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Abstract
Histotripsy is a noninvasive medical technique that uses high-intensity focused ultrasound (HIFU) to treat liver tumours. The twomain
histotripsy methods are boiling histotripsy and cavitation cloud histotripsy. Boiling histotripsy uses prolonged ultrasound pulses to
create small boiling bubbles in the tissue, which leads to the breakdown of the tissue into smaller subcellular fragments. Cavitation
cloud histotripsy uses the ultrasonic cavitation effect to disintegrate target tissue into precisely defined liquefied lesions. Both
methods show similar treatment effectiveness; however, boiling histotripsy ensures treatment stability by producing a stable boiling
bubble with each pulse. The therapeutic effect is ascribed tomechanical damage at the subcellular level rather than thermal damage.
This article discusses the mechanisms, treatment parameters, and potential of histotripsy as a minimally invasive procedure that
provides precise and controlled subcellular damage.
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Introduction

In a recent article, the FDA approved histotripsy as a treatment
for liver tumours[1]. Histotripsy is type of high-intensity focused
ultrasound (HIFU) therapy which is an emerging noninvasive
medical technique that involves directing a concentrated ultra-
sound beam within the body to specifically impact a designated
area while preserving the surrounding tissues from harm.[2] This
approach, known as “boiling histotripsy,” employs extended
ultrasound pulses with durations measured in milliseconds, as
opposed tomicroseconds. These prolonged pulses swiftly create a
small boiling bubble in the millimetre range rather than a larger
cavitation cloud. This outcome is accomplished by heating the
tissue, driven by the substantial reduction in ultrasound energy as
shock fronts naturally develop in the acoustic waveform due to

nonlinear propagation effects.[3] The collision between these
shock fronts and the resulting vapour cavity leads to the break-
down of tissue into smaller subcellular fragments.

Background

The term “Histotripsy” was derived from the Greek words
“Histo,”meaning “soft tissue,” and “Tripsy,”meaning “to break
down.” It was first demonstrated at the University of Michigan in
2004[4]. Advances in technology have prompted a shift towards
less invasive procedures, as demonstrated by the progression from
planar radiation therapy to stereotactic body radiation therapy.
Examples of thermal-based ablations include radiofrequency
ablation, microwave ablation, and cryoablation[5]. High-intensity
focused ultrasound (HIFU) is a noninvasive thermal ablation
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method that employs an external ultrasound beam source to
induce thermal necrosis of soft tissue, including fibroids, liver
tumours, and kidney tumours[6]. Histotripsy is a noninvasive
focused ultrasound technique that operates similarly to HIFU.
Unlike HIFU, which relies on high-intensity sound waves to
destroy tissue, histotripsy employs mechanical effects at the cel-
lular level to achieve the same result[7].

Mechanism

The two main histotripsy methods are boiling histotripsy and
cavitation cloud histotripsy. Although they use different ablation
techniques, both methods show similar treatment effectiveness[8].

Cavitation cloud histotripsy (CH)

Cloud cavitation histotripsy is based on the ultrasonic cavitation
effect, in which ultrasonic waves cause microbubbles to dyna-
mically expand, compress, oscillate, collapse, and close[8]. This
procedure produces both transient and steady-state cavitation,
the latter of which produces shockwaves at gigapascal (GPa)
levels that precisely target subcellular lesions. Using cavitation
clouds made of microbubbles produced by transient cavitation,
cavitation cloud histotripsy disintegrates target tissue into pre-
cisely defined liquefied lesions[9]. Intrinsic threshold mechanisms
or shock-scattering mechanisms, in which the tissue cavitation
threshold is exceeded or the peak negative pressure of ultrasonic
pulses interacts nonlinearly with later-arriving waves, respec-
tively, can produce cavitation clouds[8]. Cavitation cloud histo-
tripsy, in contrast to extracorporeal shock wave lithotripsy
(ESWL), uses pulses of on–20y cycles, each of which is a rar-
efactional phase and microbubbles that last a few seconds. A
number of factors, including pulse length, operating frequency,
pulse repetition frequency, number of pulses, output power, duty
cycle, and transducer f-number, affect the effectiveness of cavi-
tation cloud histotripsy[10] The cavitation threshold is also
influenced by the properties of the tissue, such as its fibrous
connective tissue content and stiffness, which necessitates higher
positive pressure shockwaves for effective cavitation. The cavi-
tation threshold is not significantly affected by tissue stiffness or
ultrasound frequency, but the intrinsic threshold is unaffected by
changes in the mechanical properties of the tissue. These results
demonstrate the complex interactions between parameters in
cavitation cloud histotripsy and provide information about its
potential as a flexible and minimally invasive tissue ablation
method[11].

Boiling histotripsy (BH)

Within the field of histotripsy, boiling histotripsy is a unique
technique that uses shockwaves with nonlinear propagation
effects to heat the target lesion quickly enough to formmillimetre-
sized boiling bubbles in milliseconds[12]. Tissue tearing is facili-
tated by the shear stress created around these bubbles, which is
further enhanced by interactions with incoming shockwaves that
encourage mechanical tissue separation. The tadpole-shaped
lesions of boiling histotripsy in soft tissue have a head and tail,
with the head oriented toward theHIFU transducer[8]. In contrast
to cavitation cloud histotripsy (CH), boiling histotripsy ensures
treatment stability by producing a stable boiling bubble with each
pulse. Interestingly, because the heat remains in the focal area and
does not spread to the surrounding tissues, the therapeutic effect

is ascribed to mechanical damage at the subcellular level rather
than thermal damage. Boiling histotripsy can be distinguished
from cavitation cloud histotripsy by its treatment parameters,
which include higher frequency (1–3 MHz), longer pulses
(3000–10 000 cycles), and lower pulse repetition frequency
(1–2 Hz)[13]. The time required to produce boiling bubbles
depends on the transducer output power and operating fre-
quency, among other factors that affect the effectiveness of
boiling histotripsy. The size of the lesion is dependent on the
number of pulses and the ultrasonic focal point size, with the focal
point size dictating the maximum extent[14]. The degree of ther-
mal damage depends on the duty cycle and pulse duration,
highlighting the importance of precisely regulating these para-
meters for efficient mechanical destruction. In conclusion, boiling
histotripsy has the potential to be a minimally invasive procedure
that provides precise and controlled subcellular-level damage that
is adapted to therapeutic needs because of its distinct mechan-
isms, stable treatment profile, and unique sound pressure
characteristics[15].

BH lesions were larger and had a characteristic tadpole shape,
whereas CH lesions were smaller and had a regular shape.
Despite this, BH generated a larger treatment zone than CH in the
same amount of time[16]. Maxwell et al.[17], highlighted a unique
characteristic of CH technique in contrast to BH, which is the
formation of fluid vortices near the bubble cloud. These vortices
have been demonstrated to attract and erode millimetre-sized
thrombus fragments when induced in large blood vessels.

Histotripsy procedure: an overview

Histotripsy employs focused, short-duration ultrasound pulses
lasting less than 20ms at high negative pressures exceeding 10–25
megapascals (MPa). This controlled acoustic cavitation is utilized
to mechanically dismantle tissue at the cellular level, all while
preserving the integrity of the surrounding tissue[12]. This leads to
the creation of a well-defined treatment area characterized by an
acellular homogenat that is, clearly distinguished from adjacent
non-target tissue. Histotripsy has been applied in animal studies
for the treatment of non-tumour-bearing tissues in various
organs, including the brain, thyroid, liver, kidney, and prostate.
Additionally, it has been employed in tumour models related to
liver, pancreas, and bone cancer, as well as for addressing cardiac
tissue and blood clots[7,18–26].

The process of histotripsy operates by creating a controlled
and accurate acoustic cavitation bubble cloud within the target
tissue through a noninvasive approach[12]. In this procedure,
non-thermal dismantling of the tissue by histotripsy does not
result directly from the propagation of the ultrasound pulse.
Instead, it occurs through mechanical strain and stress produced
during the rapid expansion and collapse of cavitation bubbles
generated at the focal point of the transducer. Histotripsy differs
from HIFU, a thermal ablation technique. Unlike histotripsy,
HIFU induces heating at the focal point by employing high-
intensity continuous waves for extended periods with a high-duty
cycle (>20%)[27]. In contrast, histotripsy induces mechanical
cavitation at the focal point by employing brief ultrasound pulses
with extremely high pressure and a low duty cycle (<1%). The
cavitation bubbles formed in histotripsy originate from pre-
existing endogenous cavitation nuclei, an inherent characteristic
of the water present within the tissue[28,29].
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The tissue outcomes produced by histotripsy differ from those
of the existing cancer treatments. The non-thermal destruction of
tissue in histotripsy is attributed to the action of cavitation bub-
bles formed within the tissue[30]. These bubbles, believed to ori-
ginate in the water within the extracellular matrix of thee tissue,
create concentrated and well-contained bubble clouds in areas of
tissue hat surpass the histotripsy cavitation threshold. The swift
expansion from tiny nuclei to large bubbles, measuring hundreds
of microns in diameter, is achieved by forceful collapse of the
bubbles. This entire sequence unfolds within amatter of hundreds
of microseconds[30]. This sequence induces an intense local
mechanical strain on tissue structures situated in close proximity
to the bubbles, leading to the destruction of the tissue[30–32].

Histotripsy treatment results in liquefaction of the targeted
tissue, leaving no viable cells. However, intact cell and membrane
fragments, including proteins and damage-associated molecular
patterns (DAMPs), appear to remain without undergoing
denaturation[33,34]. Histotripsy operates as a binary process,
causing tissue destruction only in regions where the negative
pressure surpasses a cavitation threshold specific to the tissue. As
a result, the treatment zones are remarkably precise, with a nar-
row surrounding margin (< 1–2 mm) of tissue that is partially
treated[23,35].

Histotripsy benefits: exploring advantages and
positive outcomes

Histotripsy relies on externally administered transcutaneous
ultrasound and eliminates the need for surgical incision or
puncture. This quality lowers the potential risks typically linked
with percutaneous devices, such as bleeding, harm to organs, and
the possibility of tumour spread along the path of needle
insertion[11].

Histotripsy disrupts the intended tissue mechanically, trans-
forming it into cell-free fragments that the body can absorb and
effectively remove. This makes histotripsy suitable for situations
requiring tissue elimination, such as thrombosis. Findings from
pre-clinical studies involving animals and a preliminary human
trial indicate that the treated tissue volume is typically absorbed
by the body within a period of 1–2 months[9,36].

Significant studies involving large animals that have been
published show that there is no risk of post-histotripsy bleeding in
vascular organs, even in individuals who are receiving antic-
oagulant treatment[37].

Histotripsy applications: targeted indications

Histotripsy is indicated and have pre-clinical studies and
application of diseases involving tumours of liver[22,23,38–40]

kidney[36,39,41,42] prostate[43,44] neurological diseases[25,45]

thrombosis, haematoma[16,46,47] neonatal and foetal congenital
heart disease[7,48] Valvular diseases[49,50] Kidney stones[51,52]

tendons[53] biofilm[54–56].

Histotripsy: adverse effects and limitation

Complications associated with histotripsy involve certain organs,
such as the lungs and gastrointestinal tract, which are unsuitable
for histotripsy treatment owing to the presence of gas. Histotripsy
requires extremely high ultrasound pressures, and the attainable

pressure is determined by the size of the transducer aperture
unobstructed by bones (such as ribs) or gas (as in the case of the
lung). As a result, certain parts of the body, like the central lung
and possibly the pancreas, cannot receive histotripsy treatment
using external ultrasound due to the presence of gas or bone
obstructions. This may limit its usefulness in treating inaccessible
or gas-filled hollow organs[11].

Histotripsy could also potentially cause blood vessel throm-
bosis in the treated area due to the activation and clustering of
platelets caused by cavitation. This activation of the coagulation
cascade may result in pathological ischaemia or the formation of
an embolus, leading to damage to surrounding healthy tissue. The
use of histotripsy in highly vascular organs is limited due to these
potential complications[18].

Histotripsy has the potential to disrupt targeted tissue, but
there is a theoretical concern that it could inadvertently release
tumour cells, potentially increasing the risk of metastasis. This
limitation is significant because seeding tumour cells can have
disastrous consequences. Nonetheless, existing research has
indicated that histotripsy does not result in an increased risk of
metastasis; in fact, in some cases, it may have led to a decreased
risk. This outcome is likely attributed to a concurrent immune
response[38,41].

In consideration of the future, it is essential to evaluate dif-
ferent types of histotripsy treatments and doses to gain a deeper
understanding of how ablation stimulates an immune response
and its possible short- and long-term side effects. As there is a
scarcity of human clinical trials on histotripsy, additional basic
studies and pre-clinical human and animal trials are also neces-
sary to develop missing mechanistic insights. In the near future,
more translationally relevant studies will be needed to address
this knowledge gap.

Histotripsy in action: clinical outcomes and case
examples

The outlook for employing histotripsy for various medical con-
ditions is outlined in Table 1 and also as follows.

Benign prostate hypertrophy (BPH)

In the initial phase of this clinical trial (NCT01896973), a pro-
totype medical device was used to address benign prostate
hypertrophy in 25 patients. There were no instances of severe
intraoperative complications during the procedure. Among the
subjects, 68% underwent general anaesthesia, while the
remaining 32% received sedation. Notably, there was a sub-
stantial improvement in the International Prostate Symptom
Score (IPSS) compared to the baseline before treatment, with a
mean increase of 52.4% at 1 month, 50.8% at 3 months, and
44.0% at 6 months (P< .001)[57].

Liver tumours

The first human Phase I trial of hepatic histotripsy for non-
curative patients with multiple liver malignancies was conducted
in 2019 in Barcelona, Spain using a clinical prototype device by
Histosonics, Inc. The study involved 8 patients with 11 tumours,
and it showed no significant adverse events, met its primary
endpoint of creating ablations as planned, and exhibited tumour
regression and volume reduction in the treated areas,[58] and a
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Table 1
Overview of histotripsy applications in-human trials.

Author Objective n Outcome
Follow-
up Adverse effects

Vidal-Jove et al.[54] Current hepatic locoregional therapies face efficacy limitations and
toxicities, prompting a first in-human trial to assess the technical
effectiveness and safety of histotripsy—a noninvasive, focused
ultrasound therapy—in patients with primary and secondary liver
tumours based on encouraging pre-clinical results.

8 The eight patients, with a median age of 60.4 years and an average
targeted tumour diameter of 1.4 cm, all achieved the primary
endpoint, and the secondary safety profile analysis revealed no
device-related adverse events, with two patients showing a
sustained decrease in tumour markers over the eight weeks post-
procedure.

8 weeks No adverse effects reported

Min Wah et al.[59] The objective of this phase I/II trial conducted across multiple
centres is to evaluate the preliminary safety and effectiveness of
the prototype investigational ‘System’ in treating both primary and
metastatic liver cancers.

45 Ongoing Trial, no result reported 5 years NR

Messas et al.[56] To evaluate the safety and efficacy of noninvasive ultrasound
therapy (NIUT) in calcified aortic stenosis patient

10 The trial, assessed by an independent core laboratory, found no
cognitive impairment or significant changes in aortic
regurgitation, left ventricular function, or volumes at 1 month;
overall, there was a nonsignificant increase in aortic valve area
and a decrease in mean pressure gradient, but a subgroup of six
responders showed a significant improvement, associated with a
longer therapy duration and higher cumulative focal energy
delivery, suggesting potential factors linked to treatment
response.

1 month During the procedure, adverse effects included atrial fibrillation,
premature ventricular beats, and nonsustained ventricular
tachycardia, managed with sedation; chest wall discomfort and
arrhythmia were reported, and one patient experienced post-
procedure right-sided heart failure, though no deaths or major
cardiovascular events occurred at the 1-month follow-up.

Schuster et al.[53] The primary objective of the inaugural human study is to evaluate
the clinical safety and, as a secondary focus, the efficacy of
histotripsy in treating symptomatic benign prostatic enlargement
(BPE).

25 Histotripsy treatment in 25 men showed no serious intraoperative
adverse events, and although debulking was not observed, there
was significant improvement in IPSS scores at one, three, and
6 months postoperatively.

6 months The adverse effects observed included three cases of transient
urinary retention lasting less than three days, one case of serious
urinary retention lasting 8 days, a minor anal abrasion, and
microscopic haematuria.

IPSS, International Prostate Symptom Score; NR, not reported.
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patient with colorectal cancer liver metastasis had sustained
reduction of non-treated tumours in the liver following histo-
tripsy suggesting both safety and potential efficacy, including a
possible abscopal effect in humans[59].

Calcified aortic stenosis

In 2019, a Phase I human trial of cardiac histotripsy using Cardia
wave’s Valvosoft device was conducted in elderly patients with
severe calcific aortic stenosis whowere not suitable candidates for
conventional treatments. One month after the procedure, six of
ten patients exhibited significant improvements in aortic valve
area and pressure gradients, with no major adverse effects
observed. The study demonstrated the safety and feasibility of
noninvasive therapy for calcific aortic stenosis in this patient
population[60].

Histotripsy for liver tumours and cholangiocarcinoma

This study explored the potential of histotripsy as a treatment for
cholangiocarcinoma (CC) tumours, given its dense fibrotic stro-
mal components, and aimed to determine the specific treatment
requirements. The present study included in vivo experiments in a
patient-derived xenograft mouse model, indicating the effective-
ness of histotripsy in ablating CC tumours, and ex vivo experi-
ments comparing the histotripsy doses needed for CC, HCC, and
CLM tumours, highlighting the higher doses required for CC
tumours. These findings suggest histotripsy’s promise for CC
tumour ablation and emphasize the need for tailored treatment
approaches[61].

Thrombolysis

A new histotripsy approach called microtripsy has been investi-
gated as a noninvasive, drug-free method for breaking up
retracted blood clots with improved precision and reduced risk of
vessel damage compared to traditional approaches. The study
hypothesized that microtripsy thrombolysis is effective on
retracted clots and can be enhanced with electronic focal steering,
and experimental results demonstrated successful clot recanali-
zation, particularly with multi-focus and dual-pass treatments
incorporating electronic focal steering, indicating the potential of
microtripsy thrombolysis for retracted clot management[62].

Conclusion

In summary, histotripsy is a novel technique for medical care that
offers a highly focused and minimally invasive method to treat a
variety of illnesses, such as calcified aortic stenosis, benign
prostatic hypertrophy, and liver tumours. The procedure is a
promising option for patients and clinicians because it is non-
surgical, disrupts tissue at the cellular level, and allows quick
absorption. Even though there are some possible drawbacks and
issues, such as the inapplicability of gas-filled locations, the risk of
thrombosis, and concerns regarding tumour cell release, further
research shows that these difficulties are frequently outweighed
by their advantages. Histotripsy has great potential to transform
the way many diseases are treated, as well as to enhance overall
prognosis and quality of life as it develops and advances. Its
usefulness and safety will improve with additional studies and
clinical trials, guaranteeing that it becomes a crucial component
of contemporary medical treatment plans.
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