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Abstract: Gene expression profiles can change dramatically between sexes and sex bias may contribute
specific macroevolutionary dynamics for sex-biased genes. However, these dynamics are poorly
understood at large evolutionary scales due to the paucity of studies that have assessed orthology
and functional homology for sex-biased genes and the pleiotropic effects possibly constraining
their evolutionary potential. Here, we explore the correlation of sex-biased expression with
macroevolutionary processes that are associated with sex-biased genes, including duplications
and accelerated evolutionary rates. Specifically, we examined these traits in a group of 44 genes that
orchestrate sperm individualization during spermatogenesis, with both unbiased and sex-biased
expression. We studied these genes in the broad evolutionary framework of the Insecta, with a
particular focus on beetles (order Coleoptera). We studied data mined from 119 insect genomes,
including 6 beetle models, and from 19 additional beetle transcriptomes. For the subset of physically
and/or genetically interacting proteins, we also analyzed how their network structure may condition
the mode of gene evolution. The collection of genes was highly heterogeneous in duplication status,
evolutionary rates, and rate stability, but there was statistical evidence for sex bias correlated with
faster evolutionary rates, consistent with theoretical predictions. Faster rates were also correlated
with clocklike (insect amino acids) and non-clocklike (beetle nucleotides) substitution patterns in
these genes. Statistical associations (higher rates for central nodes) or lack thereof (centrality of
duplicated genes) were in contrast to some current evolutionary hypotheses, highlighting the need
for more research on these topics.

Keywords: Coleoptera; evolutionary rates; gene network; Insecta; phylogenetic inference;
sex-biased genes

1. Introduction

Phenotypic and physiological differences among closely related species with highly similar
genomes are expected to be the result of differences in the expression profiles of key genes (e.g., [1]). In
this regard, understanding the mechanisms underlying differences between males and females of the
same species becomes of particular interest. Conspecific individuals of different sexes share most, if
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not all, of their genome and genetics but sometimes display striking anatomical and physiological
differences. Studies using model organisms have demonstrated the existence of significant differences
in gene expression profiles between sexes. For example, approximately 30% of genes in the vinegar
fly (order Diptera), Drosophila melanogaster, show sex-biased expression, and most of these genes
are specific to reproductive tissues [2–4]. In fact, it has been proposed that most gene expression in
Drosophila is sex biased at some point, exhibiting this bias either throughout the life cycle or in specific
developmental stages [5]. Similarly, 5–15% of the genes in the mosquito (order Diptera) Anopheles
gambiae genome show differential expression between males and females [6], and approximately 20%
of the X-chromosome genes of Tribolium castaneum (order Coleoptera) are regulated differently in each
sex [7].

The existence and need for biases in gene expression imply several evolutionary mechanisms
that, on the one hand, allow for the bias to occur and, on the other hand, condition the dynamics of
changes in the affected genes through time [8]. Sex bias in gene expression can be achieved through
linkage to sex chromosomes and dosage compensation, sex-specific alternative splicing, and other
mechanisms [9–12]. However, these mechanisms primarily affect the expression of regulatory elements,
which in turn condition the action of the genes themselves, e.g., following a particular sex-specific
splicing or protein maturation pathway. Gene duplication is another mechanism that directly allows
for new gene expression profiles, including sex-biased ones [13]. Gene duplication offers an immediate
solution to differential expression needs by potentially allowing each copy of a gene to acquire unique
functionality. It is now viewed as having played an important, if poorly understood, role in the
evolution of sex-biased gene expression [14]. Moreover, gene duplication could also be related, in
part, to the relaxation of evolutionary constraints on one of the resulting gene copies, which could, in
turn, lead to more rapid gene evolution [15]. Rapid gene evolution has classically been proposed as a
consequence of sex-biased and particularly male-biased genes [4,5,16–18]. However, it is not entirely
clear whether it is the bias in expression that results in faster evolutionary rates or if it is because of
other features of these genes, such as their frequent tissue specificity, which is also correlated with
faster evolutionary rates [19].

It is generally accepted that gene duplication is a major force altering the diversity and
characteristics of sex-biased genes, but the connection between sex-biased gene expression and
evolutionary rates remains poorly understood [8]. So far, these associations have been studied in just a
handful of model organisms, and even though it is theoretically plausible that evolutionary processes
and functional patterns are related, it is too early to invoke a general rule. Working toward this
generalization first requires determining the unequivocal orthology of sex-biased genes between model
and non-model species [20]. Furthermore, it requires assuming that orthology and structural homology
correlate with functional homology [21,22]. Another problem lies in the actual definition of sex-biased
genes. The concept is intuitive and unambiguous: a sex-biased gene is one with different levels of
expression between males and females [23]. However, it is also a quantitative one: how different do
the expression levels have to be to elicit the activation of the particular evolutionary mechanisms
mentioned above? Other non-trivial issues include the occurrence of pleiotropy, the fact that sex-biased
genes may be expressed for alternative functions in different tissues and not necessarily related or
restricted to one sex, and protein–protein interactions, so that a specific function takes place through
physical and genetic modulation by other proteins. Pleiotropy and protein–protein interactions could
modulate or limit the evolutionary dynamics of genes, obscuring or changing the expectations derived
from the study of model species.

In this study, we aimed to explore the correlation of sex-biased expression with gene duplications
and accelerated evolutionary rates in a large evolutionary framework, using non-model organisms
for which no gene expression analyses are available. Our work was informed by previous studies
involving a model organism (D. melanogaster) and used phylogenetic approaches. The obvious
candidates for sex-biased genes are those involved in processes that are exclusive to one sex, for
example, spermatogenesis in males [18,24]. Thus, in order to test for these differences, we selected a
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male reproduction functional group, i.e., a coherent set of genes working together toward a specific
reproductive function in males, including genes that are male biased in Drosophila spp. and genes
that are expressed both in female and in male tissues or non-reproductive tissues. In particular, the
present study focused on an integrated male reproductive function—sperm individualization—which
is known to involve the action of both constitutive and sex-biased genes in D. melanogaster with different
degrees of tissue specificity. Sperm individualization is one of the final stages in spermatogenesis that
resolves spermatids as individual cells from the syncytial male germline cysts [25]. In a very simplified
manner, this process involves a number of stages where (1) a syncytial cyst forms around all spermatids
resulting from a primary spermatocyte, (2) an individualization complex formed through cytoskeletal
mechanisms and membrane formation encapsulates each of the spermatids, and (3) the syncytial
cytoplasm is discarded [26]. We investigated the phylogeny and evolution of these genes across the
class Insecta, with particular emphasis on the species-rich order Coleoptera (beetles). The insects
we studied included several model organisms for which both orthology assessment and expression
studies were publicly available (e.g., modENCODE and OrthoDB projects; [27,28]). Given that beetles
are proportionally underrepresented in the genomic and gene profiling literature, we mined relevant
data from the 1KITE project (http://1kite.org/), thereby broadening representation of beetles in our
study and facilitating orthology assessment via phylogenetic approaches [29].

2. Materials and Methods

2.1. Selection of Functional Group and Expression Profiles

The gene browser AmiGO2 [30] was used to search for genes belonging to the gene ontology
category “sperm individualization” (GO:0007291), a category that comprises all genes recognized to
participate in the aforementioned processes. With this query, we obtained 54 genes, of which 1 was
reported only for mammals (Spem1) and was not further considered, and the remaining 53 genes had
been previously characterized in Drosophila melanogaster. The DNA coding sequences (CDSs) of these
genes were retrieved (in September 2017) from FlyBase [31]. A preliminary blastx default search was
conducted using these CDSs as query sequences, revealing that nine of these genes lacked obvious
putative homologs in organisms other than Diptera. These genes (dj, dud, fan, mst101(3), nkg, ntc, soti,
TTLL3B, and yuri; named based on Drosophila gene nomenclature) were excluded from subsequent
analyses. The remaining 44 genes (Table 1) were retained for use in our phylogenetic study and were
functionally categorized as (i) unbiased or (ii) sex biased, according to their expression profiles in
Drosophila using data publicly available in modENCODE [27]. These expression profiles were mined
from Affymetrix tiling arrays (Figure 1), designed to study transcription levels in a large number of
Drosophila cell lines and developmental stages, using modMINE [32]. When the expression profiles of
males were less than twofold higher or not more than twofold lower than those measured in females,
they were not considered indicative of being biased (a criterion applied in previous studies; e.g., [17]).
Five of the genes of interest (Cul3, Dark, didum, mlt, and orb2) lacked data in the Affymetrix tiling array
experiments, and we deduced their sex-based functional profile based on RNA-seq transcriptome
profiles available in modENCODE [27].

Table 1. Genes belonging to the ontology category “sperm individualization” (GO:0007291) in insects.
Genes are identified by their names and their corresponding FlyBase ID in the Drosophila melanogaster
genome. Information on the general function of the gene and sex biases in expression profiles is
also given.

Gene FlyBase ID Function Expression Profile

Act5C FBgn0000042 cytoskeleton structure unbiased
Ance FBgn0012037 peptidase unbiased
aux FBgn0037218 ATP binding cofactor of kinase unbiased

blanks FBgn0035608 siRNA binding male biased
Bug22 FBgn0032248 cilium organization and assembly unbiased

http://1kite.org/
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Table 1. Cont.

Gene FlyBase ID Function Expression Profile

CdsA FBgn0010350 enzyme (CDP diglyceride synthetase) unbiased
Chc FBgn0000319 coated vesicles structure unbiased
ctp FBgn0011760 dynein complex assembly unbiased

Cul3 FBgn0261268 protein binding unbiased
Cyt-c-d FBgn0086907 electron carrier male biased

Dark FBgn0263864 apoptosome assembly unbiased
didum FBgn0261397 unconventional myosin unbiased
Dredd FBgn0020381 enzyme (caspase) unbiased
Dronc FBgn0026404 enzyme (caspase) unbiased
Duba FBgn0036180 enzyme (deubiquitinase) unbiased
EcR FBgn0000546 transcription factor unbiased

eIF3m FBgn0033902 translation initiation factor unbiased
Fadd FBgn0038928 protein binding unbiased
gish FBgn0250823 enzyme (protein kinase) unbiased
gudu FBgn0031905 NA male biased
heph FBgn0011224 mRNA binding (translation repression) unbiased
hmw FBgn0038607 motile cilium assembly male biased
jar FBgn0011225 myosin unbiased

klhl10 FBgn0040038 substrate recruiting for ubiquitin ligase complex male biased
Lasp FBgn0063485 actin/myosin scaffolding unbiased
Mer FBgn0086384 cytoskeletal protein binding unbiased
mlt FBgn0265512 microtubule removal unbiased
nes FBgn0026630 enzyme (lysophospholipid acyltransferase) unbiased

Npc1a FBgn0024320 sterol metabolism unbiased
nsr FBgn0034740 dynein complex assembly male biased
orb2 FBgn0264307 translation factor unbiased
Osbp FBgn0020626 protein binding unbiased
oys FBgn0033476 enzyme (lysophospholipid acyltransferase) unbiased

Past1 FBgn0016693 membrane assembly unbiased
Pen FBgn0011823 protein binding unbiased
poe FBgn0011230 calmodulin binding unbiased

porin FBgn0004363 membrane channel protein unbiased
Prosalpha6T FBgn0032492 enzyme (protease) male biased

scat FBgn0011232 protein binding female biased
shi FBgn0003392 GTPase for microtubule motility unbiased

skap FBgn0037643 ATP binding enzyme unbiased
sw FBgn0003654 dynein complex assembly unbiased
Taz FBgn0026619 enzyme (phospholipid transacylase) unbiased

Vps28 FBgn0021814 vesicular trafficking unbiased
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individualization genes in Drosophila melanogaster as derived from RNA-seq data from different stages 
of adult male and female flies [27]. 

Figure 1. Heatmap visualization of gene expression scores (log2 of the actual value) of sperm
individualization genes in Drosophila melanogaster as derived from RNA-seq data from different stages
of adult male and female flies [27].
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2.2. Retrieval of Sperm Individualization Gene Orthologs in Insects

The FlyBase IDs for the 44 genes of interest were used as queries to find putative orthologs and
their corresponding eukaryotic orthologous group (EOG) identifiers in OrthoDB v9.1 [33]. We retrieved
all insect amino acid sequences for each EOG from the database, together with descriptive information
about the number of hits and taxonomic redundancy, as well as data on the relative amino acid
sequence divergence of each orthologous group as a proxy for the evolutionary rate in each EOG [28].

The representation of Coleoptera in OrthoDB is currently restricted to six species of three
infraorders of the suborder Polyphaga (Table 2). In order to increase the representation of Coleoptera in
the sample, we mined the genes of interest from transcriptomic data from beetle species available from
1KITE. The species studied included representatives from all four suborders of Coleoptera (Table 2).
Moreover, we also searched for these genes in published RNA-seq data from testis of Calligrapha
multipunctata (Chrysomelidae), which we expected to be enriched in sperm individualization genes [22].
In order to identify the 44 genes of interest in the assembled beetle transcriptomes, we used the software
pipeline Orthograph version 0.5.14 [34]. This software predicts the orthology of nucleotide sequences
by mapping their amino acid translation to genes of known ortholog groups using a graph-based best
reciprocal hit approach. The pipeline also performs an automatic correction for sequence orientation,
frameshifts, and translation. For all Orthograph searches, we used the official gene sets (OGSs) of
three reference species: D. melanogaster (dmel_r6.11; http://flybase.org/, [35]); the red flour beetle,
Tribolium castaneum (v3.0; http://beetlebase.org/, [36]); and the leaf-cutting ant, Acromyrmex echinatior
(v3.8; http://hymenopteragenome.org/acromyrmex/, [37,38]).

Table 2. Beetle species used in the current study and their current systematic placement. Unless
specified otherwise, gene sequence data were obtained from 1KITE.

Suborder
Infraorder Superfamily Family Species Library ID (1KITE)

Archostemata Micromalthidae Micromalthus debilis INSqzbTABRAAPEI-210
Adephaga Aspidytidae Sinaspidytes wrasei WHINSnuyTAAARAAPEI-47

Carabidae Cicindela hybrida INShauTBARAAPEI-21
Dytiscidae Cybister lateralimarginalis INSnfrTADRAAPEI-16
Gyrinidae Gyrinus marinus INSnfrTBERAAPEI-19
Noteridae Noterus clavicornis INShkeTALRAAPEI-37

Myxophaga Hydroscaphidae Hydroscapha redfordi INSntgTARRAAPEI-208
Lepiceridae Lepicerus sp. INSytvTAJRAAPEI-19

Polyphaga
“basal Polyphaga” Scirtoidea Scirtidae Cyphon laevipennis INSjdsTBDRAAPEI-47

Bostrichiformia Bostrichoidea Bostrichidae Xylobiops basilaris WHANIsrmTMCLRAAPEI-11
Cucujiformia Chrysomeloidea Cerambycidae Anoplophora glabripennis a -

Chrysomelidae Calligrapha multipunctata b -
Leptinotarsa decemlineata a -

Cleroidea Byturidae Byturus ochraceus INShkeTAORAAPEI-43
Cleridae Thanasimus formicarius INShkeTCERAAPEI-79

Coccinelloidea Coccinellidae Rhyzobius pseudopulcher WHANIsrmTMABRAAPEI-9
Curculionoidea Curculionidae Dendroctonus ponderosae a -

Tenebrionoidea Meloidae Meloe violaceus INShauTAYRAAPEI-19
Tenebrionidae Tribolium castaneum a -

Zopheridae Bitoma cylindrica WHANIsrmTMAPRAAPEI-39
Elateriformia Buprestoidea Buprestidae Agrilus planipennis a -

Elateroidea Lampyridae Lamprohiza splendidula INShkeTCGRAAPEI-87

Scarabaeiformia Scarabaeoidea Scarabaeidae Cetonia aurata pisana WHANIsrmTMAVRAAPEI-53
Onthophagus taurus a -

Staphyliniformia Hydrophiloidea Hydrophilidae Hydrochara caraboides INShauTASRAAPEI-13
Staphylinoidea Staphylinidae Ocypus brunnipes INShkeTCMRAAPEI-45

a Beetle model species and data obtained from OrthoDB; b Data available from [22].

Each OGS included the 44 genes belonging to the EOGs of interest. Additionally, Orthograph
required a tab-delimited file listing the name of the gene for each EOG and each reference species
(obtained from OrthoDB). With this information, Orthograph retrieved from each OGS the genes of

http://flybase.org/
http://beetlebase.org/
http://hymenopteragenome.org/acromyrmex/
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interest and aligned the amino acid sequences to create a profile hidden Markov model with which
to conduct a forward search for respective candidate homologs in each of the beetle transcriptomes.
The resulting hits were compared with a BLAST search against all genes in all OGSs (reverse search),
and for each match between the best hit of the reverse search and the ortholog group of the original
forward search, the corresponding transcript was assigned to that specific ortholog group [34]. Each
Orthograph search produced the single best hit from each of the 1KITE transcriptomes mined for the
study and generated separate files for each EOG, one with the original nucleotide data and one with
their amino acid sequence translations, including the sequences of both the beetle targets and the
reference species.

2.3. Phylogenetic Analyses of Amino Acid Sequences in Insects

Insect amino acid sequences from each EOG and those obtained from the output of Orthograph
were aligned with the G-INS-i algorithm of MAFFT v7 [39]. Long autapomorphic insertions in these
alignments, possibly corresponding to unrecognized introns, were trimmed manually, as were sequence
ends of doubtful quality, typically showing as sequences unaligned beyond one point and longer
than the remaining sequences in the alignment, suggesting that the reading frame had been lost
and, therefore, the correct start or stop codons were not found either. In a few cases, the protein
was retrieved from OrthoDB or the beetle transcripts as disjoint amino acid fragments coming from
non-overlapping sequenced transcripts of the same gene. In these cases, the full protein length was
reconstituted, and gaps between fragments were filled with missing data. Sequences were secondarily
removed from the alignments if they (i) consisted of short fragments usually spanning less than 50%
of the gene; (ii) were highly similar and monophyletic for a given species; and/or (iii) were highly
divergent in the context of the variability of the alignment, the latter two features assessed based on
preliminary phylogenetic analyses of the data.

The resulting purged alignments (deposited in Zenodo.org: 10.5281/zenodo.3380181) were
analyzed using SMS [40] to identify the models of amino acid sequence evolution best fitting the
data. The resulting models were used in maximum likelihood (ML) tree searches executed using the
program PhyML v3.0 [41]. Since some of the genes of interest are multi-copy (in principle, OrthoDB
identifies duplicated genes from isoforms resulting from alternative splicing), several gene alignments
included many more sequences than taxa, and phylogenetic analyses allowed us to easily recognize
when these extra sequences represented gene duplications affecting particular taxa or entire clades.
In the former case, one representative of an intraspecific duplication was retained, and in the latter,
duplicated versions of the gene were separated into independent alignments, which we realigned
with MAFFT. Of the gene variants studied, the one including the sperm individualization gene
copy in Drosophila was analyzed, assessing the best-fitting evolutionary model again with SMS. ML
gene trees were inferred using PhyML, and statistical measures of nodal support were estimated via
100 bootstrap pseudoreplicates.

2.4. Phylogenetic Analyses of Nucleotide Sequences in Beetles

Nucleotide sequence matrices of the genes of interest for Coleoptera were generated by combining
the sequences retrieved using Orthograph with the corresponding orthologs of model beetle species
(Table 2). Data from model beetle species and from a hemipteroid (to be used as an outgroup in the
analyses) were obtained with blastn searches against the nucleotide collection (nr/nt) at NCBI. The
match of the retrieved nucleotide sequences with the amino acid sequence obtained from OrthoDB
for the same organisms was confirmed with a subsequent blastx search against the reference proteins
(refseq_protein) database, also at NCBI. Nucleotide sequences were aligned using the G-INS-i algorithm
implemented in the program MAFFT. Low-quality ends were trimmed and short sequences removed,
as above. The aligned sequences were also translated into amino acid sequences to assist the alignment
by finding reading frame problems and highly divergent regions, which were secondarily removed.
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ML phylogenetic analyses were implemented using these aligned datasets and the same methods
described above for the amino acid data.

2.5. Estimation of Evolutionary Rates

With very few exceptions, the ML gene trees based on amino acid sequences recovered
Hymenoptera and Diptera each as monophyletic and usually with strong (typically 98–100%) bootstrap
support. These two clades have particularly well-established age estimates based on independent
analyses. They were used as calibration points in Bayesian analyses of evolutionary rates and node
dating for each gene tree using the software BEAST v1.8.4 [42]. The nodes for these two clades were
consistently constrained as monophyletic in all analyses to avoid uninformative topologies, particularly
for genes with low phylogenetic signal, and the calibration densities for the time to their most recent
ancestors were modeled as follows. For Hymenoptera, we specified a crown age of 309 Ma (291–347 Ma)
after [43], approximately modeled in BEAST as a normal distribution with mean = 309 and Stdev = 10;
in turn, the crown age of Diptera was assumed to be 265 Ma (256–269 Ma) according to [44] and
approximately modeled as a normal distribution with mean = 265 and Stdev = 5. The analyses used
substitution models as determined with SMS, an uncorrelated lognormal relaxed clock [45], and a tree
prior under the Yule process. The analyses were run initially for 100 million generations, sampling
every 10,000th generation, but in most cases, they had to be replicated and results combined until
there was good mixing of parameters and all produced stable estimates with acceptably high effective
sample sizes (ESS >> 200). In a few cases, typically involving datasets that clearly deviated from a
molecular clock (i.e., value of ucld.stdev > 3), the multiple analyses produced erratic results; here,
stable results were obtained using an exponential relaxed distribution. Evolutionary rates, as well as
node ages, were calculated using Tracer 1.6 [46] on the annotated maximum clade credibility trees
obtained by summarizing the post burn-in trees with LogCombiner 1.8.4 and TreeAnnotator 1.8.4 [42].
Nucleotide substitution rates in beetles were assessed using a similar strategy but with constraining
the age of Coleoptera using a normal distribution covering the age range based on the estimate for this
order as deduced from the previous analyses. Specifically, we extracted this age as the concordant
overlap of all confidence intervals for this parameter in the amino-acid-based trees where Coleoptera
was monophyletic.

2.6. Statistical Analyses

We tested the hypothesis of no differences in the evolutionary rates of sex-biased genes relative
to unbiased genes using a Mann–Whitney U test [47] at a 0.05 significance level, as implemented in
the function “wilcox.test” of the R package Stats 3.6.0 [48]. The same test was used to investigate rate
differences between genes found as single-copy and as members of multigene families, as well as
between genes coordinated in the gene cascade for sperm individualization versus genes participating
in this function but not implicated in this interaction network (see below). Finally, genes were tested for
differences in absolute evolutionary rates between two main categories based on the overall constancy
of those evolutionary rates: genes with relatively homogeneous rates (parameter ucld.stdev < 0.6)
and genes with heterogeneous rates (ucld.stdev > 0.6). These tests were conducted using substitution
rates estimated from the insect amino acid data and substitution rates for beetles estimated from
nucleotide data. In order to recognize possible interactions of the explanatory variables used in these
tests, chi-squared permutation contingency tests of independence were run for each pair of categorical
variables used to rank all genes, including expression bias, paralogy, network interaction, and rate
heterogeneity. These tests used the “perm.ind.test” function of the R package wPerm 1.0.1 [49] with
9999 randomization replicates. In all tests, sample sizes allowed for low type I error rates, between 5%
and 10% (Power = 0.80).
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2.7. Analyses Constrained by Gene Interactions

Public databases were used to define the subset of physically or genetically interacting genes
among those sharing sperm individualization as a unifying function. Specifically, we established the
interaction network of Drosophila melanogaster as an interaction model by extracting the information
about specific protein–protein physical interactions from BioGRID version 3.4 [50] and that about
genetic interactions in metabolic pathways from FlyBase [31]. The obtained graph included 21 nodes
(i.e., genes) and 28 edges (i.e., interactions), and the architecture of interactions was used to explore
correlations with the evolutionary properties of this subset of genes and with other gene characteristics,
including evolutionary rates, patterns of gene duplication, and sex-biased gene expression. Since these
genes are not isolated in their function and their interactions, we also considered the total number of
known interactions per gene, as shown in BioGRID, as a measure to modulate node importance. We
tentatively corrected node importance in every case, calculating the logarithm of the product between
node centrality and the absolute number of known interactions per node.

Statistical network analyses were carried out with the aid of R tools implemented in the “igraph”
package [51] on the undirected connected graph representing all interacting genes. Measures of node
centrality or node "importance" in the networks were obtained relative to the number of receiving
edges (“closeness”) or their rank (“eigen_centrality”). We estimated the correlation between these
variables and evolutionary rates and gene paralogy based on the Spearman rank-order correlation
coefficients. Additionally, the network community structure was explored with several node modularity
optimization algorithms in “igraph”, including the Clauset–Newman–Moore algorithm (command
“cluster_fast_greedy”) and the Louvain method (command “cluster_louvain”; [52]), as well as exact
modularity maximization (command “cluster_optimal”) using the algorithm published by [53].
Modularity was also estimated by considering edges instead of nodes and using the algorithm
(command “cluster_edge_betweenness”) proposed by [54]. We tested for the existence of differences
in evolutionary rates for each resulting group using the Kruskal–Wallis test [55]. Additionally, the
homogeneity of rates between bipartitions of the network defined by each of the edges separating
groups was investigated using a Mann–Whitney U test at a 0.05 significance level.

3. Results

3.1. Characteristics of Datasets: Composition of Sequence Alignments

The 44 investigated genes involved in sperm individualization (GO:0007291) were present in the
subclass Pterygota (winged insects), both in Palaeoptera (mayflies and odonates), which were used as
outgroups in all analyses, and Neoptera (the remaining orders of winged insects). Most of these genes
showed unbiased patterns of gene expression in Drosophila, except for eight genes (Table 1). Given the
lack of similar functional studies in most other insects, these eight genes represented our hypothesis
for biased expression in the insect and beetle datasets. The median length of the associated proteins
ranged from 89 amino acids in the case of ctp to 2949 amino acids in the case of poe, with an average of
638 ± 529 amino acids per protein.

For most of the genes, OrthoDB contributed the amino acid sequences of the six beetle model
species to the Coleoptera subset (Figure 2b). The only exceptions were Bug22, ctp, Dark, EcR, Fadd,
jar, nsr, and Prosalpha6T, which lacked data for one of the species, Duba for two, and hmw for five.
Mapping of orthologous genes using Orthograph from transcriptomes of a selection of 19 beetle species
from the 1KITE Project and one testis-specific transcriptome from another beetle species resulted in
positive hits in all cases, although with different success rates, possibly related to the quality or source
of the transcriptomes. No single species yielded ortholog sequence data for all tested genes, with
Rhyzobius pseudopulcher retrieving the highest number of genes (40 out of 44) and two water beetle
species, Gyrinus marinus and Noterus clavicornis, retrieving the lowest (27 and 11 genes, respectively).
For 70% of the beetle species, we retrieved at least 75% of the genes (Figure 2a). In turn, for all genes
analyzed, we found orthologs in the beetle transcriptomes, but with different success rates (Figure 2b).
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A large proportion of genes (43.2%) were found in at least 19 out of 20 beetle species, and most of them
(72.7%) were found in 15 or more beetle species. Conversely, eight genes could not be found in at least
half of the species analyzed, with genes such as hmw, ctp, orb2, heph, and Bug22, showing the lowest
recovery frequencies (n ≤ 5). The proteins encoded by these genes were shorter than the average but
were also typically lacking recognized orthologs in some of the beetle model species (Figure 2b).
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Figure 2. Performance of Orthograph searches of sperm individualization gene orthologs in beetle
transcriptomes. (a) Number of genes retrieved from each of the non-model beetle species transcriptomes.
(b) Number of beetle species yielding ortholog sequences for each of the sperm individualization genes
analyzed, with information on the average protein length and showing genes absent in one or more
OrthoDB beetle model species as white columns.

3.2. Characteristics of Datasets: Gene Duplications

At the time of this study, OrthoDB curated data for 119 insect species. When more than
119 sequences were retrieved for a particular gene, this informed in most cases of potential multi-copy
genes (Table 3). Their actual presence was confirmed in the ML trees when including all the sequences
retrieved from OrthoDB and the beetle sequences mined from 1KITE. In these cases, we used the
annotation of the D. melanogaster sequence to recognize the sperm individualization paralog of interest.
Figure 3 shows a diagram of gene duplications (and some secondary gene losses) as recognized in
this study.
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Table 3. Summary of sequence characteristics of genes retrieved from OrthoDB. The table lists the
number of sequences (N) and species (Sp; with a maximum of 119 species), number of species in
which the gene is single copy (Single), the median protein length (L), and relative evolutionary rate
(r) as tabulated in OrthoDB. Furthermore, the number (n) of aligned sequences in this study and the
alignment lengths (Length), as well as the inferred optimal evolutionary model, are given.

Gene N Sp Single L r n Length Model

Act5C 517 115 7 376 0.60 - - -
Ance 238 109 30 631 0.92 90 621 LG + G + I
aux 136 112 94 1164 1.21 126 1755 JTT + G + I + F

blanks 172 107 71 348 1.55 122 719 JTT + G + I + F
Bug22 201 115 36 200 0.61 83 270 LG + G + I
CdsA 118 109 101 445 0.76 122 574 JTT + G + I + F
Chc 123 115 110 1676 0.63 130 1726 JTT + G + I
ctp 121 98 79 89 0.57 - - -

Cul3 153 116 91 780 0.73 133 858 JTT + G + I
Cyt-c-d 148 110 74 108 0.65 - - -

Dark 119 106 94 1378 1.99 112 2193 JTT + G + I + F
didum 126 113 102 1793 1.10 124 2175 LG + G + I
Dredd 91 81 75 493 1.76 98 676 JTT + G + I + F
Dronc 128 96 78 425 1.67 119 654 WAG + G + I + F
Duba 105 99 93 628 0.95 113 1087 JTT + G + I + F
EcR 121 113 105 515 0.83 120 576 JTT + G + I

eIF3m 116 113 111 387 0.77 130 394 JTT + G + I
Fadd 96 93 90 246 1.77 108 353 JTT + G + I + F
gish 129 113 99 441 0.73 124 401 JTT + G + I
gudu 125 115 106 689 1.01 124 658 LG + G + I
heph 206 114 47 285 0.78 114 597 JTT + G + I + F
hmw 78 76 74 260 1.38 80 925 JTT + G + I + F
jar 131 111 97 1238 0.86 129 1375 JTT + G + I + F

klhl10 214 109 54 619 0.96 113 630 LG + G + I
Lasp 113 105 97 321 0.79 121 298 JTT + G + I
Mer 120 112 105 605 0.87 129 686 JTT + G + I
mlt 124 112 103 477 1.10 130 651 LG + G + I + F
nes 122 112 104 474 1.21 128 472 LG + G + I + F

Npc1a 216 116 23 1256 0.98 124 1435 LG + G + I
nsr 317 115 38 355 0.92 129 563 JTT + G + I
orb2 115 106 98 351 0.62 105 293 JTT + G + I
Osbp 158 112 79 597 0.91 130 1094 JTT + G + I
oys 121 108 97 505 1.03 115 463 LG + G + I

Past1 124 114 104 534 0.66 120 564 LG + G + I
Pen 342 116 7 519 0.83 121 593 LG + G + I + F
poe 183 115 84 2949 1.08 129 3846 JTT + G + I + F

porin 124 108 98 282 0.86 127 286 LG + G + I + F
Prosalpha6T 126 108 91 277 0.77 125 312 LG + G + I + F

scat 130 116 103 942 1.11 133 1233 JTT + G + I
shi 133 113 94 857 0.67 132 1005 LG + G + I

skap 247 116 8 424 0.80 128 476 LG + G + I
sw 125 115 109 655 0.80 133 755 JTT + G + I
Taz 105 102 99 265 0.91 118 303 LG + G + I + F

Vps28 135 112 94 212 0.72 131 213 LG + G + I
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For a total of 21 genes, we had no evidence for duplications or losses in the winged insect lineage.
However, 18 genes showed duplications in Pterygota or parts of this evolutionary lineage. Two of
these genes, Act5C and Cyt-c-d, were found as part of multigene families, and it was difficult to tell
individual copies apart with the available data and as a result of their high similarity. Act5C is part of
a gene complex with a deep split in all insects, including actin-related proteins (Arp1 in Drosophila)
and several actins resulting from various duplications. We found evidence for at least six actin-like
gene copies in Acalyptratae flies (fruit and peacock flies, among others), five in mosquitoes, four in
Hymenoptera and Palaeoptera, at least three in Coleoptera and the hemipteroids, and at least two
among Lepidoptera. Act5C, in particular, is highly conserved in the whole of Pterygota, and most of
the available beetle sequences were retrieved close to this specific Drosophila paralog in the phylogeny.
In turn, Cyt-c-d was revealed as a member of a multigene family in most insect groups, including
odonates, some hemipteroids, beetles, and some dipterans. The proteins encoded by these genes
are short and highly conserved, so paralogs could not be resolved easily, but most beetle sequences
retrieved by Orthograph were more similar to the Cyt-c-p copy of the gene in Drosophila. Finally, ctp
corresponded to a very short fragment, highly conserved and with evidence for paralogy, though it
was not possible to discriminate gene copies. Given the difficulty of discerning orthologs, these three
genes were not considered in downstream analyses.

Seven of the duplicated genes—namely, Ance/Acer, Bug22, klhl10, Npc1a/Npc1b, nsr,
Pen/Kap-α1/Kap-α3, and skap/Sucb—were duplicated in all studied insects and, in some cases, with
one of the copies being subsequently lost or further multiplied in particular lineages. For example,
orthologs of the Npc1b and Pen copies were lost in Lepidoptera, the sister copy of klhl10 was lost in
Diptera, and one copy of nsr was lost in aculeate Hymenoptera. Acalyptratae (Diptera) had three
additional copies of nsr (four in Bactrocera tephritid peacock flies); Acer was duplicated independently in
Trichoptera, Lepidoptera, and some Diptera; and skap had an additional copy among the Hymenoptera.
Overall, 10 genes had lineage-specific duplications. Dredd had several copies in Ephemera alone; orb2
and Osbp were duplicated in some hemipterans; and for Dronc, gish, and Past1, we found evidence for
duplications in Coleoptera. Finally, the remaining four genes were duplicated in Diptera: blanks and
Cul3, with fast-evolving copies in some dipterans; CdsA in some nematocerans (midges and moth-flies);
and Prosalpha6 in Drosophila alone (wherein only the paralog Prosalpha6T, perhaps missing in all the
other insects, is male biased). Apart from the lineage-specific losses found for Npc1b, Pen, and the
sister copies of klhl10 and nsr, other gene losses detected in our data set affected Dredd (missing in
mosquitoes [Diptera: Culicidae]), Duba (lacking in Trichoptera and Lepidoptera), Fadd (absent in some
Hemiptera), and hmw (not recorded in Ephemera [Ephemeroptera] or Anopheles [Diptera]).
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3.3. Evolutionary Rates of Sperm Individualization Genes in Insecta and Coleoptera

Amino acid sequence matrices of the orthologous sperm individualization genes of insects and
nucleotide sequence data of Coleoptera were used to infer gene trees under ML and Bayesian inference
and to estimate evolutionary rates (Supplementary Files S1–S4). In general, both methods produced
similar gene trees, e.g., with respect to resolving the relationships of the insect orders and some
infraordinal relationships (Figure 4a), usually with relatively strong nodal support, and consistent with
the current systematic knowledge for insects [56]. However, most trees had relatively poorly resolved
deep relationships, particularly within the hemimetabolous insect orders, which were represented
by relatively few taxa. In turn, in most beetle trees, the suborders represented by several species
were retrieved as monophyletic, but there was no consensus among trees on subordinal relationships
(Figure 4b). However, in most cases the topologies were consistent with Polyphaga being sister to the
other three suborders (Adephaga, Myxophaga, and Archostemata).Genes 2019, 10, 776 13 of 25 
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Based on the previous phylogenies, the amino acid substitution rates for 41 proteins encoded by
sperm individualization genes (excluding the 3 proteins for which orthology could not be confirmed)
spanned nearly two orders of magnitude, from 0.000237 amino acid changes per lineage and million
years (subs./l./Ma) in the protein orb2 to 0.009667 subs./l./Ma in the protein hmw (Table 4). The average
substitution rate for the whole dataset was 0.00239 ± 0.003012 subs./l./Ma. Slightly over half (56%)
of these proteins, typically those with lower overall substitution rates, exhibited evolutionary rates
inconsistent with a molecular clock, i.e., rates on individual branches with more substantial departures
from the mean (ucld.stdev ≥ 0.6).

Table 4. Characteristics of amino acid datasets of sperm individualization proteins of insects deduced
from information in public databases (B: unbiased [0] and sex-biased [1] genes; N: non-interacting
[0] and interacting [1]), as well as information deduced from their phylogenetic analyses, including
duplications (D: single [0] and multicopy [1]), evolutionary rates, evolutionary rate heterogeneity
(ucld.stdev), and the estimated age of the clade Coleoptera.

Gene B/D/N Substitution Rate (×10−3) ucld.stdev Age Coleoptera

hmw 1/0/0 9.67 ± 1.349 2.972 -
Dark 0/0/1 5.27 ± 0.282 0.418 264.2 [214.3–314.2]

blanks 1/1/1 4.38 ± 0.382 0.483 310.6 [248.2–376.1]
Dredd 0/0/1 4.23 ± 0.219 0.309 278.4 [239.2–315.8]
Fadd 0/0/1 4.21 ± 0.277 0.345 -

Dronc 0/1/1 3.62 ± 0.221 0.391 379.8 [339.5–426.0] b

Duba 0/0/1 3.18 ± 0.257 0.566 348.2 [248.5–450.2] b

nsr 1/1/0 3.00 ± 0.279 0.672 194.1 [127.4–262.5]
Bug22 0/1/0 2.82 ± 0.278 0.559 -

scat 1/0/0 2.73 ± 0.259 >3 a 267.8 [185.8–359.0]
aux 0/0/1 2.45 ± 0.154 0.386 311.0 [252.3–372.7]
nes 0/0/0 2.27 ± 0.130 0.423 307.2 [253.7–365.2] b

poe 0/0/0 2.10 ± 0.174 >3 a 328.7 [227.3–433.1]
Osbp 0/1/0 2.05 ± 0.180 0.601 299.6 [230.3–375.4] b

Npc1a 0/1/0 1.91 ± 0.157 >3 a 334.2 [231.5–442.6]
didum 0/0/1 1.90 ± 0.126 0.511 337.0 [264.9–419.9]

Pen 0/1/0 1.78 ± 0.120 0.531 273.2 [208.2–340.5]
klhl10 1/1/1 1.69 ± 0.124 0.816 -

Prosalpha6T 1/1/0 1.68 ± 0.151 0.559 248.5 [185.6–315.1]
oys 0/0/0 1.57 ± 0.127 0.558 -

gudu 1/0/0 1.45 ± 0.115 0.553 347.7 [258.1–444.1]
Ance 0/1/0 1.42 ± 0.099 0.396 -
sw 0/0/1 1.38 ± 0.171 3.712 247.5 [133.2–374.3]
Taz 0/0/0 1.33 ± 0.111 0.607 312.2 [231.9–401.0]
Mer 0/0/1 1.30 ± 0.130 0.936 304.5 [208.4–409.9]
skap 0/1/1 1.15 ± 0.116 0.557 314.4 [214.9–424.3] b

CdsA 0/0/0 1.15 ± 0.103 0.629 350.5 [258.6–440.6] b

jar 0/0/1 1.06 ± 0.086 0.482 403.2 [315.0–494.6] b

porin 0/0/0 0.99 ± 0.106 0.779 -
Lasp 0/0/1 0.98 ± 0.138 0.930 451.5 [288.4–633.0] b

Cul3 0/1/1 0.98 ± 0.130 3.798 223.1 [112.6–351.7] b

EcR 0/0/0 0.93 ± 0.091 0.789 -
heph 0/0/0 0.90 ± 0.118 3.919 -

eIF3m 0/0/1 0.86 ± 0.084 0.480 363.0 [277.4–462.1]
shi 0/0/1 0.74 ± 0.092 3.847 253.2 [124.3–397.0]

Past1 0/1/1 0.71 ± 0.069 0.713 387.4 [273.0–513.2] b

Vps28 0/0/0 0.63 ± 0.079 0.822 -
gish 0/1/0 0.47 ± 0.070 4.174 262.9 [137.6–401.9]
mlt 0/0/0 0.42 ± 0.523 3.268 244.6 [121.4–368.1] b

Chc 0/0/1 0.32 ± 0.035 0.700 346.6 [242.1–464.4]
orb2 0/1/0 0.24 ± 0.035 1.414 180.4 [52.1–328.6]

a Data analyzed under exponential relaxed clock, with ucld.stdev estimated from inconclusive runs under an
uncorrelated lognormal relaxed clock; b Coleoptera is rendered paraphyletic by the inclusion of Strepsiptera.
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The analyses of evolutionary rates yielded age estimates for the clade Coleoptera with averages
ranging between 180.4 Ma, in the case of orb2, and 451.5 Ma, in the case of Lasp, with broad confidence
intervals of 186.2 ± 62.49 Ma on average (Table 4). Coleoptera was recovered as monophyletic in 18 of
the analyses, and the overlap of the age confidence intervals obtained for each gene covered a period
between 277.4 and 315.2 Ma (except in the case of nsr, which yielded an age much younger than the
oldest known beetle fossils) (Figure 5). This time interval was used to restrict the age of Coleoptera in
subsequent analyses, and it was consistent with most clade age estimates for Coleoptera obtained in
analyses where the beetle clade also included Strepsiptera.
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Figure 5. Inferred ages and 95% credibility intervals for the Coleoptera clade (top panel) or a Coleoptera
+ Strepsiptera clade (bottom panel) based on the molecular clock analyses of amino acid sequence
data of sperm individualization genes. The full overlap of age estimates of monophyletic Coleoptera
identifies an interval (shaded area) consistent with the proposed age of the group based on fossil data
and used here as age prior for the evolutionary rate analyses in beetles.

The above time constraint for Coleoptera produced instantaneous nucleotide substitution rates
ranging from 0.00208 subs./l./Ma in the case of the gene nes to 0.01190 subs./l./Ma in the case of
Cul3, with an average substitution rate for the whole set of genes investigated of 0.00452 ± 0.002083
subs./l./Ma (Table 5). Slightly over half these genes had substitution rates relatively consistent with a
molecular clock (ucld.stdev < 0.6), and in contrast to the case of the amino acid sequence analyses, the
genes departing from the molecular clock were those with higher nucleotide substitution rates.
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Table 5. Characteristics of the nucleotide phylogenetic data sets of sperm individualization genes in
Coleoptera. The number of species (N), length of nucleotide sequence alignments (L), the determined
evolutionary model, inferred evolutionary rates, and information on rate heterogeneity (ucld.stdev) are
given for each gene.

Gene N L Model Substitution Rate (×10−3) ucld.stdev

Cul3 25 2196 TN93 + G + I 11.90 ± 2.603 2.707
gish 24 1197 GTR + G + I 9.34 ± 1.981 2.821

Act5C 15 1128 GTR + G + I 8.91 ± 2.232 2.839
scat 25 1974 GTR + G + I 7.26 ± 1.397 2.958

eIF3m 25 1155 GTR + G + I 7.06 ± 1.394 2.872
poe 23 3291 GTR + G + I 6.90 ± 1.322 2.844

Dredd 23 732 GTR + G + I 6.41 ± 1.255 3.012
CdsA 21 1323 GTR + G + I 6.35 ± 1.229 2.954
blanks 25 672 GTR + G + I 5.82 ± 1.172 2.994

shi 25 2610 GTR + G + I 5.81 ± 1.161 2.918
skap 24 1302 GTR + G + I 5.09 ± 0.984 3.033
Dark 14 1863 GTR + G + I 4.96 ± 0.905 2.947
Duba 20 858 GTR + G + I 4.93 ± 0.997 2.916

Prosalpha6T 25 822 GTR + G + I 4.90 ± 0.959 3.041
Chc 22 4944 GTR + G + I 4.78 ± 0.410 0.270

klhl10 14 1779 GTR + G + I 4.48 ± 0.849 2.952
jar 25 3393 GTR + G + I 4.47 ± 0.840 3.005

didum 21 5073 GTR + G + I 4.41 ± 0.817 3.029
oys 14 1347 GTR + G + I 4.41 ± 0.839 3.019
ctp 8 267 GTR + G 3.79 ± 1.107 0.232
mlt 24 1248 GTR + G + I 3.61 ± 0.464 0.474
sw 25 1455 GTR + G + I 3.61 ± 0.347 0.344
Taz 23 774 GTR + G + I 3.52 ± 0.278 0.340

Fadd 19 228 GTR + G + I 3.41 ± 0.495 0.463
nsr 24 780 GTR + G + I 3.39 ± 0.464 0.409
orb2 8 834 GTR + G + I 3.36 ± 0.834 0.477

Npc1a 23 3756 GTR + G + I 3.32 ± 0.280 0.255
Dronc 24 954 GTR + G + I 3.17 ± 0.265 0.221
EcR 17 1278 GTR + G + I 3.13 ± 0.396 0.382

Vps28 26 573 GTR + G + I 3.12 ± 0.509 0.169
Osbp 25 1881 GTR + G + I 3.09 ± 0.285 0.365
Past1 13 1566 GTR + G + I 3.09 ± 0.344 0.186
aux 18 2130 GTR + G + I 3.09 ± 0.295 0.252
Lasp 25 423 GTR + G + I 3.08 ± 0.495 0.110
gudu 15 1848 GTR + G + I 2.93 ± 0.280 0.450
Pen 24 1440 GTR + G + I 2.92 ± 0.252 0.296

porin 25 849 GTR + G + I 2.78 ± 0.393 0.499
Mer 23 1701 GTR + G + I 2.78 ± 0.260 0.329
Ance 18 1716 GTR + G + I 2.59 ± 0.198 0.299
hmw 8 201 GTR + G 2.57 ± 0.457 0.118
nes 25 1317 GTR + G + I 2.08 ± 0.171 0.538

3.4. Analysis of Rate Differences

Permutation tests of independence produced non-significant results for every pair of independent
variables used in subsequent tests, suggesting that there were no interactions among them. The null
hypothesis that sperm individualization genes with or without duplications in the insect lineage had the
same evolutionary rates was not rejected (Mann–Whitney U = 183, p = 0.758; also treating hemipteroid
orb2 and Osbp duplications as non-duplicated genes: U = 157, p = 0.497). Similarly, this hypothesis
was not rejected in the case of genes working in coordination in a gene interaction network (like
the one deduced for Drosophila) tested against genes dissociated from this network (Mann–Whitney
U = 190, p = 0.632). However, when genes were split into two categories according to their predicted
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sex expression bias, or according to whether they evolved in a clocklike fashion, the null hypothesis of
no differences in their evolutionary rates was rejected at the 0.05 significance level (Mann–Whitney
U = 52, p = 0.019 and Mann–Whitney U = 323, p = 0.002, respectively). In these cases, sex-biased
and clock-constrained genes would have slightly faster rates, except for the male-biased gene hmw, a
fast-evolving protein departing nonetheless from a molecular clock. The same tests, when applied to
nucleotide substitution rates of the genes of interest in beetles, produced non-significant results when
rate differences were tested for predicted expression biases (U = 115, p = 0.817), gene duplications
in the beetle lineage (U = 181, p = 0.551), or their predicted coordination in an interaction network
(U = 156, p = 0.118). The test produced a clear significant result when rate differences were tested
against the clocklike behavior of data (U = 5, p << 0.001), with the genes departing from the molecular
clock having much higher rates (genes[ucld.stdev < 0.6]: 0.00314 ± 0.000533 versus genes[ucld.stdev
≥ 0.6]: 0.00620 ± 0.002030).

3.5. Evolutionary Patterns in the Sperm Individualization Interaction Network

The results of the Spearman’s rank correlation tests between amino acid substitution rates and
measures of node importance based on the number of receiving edges (S = 956.6, rho = 0.1609,
p = 0.5106), rank (S = 712.6, rho = 0.3749, p = 0.1138), or their respective corrections considering the total
number of genetic interactions of the nodes of interest (S[edges] = 1340.0, rho = −0.1754, p = 0.4709;
S[rank] = 1054.0, rho = 0.0754, p = 0.7592) were all non-significant (Figure 6). Similarly, the correlations
between nucleotide substitution rates in beetles and node centrality measures based on the number
of receiving edges (S = 1115.3, rho = 0.2758, p = 0.2263) or their tentative correction based on edges
(S = 1520, rho = 0.0130, p = 0.9573) and rank (S = 1180, rho = 0.2338, p = 0.3063) were non-significant.
However, when node centrality was assessed based on the first eigenvector of the adjacency matrix,
their correlation with nucleotide substitution rates was significant (S = 770.5, rho = 0.4997, p = 0.0211),
suggesting a slight effect of more densely connected regions of the network having significantly higher
evolutionary rates. In turn, there was no evidence for a correlation between genes being single copy or
duplicated and any centrality measure without (edges: S = 1772.9, rho = −0.1512, p = 0.5129; rank:
S = 2127.7, rho = −0.3816, p = 0.0878) or with correction (edges: S = 1368.7, rho = 0.1112, p = 0.6312;
rank: S = 1980.5, rho = −0.2860, p = 0.2088).
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Network modularity measures split the gene interaction network into four groups when using
edge-based partitioning or five groups when using node-based partitioning, with considerable
agreement between strategies (Figure 7). Exact modularity and the Clauset–Newman–Moore algorithm
produced identical groupings, differing from the edge-based solution in the transfer of one node
(Dredd) to an adjacent group and the split of two nodes (Act5C and Lasp) as an additional group. The
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Louvain modularity produced groups identical to the other node-based methods, but transferring one
node (Past1) into the adjacent group. None of these global partitioning strategies showed statistical
differences in amino acid substitution rates (“edge_betweenness”, chi-sq = 2.8835, p = 0.4099; “optimal”,
chi-sq = 2.5958, p = 0.6276; “louvain”, chi-sq = 2.4258, p = 0.6580) or nucleotide substitution rates
(“edge_betweenness”, chi-sq = 4.9143, p = 0.1782; “optimal”, chi-sq = 5.4316, p = 0.2458; “louvain”,
chi-sq = 4.9848, p = 0.2889). However, when different group bipartitions of the network were considered,
the edge between Dronc and shi (ABC and DE clusters in Figure 7) delimited groups with different
amino acid substitution rates (U = 72, p = 0.0279) and different nucleotide substitution rates when
beetle data were considered both for edge (U = 83, p = 0.0409) and for node (U = 93, p = 0.0062)
partitions. Nucleotide substitution rates were also statistically significantly different across the edges
joining Dredd and Dronc (U = 80, p = 0.0200; AB and CDE clusters in Figure 7) and Chc and Past1
(U = 69, p = 0.0147; ABCD and E clusters in Figure 7).
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enhancing and/or repressing modulation effects. Nodes represent interacting proteins, and they are
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interactions between proteins, with their width being proportional to the evolutionary rate differences
between interacting proteins (dashed lines are used when their evolutionary rate data are missing).
Dashed-line and solid-background polygons show the edge-based and node-based partitions of the
network, respectively. More details and alternative partitioning schemes are described in the main text.

4. Discussion

4.1. Data Mining Genomic and Transcriptomic Resources: Sequence Quality

The results of studies exploiting genomic and transcriptomic resources depend on their quality
and curatorial status, regardless of how complex and efficient the bioinformatic approaches used
to extract this information are [57,58]. Usually, the scale and complexity of studies using “big data”
prevent end-user control of their quality [59], and data may include unnoticed errors (e.g., incorrect
taxonomic assignments or shifts in reading frames) or may have escaped objective quality filters (e.g.,
low sequence quality or assembly problems). Here, we used several public databases of annotated
sequence data, including GenBank, FlyBase, modENCODE, OrthoDB, and BioGRID, as well as the
partially released 1KITE database. Each may have contributed particular biases to the results, but the
amount of data was still amenable to manual control of the different analytical steps, allowing for
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the recognition of problems and for hopefully avoiding them by iterative analytical exploration and
filtering of the data.

The first challenge we had to address after mining the sequence data, and before all analyses,
was filtering what we interpreted as noisy sequence data or suspicious annotations in the data sets.
Sequence quality was a major concern when using data directly mined from sequence repositories.
Thus, we identified, through iterative assessment, two main criteria for the total or partial removal
of potentially noisy data. These were (i) long autapomorphic insertions in amino acid sequences
which may result from unrecognized introns and (ii) highly divergent, unalignable regions, typically
at the ends of sequences, due to compensated nucleotide gains/losses in that part of the sequence,
locally affecting the reading frame. Reiterated multiple sequence alignments also allowed recomposing
the proteins that appeared in OrthoDB as non-overlapping fragments for some taxa into a single
sequence. However, when this situation affected duplicated genes, there was a risk of joining fragments
of non-orthologous proteins, which we addressed by using phylogenetic trees to inform manual
curation [29]. We gained additional insight into the aforementioned problems by merging annotated
and curated amino acid sequence data from OrthoDB with translated nucleotide sequence data from
1KITE beetle transcriptomes. Some of the latter sequences showed precisely the same translation
problems affecting homology as were found for the insect protein data, and they were filtered according
to the same criteria specified above.

4.2. Data Mining Genomic and Transcriptomic Resources: Orthology Assessment

Orthology assessment was particularly crucial in the examination of beetle data mined directly
from raw transcriptomes, and here, this assessment was particularly important because orthology
provided our best hypothesis for conserved gene function. For most EOGs of interest for which we
searched the transcriptomes, the pipeline yielded a phylogenetically cohesive group of potentially
orthologous sequences with their paralogs when they were present in the transcriptome. The efficiency
of Orthograph in this respect was demonstrated when mistakes were made. For example, a bad
specification of the EOG corresponding to the gene Pen initially resulted in predicted beetle orthologs
for one of the other importin-alpha genes in insects, which could be identified and corrected in our
iterative phylogenetic approach. For six genes, however, the analyses picked up at least two paralogs.
Two corresponded to Act5C and Cyt-c-d, which we already described as challenging to separate in the
respective duplicated copies, even using phylogenies. The other four are more difficult to explain,
and recognizing them required phylogenetically informed decisions; they were removed from the
analyses a posteriori. Of these, two were genes for which we revealed duplications in beetles, Dronc
and gish (for the latter, we found the beetle-specific paralog only in Xylobiops [Bostrichidae]). The other
two were Npc1a, for which the correct sperm individualization ortholog was identified in 16 beetle
transcriptomes and its paralog Npc1b in Lepicerus sp., and klhl10, for which the copy missing in Diptera
was found in Micromalthus debilis and Lamprohiza splendidula. For all of these genes, we have strong
evidence hinting at them being duplicated in the beetle genomes, yet we retrieved one of the copies
in most species and the other copy in one or just a few transcriptomes. If these genes are indeed
duplicated, the reason why both copies were not found consistently in all beetle transcriptomes may
be related to how the program Orthograph works, i.e., retrieving a single best reciprocal hit, the
putative ortholog. In these circumstances, and analogously to ranked results of BLAST searches, the
correct, biologically meaningful sequence may be missed after yielding a suboptimal hit, perhaps
because of sequence quality and/or length issues or the absence of the ortholog of interest in some of
the transcriptomes.

4.3. Evolutionary Dynamics of Sperm Individualization Genes

All qualitative traits that were used to rank sperm individualization genes in insects were
statistically independent. This implies that, at least for this subset of genes, some evolutionary
predictions do not apply, including the association of sex-biased gene expression with an origin



Genes 2019, 10, 776 19 of 24

attributed to gene duplications [18]. Apart from duplications, we also recorded gene losses, because it
has been hypothesized that the rate of turnover (i.e., lack of 1:1 orthology) for sex-biased—particularly
male-biased—genes may be higher than for other genes [60,61]. Among sperm individualization genes,
we found lineage-specific losses for both biased and unbiased genes without statistical differences
between groups (chi-sq = 2.4529, p = 0.1450), and our phylogenetic analyses, in fact, show that
preservation and genomic dosage of sperm individualization genes are generally highly conserved
across the Insecta despite their long evolutionary history.

In our analysis of the correlation between the different ways in which we ranked sperm
individualization genes and their inferred evolutionary rates, only two instances of statistically
significant differences were obtained. The first relates to the overall homogeneity of substitution rates
both for insect amino acid and for beetle nucleotide sequence data (even if with opposite signs). The
second and most interesting, considering the deep evolutionary time considered and the assumption of
conservation of gene functionality across this time scale, was for sex-biased genes, which had different
and significantly higher evolutionary rates than unbiased genes. The fact that sex-biased genes, and,
more specifically, male-biased genes, evolve more rapidly than unbiased genes is a well-known general
evolutionary pattern documented from a diversity of organisms [5,60–69]. However, it is surprising
that this signature is still present across some 400 million years of evolution when it remains unclear
whether gene functionality and sex bias in their expression have been conserved. If these features
changed during the course of evolution, it is still possible that faster rates in this case could be related
to other expression features, such as tissue specificity and narrow expression profiles [65]. Indeed,
faster rates of evolution associated with sex-biased expression have been explained as the result of
several potential causes, including participation in specific processes such as spermatogenesis [62,69],
activation in reproductive tissues relative to genes expressed in several tissues [13,70], linkage to the
homogametic sex chromosome [13,70], relatively low levels of expression [71], or circumscription to
specific stages of development [5]. These correlations are far from universal, and there are exceptions
to each of the proposed patterns [5,68,69], much depending on the organism under study but also on
their life histories. For example, female mating behavior in different species of Anopheles [Diptera:
Culicidae]—some species of which are polyandrous, while others mate once in their lifetime—may
have different impacts on sperm competition and selection and, consequently, on the evolutionary
dynamics of sperm-related genes [69]. Moreover, while these factors could potentially lead to faster
rates of evolution in sex-biased genes, protein–protein interactions could effectively constrain them [72],
a possibility that will be discussed below.

4.4. Evolutionary Dynamics of Interacting Sperm Individualization Genes

Genetic interactions act as a dominant force explaining evolutionary rates, and the nature and
type of interaction may prevail over other factors, such as the characteristics of gene expression [73].
There are hypotheses on how these two features may interact, such as the expected negative correlation
between the number of protein interactions and evolutionary rates, or the proposition that interacting
proteins should evolve at similar rates [74]. The micro- and macroevolutionary analyses of the effect
of these interactions have facilitated significant advances in our understanding of these processes.
On the one hand, our knowledge on the structure of genetic interaction networks, also for non-model
organisms, is more detailed. On the other hand, the development of explicit, quantitative methods
allows us to evaluate the architecture and properties of the networks relative to the biological features
of their elements, particularly in the case of metabolic networks [75–78].

Among typical macroevolutionary patterns related to the protein–protein interaction network
structure, it has been proposed that duplicated genes tend to be more highly connected in such
networks [77]. The sperm individualization network shows an area that concentrates duplicated and
relatively highly connected proteins (e.g., Dredd, Dronc, and skap); however, there was no statistical
support for a correlation between these features. Correlations were found, nonetheless, for evolutionary
rates when the undirected network was bipartitioned, adding statistical support to the intuitive notion of
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faster-evolving genes and proteins (blanks, Dark, Dredd, Dronc, Duba, and Fadd) appearing concentrated
in one region of the network. Furthermore, we found a positive correlation between rank-based
centrality and nucleotide substitution rates for beetles. In general, the opposite trend tends to be the
norm, and highly connected genes usually show slower rates of evolution, maybe because the protein
function depends on more topological interactions with other proteins, which constrain the possibility
of change [74,75]. However, this is a controversial topic, and other examples of faster-evolving core
proteins in an interaction network exist, such as the analysis of transcriptional networks in yeast [79].
In any case, it is too early to draw conclusions about the evolutionary trends in sperm individualization
genes. Significant results were only obtained for beetles, for which we lack empirical evidence of the
same gene interactions known in Drosophila, and different evolutionary dynamics seem to operate
depending on the overall function of the network. This highlights the necessity for further research in
beetles beyond the model organism T. castaneum.

The lack of significant or consistent results between analyses employing insect amino acid and
beetle nucleotide sequence data may be explained, in part, by the partial view of the actual interactions
in which sperm individualization genes participate. It is possible that the real nature and number of
these interactions is not captured by the necessarily crude correction applied here (i.e., total number of
receiving edges in the interactome). The structural measures obtained from the interaction network are
intrinsic and the represented network of interactions is not isolated; therefore, these measures can show
some biases [75]. A poorly connected node in the sperm individualization network can have many
connections to other functional domains of the cell. For example, the proteins Fadd and Mer physically
interact with the products of three and four other sperm individualization genes, respectively; however,
in the complete interactome of Drosophila, they are known to interact physically or genetically with 100
and 165 other proteins, respectively. As already mentioned, another possibility is that the interaction
network described for Drosophila is not universal for insects, totally or partially, and that the enforced
topology is unable to capture evolutionary constraints for these genes in insects, or that the actual
evolutionary dynamics of beetles are different from general trends in insects. Nevertheless, we tried
to find intrinsic patterns that could be associated with the coordination of the genes of interest in a
specific function, and at least in the case of beetles, there could be a signature worth exploring from a
functional point of view.

While we identified statistically significant differences in the rate of amino acid substitution in
insects depending on hypothesized sex-biased expression, the study of nucleotide substitution rates in
beetles for the same genes did not reveal any significant pattern. A somewhat reverse pattern was
obtained in our exploration of evolutionary rates constrained by the architecture of a hypothesized
network of interaction, wherein mainly nucleotide substitution rates of beetles showed some correlation
with this architecture. This apparent contradiction and the complexity of the factors involved in
explaining evolutionary rates make it difficult to fully explain these patterns satisfactorily. Before we
can do that, we need more in-depth insight into the temporal and spatial expression profiles, effective
function, genetic interactions, and pleiotropic effects of these genes in every single species, but also to
incorporate information on their life history, which is likely to influence their evolutionary dynamics.
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File S1. Maximum likelihood trees based on the amino acid alignments of different sperm individualization
proteins in insects. File S2. Bayesian inference trees based on the amino acid alignments of different sperm
individualization proteins in insects. File S3. Maximum likelihood trees based on the nucleotide alignments
of different sperm individualization genes in beetles. File S4. Bayesian inference trees based on the nucleotide
alignments of different sperm individualization genes in beetles.
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