan 
(P = .04), and MEbrown (P = .03) were selected, all of which 
showed a protective effect on OS (Figure 2D). In the GSE13507 
cohort, 2 groups with the best significance, as known as MEivory 
(P = .01) and MEturquoise (P = .02) modules were chosen for 
further analysis. Univariate Cox analysis of OS filtered 3648 
genes from the TCGA database and 640 genes from the 
GSE13507 database. A Venn diagram shows the intersection of 
these 4 groups (Figure 3A). Four genes were selected, including 
CLK4, DEDD2, ENO1, and SYTL1 (Figure 4A). The 

Figure 1.  Workflow of bioinformatics analysis.
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Figure 2.  Identification of prognostic gene modules in TCGA cohort and GEO dataset. (A and G) Sample dendrogram and trait heatmap of TCGA cohort. 

The dendrogram branches represented the clustered samples. (B and H) Soft-thresholding power analysis of the scale-free topology model fit index 

(upper) and mean connectivity (below). (C and I) Cluster dendrogram illustrating clustering of genes and assignment of modules. Modules were shown in 

different colors. (D and J) Correlation between module eigengenes and OS, tumor stage, and T stage. Close relationship was represented by red color. (E 

and K) Interaction between different modules. Lighter color represented higher connectivity. (F and L) The dendrogram shows the relation of modules with 

OS and the heatmap shows the eigengene adjacency.
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expressions of DEDD2 and SYTL1 both showed prognostic 
significance in differentiating early stage (T2) and later stage 
(T3 and T4, Figure 2B). Besides, DEDD2 (P = 0.031) and 
SYTL1 (P = 1.9e−10) were found to be negatively related to 
MIBC grade, which was consistent with the result in T stages, 

while higher expression of ENO1 was correlated with more 
possibility of high grade of MIBC (P = .009, Figure 3C). The 
prognostic value of genes was validated in TCGA cohort alone 
due to its bigger dataset. According to K-M analysis, DEDD2 
showed the best prognostic efficiency in both overall survival 

Figure 3.  Identification of key prognostic genes associated with MIBC prognosis. (A) Venn diagram of the intersection of TCGA-WGCNA-ivory-light 

cyan-brown, GEO-WGCNA-ivory-turquoise, TCGA-Cox analysis, and GEO-Cox analysis. (B and C) Correlationship between CLK4, DEDD2, ENO1 and 

SYTL1 expressions, and MIBC tumor stage and grades. P values, t-test. (D) Overall survival of MIBC patients according to CLK4, DEDD2, ENO1, and 

SYTL1 expressions in TCGA cohort, high and low expression were defined by medium. P values, log-rank analysis. (E) Disease-specific survival of MIBC 

patients according to CLK4, DEDD2, ENO1, and SYTL1 expressions in TCGA cohort. P values, log-rank analysis.
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Figure 4.  Construction of the risk score (RS) associated with MIBC prognosis. (A) Construction of RS. The formula was based on the coefficients and 

expression of CLK4, DEDD2, ENO1, and SYTL1 expressions as RS = (−0.36493 × CLK4 − 0.5611 × DEDD2 + 0.18251 × ENO1 − 0.09349 × SYTL1). (B) 

Correlationship between RS and MIBC T stages and grades. P values, t-test. (C) OS, DSS, and PFI of MIBC patients according to RS in TCGA cohort. (D) 

Multivariate Cox analysis showing multivariate analyses of parameters associated with MIBC OS. (E) Prognostic value of RS predicting 1-year OS. ROC 

curve indicated superior predictive accuracy in survival outcomes. (F) Prognostic value of RS predicting 3-year OS. (AUC = 0.653). (G) Correlation 

between RS and OS in T2, T3, and T4 stages of MIBC cases. (H) Correlation between RS and PFI in T2 stage of MIBC cases.
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(OS) and disease-specific survival (DSS) in TCGA cohort 
(P < .001, Figure 3D and E). CLK4, ENO1, and SYTL1 were 
able to predict the prognosis in the first 7 years and failed to 
predict long term OS and DSS.

Construction and prognostic eff iciency of RS in 
MIBC

Riskscore (RS) prognostic model was constructed based on 
multivariate Cox analysis. The coefficients and expression lev-
els of the genes were integrated. A final formula was generated 
as RS = (−0.36493 × CLK4 − 0.5611 × DEDD2 + 0.18251 × 
ENO1 − 0.09349 × SYTL1) (Figure 4A). The efficacy of RS in 
correlating with MIBC T stage and tumor grade was validated 
and found that RS showed a significant relationship with 
MIBC grades but less with T stages (Figure 4B). Validation of 
OS in OS, DSS, and progression-free interval (PFI) prognosis 
was performed and all showed significance (P < .001, Figure 
4C). The multivariate Cox analysis delineated factors closely 
related to prognosis (Figure 4D). Classical factors were shown 
to have negative effects on MIBC patients prognosis, including 
T3 stage (HR 1.60, CI [1.07-2.4], P = .021), T4 stage (HR 
2.58, CI [1.59-4.2], P < .001). As a novel prognostic factor, RS 
showed similar competence with T4 stage with a hazard ratio 
(HR) of 2.31 (CI [1.55-3.4], P < .001, Figure 4D). Besides, 
Predictive effectiveness was illustrated by area under the curve 
(AUC). Compared with single gene expressions, RS showed 
outstanding prognostic ability with an AUC of 0.671 in 1-year 
(Figure 4E) and 0.653 in 3-year MIBC survival (Figure 4F). 
Stratification was made among T stages and found that RS 
could better predict the OS (P = .016, Figure 4G) and PFI 
(P = .008, Figure 4H) outcomes in patients with T2 stage, other 
than T3, and T4 stage.

Identif ication of key pathways in subgroup with 
high RS

Gene-set enrichment analysis (GSEA) was performed in 
KEGG database for further exploration of differentiated path-
way enrichments. Five pathways were identified, including 
pathways of cell cycle, chemokine signaling pathway, ECM 
receptor interaction, focal adhesion, and mismatch repair 
(Figure 5C).

Immune cell infiltration in RS subgroups

xCell is a platform that allows online enrichment analysis from 
gene expression data for 64 immune and stroma cell types.15 A 
vioplot was generated based on MIBC dataset to show infiltra-
tion of different types of cells infiltration (Figure 5A). We 
found that T cell CD4+ Th2, macrophage, macrophage M1, 
and macrophage M2 infiltrated differently in samples with 
high and low RS scores, proved by Spearman’s test with posi-
tive correlation with RS (Figure 5D, P < .001).

Predictive role of RS in immune checkpoint 
inhibitor (ICI) therapy

Considering the exploration of ICI therapy’s therapeutic 
impact on MIBC patients, we explored immune checkpoint 
expressions in MIBC samples. Heatmap was constructed to 
filter significant immune checkpoint genes and found that 
PD-1, CTLA4, and PD-L1 were related to RS score (Figure 
5F). Compared with PD-1 (P = .013) and CTLA4 (P = .004), 
PD-L1 expression level showed significantly stronger connec-
tion with RS score (P < .001, Figure 5B).

Discussion
Bladder cancer is a common type of malignancy in urinary 
tumors with high rate of recurrence and mortality. The unstop-
pable hematuria and repeated bladder outlet obstruction caused 
by blood clots in the final stage could overwhelm MIBC 
patients and their families with great pain. For NMIBC 
patients, ideally, TURBT followed by immediate postoperative 
mitomycin C application remains the first choice. However, for 
patients with metastatic MIBC, chemotherapy was the limited 
choice left with an unsatisfying response rate. With the appli-
cation of ICI as first-line therapy to cisplatin-ineligible patients 
or as second-line therapy for patients with metastatic MIBC, 
OS is expected to be prolonged to longer than 15 months.16,17 
According to existing clinical trial, only about 50% of MIBC 
patients with positive PD-L1 can respond to Durvalumab, 
which gives a hint that PD-L1 expression level is not able 
enough to predict ICI therapy response. Therefore, we had a 
shot at exploring a biomarker that can both reflect the prog-
nostic value and ICI treatment selection and found that the RS 
system we built can be competent in both aspects.

The RS prognostic system was constructed from TCGA 
and GEO database with aid of bioinformatics tools. Five genes 
were filtered and found to be correlated with MIBC tumor 
grade and OS, in which DEDD2 and SYTL1 showed the 
tightest relationship (Figure 3). DEDD2, also known as Death 
Effector Domain Containing 2, is a DEDD homolog that con-
tains an NH2-terminal region with the DED domain, and a 
COOH-terminal region homologous to some DNA-binding 
proteins such as histones.18 Alcivar et  al18 proved DEDD2, 
together with DEDD, to be a strong inducer to death receptor-
induced apoptosis by facilitating translocation of caspase-8 to 
the nucleus during CD95-mediated apoptosis. While accord-
ing to Lee et al,19 DEDD2 can help DEDD with regulating 
the degradation of intermediate filaments during apoptosis. In 
terms of the tumor, although the role of DEDD2 in MIBC has 
not been explored yet, it has been proved to take part in several 
malignancies. DEDD2 was found to be involved in prostate 
cancer.20 High miR-301 expression was significantly close to 
the poor outcome of PCa patients. Increased DEDD2 expres-
sion could downregulate miR-301 to help luteolin with the 
inhibition of PCa cell proliferation and induction of apoptosis. 
Besides, DEDD2 was also found to take part in the apoptosis 
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Figure 5.  Identification of key pathways, cell infiltration, and immune checkpoint expressions associated with MIBC prognosis. (A) xCell application to 

MIBC samples. Vioplot was constructed to show infiltration of different immune cells in MIBC samples according to different RS. (B) Correlation between 

RS and PD-1, PD-L1, and CTLA4 expression levels. (C) Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in samples with 

high and low RS cases. (D and E) Correlation between the RS and Macrophage, Macrophage M1, Macrophage M2, T cell CD4+ Th1, T cell CD4+ Th2, 

and T cell regulatory (Treg). R and P values, Spearman’s correlation test. (F) Heatmap of checkpoint expressions correlated with risk score levels.
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of non-small cell lung cancer and triple-negative breast cancer 
cells through CARP-1 functional mimetics (CFMs).21 
Considering the important role of apoptosis in tumor cell pro-
liferation and progression, the role of DEDD2 in bladder can-
cer cell biological behavior deserves further exploration.

Another major component of RS was SYTL1, also called 
synaptotagmin-like 1 gene with the alias JFC1 and SLP1. 
According to Catz et al,22 JFC1 was found to be important to 
prostate cancer cell lines. JFC1 can be activated by TNFα/
NF-κB pathway in vivo, and the mitogenic factors secreted 
from prostate carcinoma cells could regulate the autocrine 
effects by overexpression of JFC1. Besides, JFC1 also plays a 
crucial role in immune systems by facilitating MST-1 in vesicle 
trafficking and extravasation of neutrophils, in an attempt to 
regulate neutrophil transmigration through vascular basement 
membrane.23 In blood malignancies, SYTL1 is also targeted by 
MEIS1 to promote leukemogenesis and support leukemic cell 
homing and engraftment, facilitating interactions between leu-
kemic cells and bone marrow stroma.24 There is an initial 
report about the role of SYTL1 in bladder cancer without 
much evidence and practice.25 So it can always give us a crux 
hint when it comes to questioning the reason why ICI therapy 
fails in some MIBC patients and how MIBC cells migrate and 
proliferate.

Our study also has some limitations. First, the sample size of 
MIBC from 2 datasets are not balanced, and the small amount 
of low grade MIBC patients can lead to selection bias. Second, 
our study was primarily based on transcriptomic analysis. 
Further large and external validation of RS in clinical practices 
is needed.

Conclusions
In the study, a bioinformatics analysis identified 5 key prognos-
tic genes of MIBC, based on which RS was constructed and 
validated in the prediction of OS and potential ICI therapy 
choice. However, the results still need further perspective, 
external validations.
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