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Abstract

Chronic cocaine and alcohol use impart significant stress on biological and cognitive sys-

tems, resulting in changes consistent with an allostatic load model of neurocognitive

impairment.

The present study measured potential markers of allostatic load in individuals with

comorbid cocaine/alcohol use disorders (CUD/AUD) and control subjects. Measures of

brain white matter (WM), telomere length, and impulsivity/attentional bias were obtained.

WM (CUD/AUD only) was indexed by diffusion tensor imaging metrics, including radial diffu-

sivity (RD) and fractional anisotropy (FA). Telomere length was indexed by the telomere to

single copy gene (T/S) ratio. Impulsivity and attentional bias to drug cues were measured

via eye-tracking, and were also modeled using the Hierarchical Diffusion Drift Model

(HDDM). Average whole-brain RD and FA were associated with years of cocaine use (R2 =

0.56 and 0.51, both p < .005) but not years of alcohol use. CUD/AUD subjects showed more

anti-saccade errors (p < .01), greater attentional bias scores (p < .001), and higher HDDM

drift rates on cocaine-cue trials (Bayesian probability CUD/AUD > control = p > 0.99). Telo-

mere length was shorter in CUD/AUD, but the difference was not statistically significant.

Within the CUD/AUD group, exploratory regression using an elastic-net model determined

that more years of cocaine use, older age, larger HDDM drift rate differences and shorter

telomere length were all predictive of WM as measured by RD (model R2 = 0.79). Collec-

tively, the results provide modest support linking CUD/AUD to putative markers of allostatic

load.
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Introduction

Allostasis implies a shift in homeostatic systems in response to acute or chronic stressors (e.g.,

allostatic load), described by McEwen as “the price the body pays for being forced to adapt to

adverse psychosocial or physical situations” [1]. Exposure to extreme or pervasive stressors

can result in pathophysiological change. Examination of allostatic load has commonly focused

on changes in the regulation of stress hormones and the sequelae of such changes [2,3], but the

concept can apply broadly to effects on many homeostatic systems. Nearly two decades ago,

Koob and colleagues proposed allostatic models of chronic cocaine and alcohol intake based

on preclinical work [4–6], but only modest attention has focused on the allostasic framework

in studying human substance use disorders (SUD). Here, we focus on the effects of chronic

SUD in adults with co-morbid cocaine and alcohol use disorders [7–9].

Among those with cocaine use disorder (CUD), co-occurring substance abuse, e.g., mari-

juana and/or alcohol use disorder (AUD), is the norm rather than the exception [10]. Individ-

uals who use only cocaine are of putative scientific importance with regard to isolating

individual drug effects. However, such investigations are more precisely understood using pre-

clinical models that can isolate dose-response relationships. In reality, because cocaine-only

users are rare, they may represent a phenotype of lesser clinical or applied interest. From the

standpoint of measuring indicators of CUD that translate to real world effects, alterations in

biological and neurocognitive function are probably best understood as the result of the syner-

gistic impact of CUD plus abuse of other substances.

The present study focused on brain white matter integrity, telomere length, and eye move-

ment indices of impulse/attentional control. While not a comprehensive set of biological or

cognitive markers of CUD/AUD-related impairment, these domains are indicators of health

and cognitive functioning. Importantly, varying degrees of evidence exist to suggest that each

domain is adversely modified by chronic cocaine and alcohol use [11–18]. Each marker–white

matter integrity, telomere length, and anti-saccade performance–is broadly associated with

neurological and psychiatric disease processes, independent of substance use disorders [19–

30], and thus collectively provides an indicator of possible allostatic load extrapolated from a

broader evidence base applied to CUD/AUD. We expected to observe evidence of impairment

for each marker related to CUD/AUD and the cumulative effects of abusing these substances.

Methods

Subjects

Participants for this project were recruited from the Greater Houston Metropolitan Area using

local newspaper and radio advertisements. The data reported here constitute part of a larger

clinical trial examining the effects 12-weeks of treatment with pioglitazone in participants with

a primary cocaine use disorder (CUD) and a secondary alcohol use disorder (AUD), described

in [31] (NCT02774343). For the present report, data were obtained from measures taken at

baseline (Day 0), prior to initiation of the clinical trial. The dataset included 22 CUD/AUD

subjects who provided complete neuroimaging, eye tracking, and telomere data. Two addi-

tional CUD/AUD subjects provided eye tracking and telomere data without DTI. In addition,

data from two independent samples of 35 (eye tracking) and 25 (telomere) healthy control sub-

jects were obtained for purposes of comparison with the CUD/AUD subjects. DTI was not

obtained from control participants, who were not part of the clinical trial, as neuroimaging of

control subjects was beyond both the scope and budget of the project. Additionally, numerous

studies have previously characterized white matter integrity in CUD and AUD [11–13,32–35].

The study was carried out in accordance with the recommendations of the Belmont Report
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and the approval of the UTHSC-Houston IRB. All subjects gave written informed consent

obtained in person in accordance with the Declaration of Helsinki. Subject characteristics are

provided in Table 1.

Measures

Demographic and clinical. The following measures were obtained for all subjects: age,

sex, education, race, cognitive aptitude (Shipley-2, [36]), and mental health functioning via

Structured Clinical Interview for DSM-IV (SCID-IV, [37]). For CUD/AUD subjects, lifetime

and recent substance use were determined via the SCID-IV, the Addiction Severity Index [38],

and the Kreek-McHugh-Schluger-Kellogg scale (KMSK, [39]).

Diffusion Tensor Imaging (DTI). DTI is a magnetic resonance imaging technique that is

used to map brain white matter (WM) fibers by quantifying the tissue diffusion properties of

water. DTI-derived metrics examined here included axial, radial, and mean diffusivity (AD,

RD, and MD, respectively), as well as fractional anisotropy (FA). These metrics have been used

to infer CNS white matter pathology in a number of neurological and psychiatric diseases [40–

44]. DTI methods, scanning parameters, and data processing details are provided in Support-

ing Information (S1 File). In summary, for each subject (N = 22) whole brain voxel-wise FA,

MD, RD, and AD maps were generated with toolboxes provided by FSL [45] using the Tract-

Based Spatial Statistics (TBSS) method [46,47]. DTI-derived maps were transformed into

MNI152 standard space by nonlinearly registering each map to a standard template provided

with FSL using a non-linear registration method (FNIRT, [47]). Each subject’s FA map was

projected onto the corresponding FA skeleton, allowing for voxelwise analysis across subjects

using a permutation-based non-parametric statistical method (RANDOMISE, [48]) with 5000

permutations. T1-based analyses with SPM and Freesurfer examining grey matter volume,

white matter volume, and cortical thickness and their relationships to cocaine use did not

reveal any significant patterns. Additionally, all scans were reviewed by a radiologist to ensure

Table 1. Demographic characteristics for CUD/AUD subjects (N = 22 completed DTI) and control groups for the anti-saccade (eye) and telomere length (telo)

data. Values represent mean (SD) or Number # (%). P-values represent outcomes from two-sample t-tests (age education, Shipley-2) or Fisher’s Exact Test (sex, race).

Variable Group p-values

CUD/AUD control (eye) control (telo)

N 24 35 25 —

Age 46.96 (7.66) 42.49 (10.17) 43.76 (6.62) a. < 0.07

b. < 0.12

Sex, # M (%) 18 (75.00) 17 (48.57) 17 (68.00) a. < 0.06

b. < 0.75

Education 12.69 (1.52) 14.06 (2.39) 14.00 (2.55) a. < 0.02

b. < 0.03

Race a. < 0.58

b. < 0.34

AA 14 (58.33) 25 (71.43) 18 (72.00)

C 6 (25.00) 5 (14.29) 2 (8.00)

H 4 (16.67) 5 (14.29) 5 (20.00)

Shipley-2 87.67 (13.10) 94.63 (14.15) 99.60 (10.87) a. < 0.07

b. < 0.16

Cocaine (yrs) 17.96 (8.34) — — —

Alcohol (yrs) 21.62 (12.27) — — —

a. CUD vs. control (eye-tracking)

b. CUD vs. control (telomere length)

https://doi.org/10.1371/journal.pone.0199729.t001
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that there were no gross anatomical abnormalities. Consequently, the present DTI-based

results may represent a unique white-matter marker that are not captured by volumetrics or

gross brain pathology.

Anti-saccade task. The details of the eye-tracking task are provided in Dias et al [15].

Briefly, participants were tested using an infrared binocular eye-tracker to measure perfor-

mance on blocks of pro-saccade and anti-saccade trials (36 trials per block). Following training

to minimize blinking and optimize task understanding, four counterbalanced blocks were

administered (2 pro-saccade, 2 anti-saccade, 144 trials total). Stimuli included cocaine-related

images, neutral images matched as closely as possible to the cocaine images (e.g., color, back-

ground, complexity), and size-matched solid gray shapes. The eye-tracking data were analyzed

as (1) overall error rates on all anti-saccade trials (global inhibitory control), (2) the ratio of

anti-saccade errors on cocaine-stimulus trials to total anti-saccade errors over all trials

(cocaine/total: attentional bias towards cocaine cues). Anti-saccade errors provide an index of

inhibitory control circuitry, both with regard to neural pathways subserving the control of eye

movements and to markers of pathology in psychiatric and neurological disease [49,50]. Atten-

tional bias provides an index of asymmetrical attentional control by the salience of specific sti-

muli (in this case cocaine cues) relative to neutral stimuli, with clinical relevance to SUD

[15,51,52].

Hierarchical drift diffusion model (HDDM). Error rates and attentional bias are robust

but coarse and descriptive measures of anti-saccade performance. Accordingly, eye-tracking per-

formance was also examined with a conceptually-informed approach from cognitive neurosci-

ence, the HDDM [53]. The HDDM is a drift diffusion / sequential sampling model of decision

making that incorporates both accuracy and reaction time, based on a threshold model in which

evidence for a decision (here, execution of an anti-saccade) accumulates in the context of imper-

fect information (noise). The HDDM capitalizes on both the theoretical utility of the drift diffu-

sion framework and the use of Bayesian data analytic methods, which have substantial utility in

modeling neural and cognitive phenomena [54]. The analysis focused on the HDDM parameter v
(drift rate). Herein, we interpret differences in v as evidence of differential salience of the cocaine

(vs. non-drug) stimuli, such that for the CUD/AUD group the cocaine stimuli increase decision

conflict reflected in both accuracy and reaction time. Details of this model, including conceptual

foundations and neural correlates can be found in [55,56]. Additionally, details of the HDDM out-

comes, including model output (group and individual subject), and metrics of model convergence

and fit are provided in the Supporting Information (S2 File).

Telomere length. Genomic DNA was extracted from leukocytes by standard procedures.

DNA concentration was assessed by Nanodrop and telomere length was measured quantita-

tively by PCR, as previously described [56]. Briefly, primers for the telomere sequence (T) are

tel1b: 5’-CGGTTT(GTTTGG)5GTT-3’ and tel2b: 5’-GGCTTG(CCTTAC)5CCT-3’. The

single-copy gene human beta-globin was used as the reference gene (S), with the following

primers: hbg1 5’-GCTTCTGACACAACTGTGTTCACTAGC-3’ and hbg2 5’ CCAACTTCAT
CCACGTTCACC-3’. T and S values were quantified relative to a reference DNA sample by

the standard curve method. Since the number of S copies are the same in all individuals, rela-

tive T/S ratio (the primary dependent variable) reflects relative length differences in telomeric

DNA. All PCRs were carried out using the thermal cycling profiles previously described in

[57], with DNA samples run in duplicate on separate plates but in the same well positions.

Data analytic strategy

DTI: Confirmatory analyses. We examined the relationship between FA, RD, MD and

AD values and years of cocaine use while controlling for alcohol use (and vice versa), and

Cocaine and allostasis
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combined years of both substances (controlling for age and sex in all models). As no control

groups were available for DTI, all analyses were within CUD/AUD subjects. Combined years

of use was calculated by adding the years of cocaine use to years of alcohol use. Clinical inter-

views at screening were used to estimate chronicity of lifetime use. The interview instruments

included the ASI, SCID, and the Kreek-McHugh-Schluger-Kellogg (KMSK) scale. Based on

the information obtained in these interviews, it was determined that cocaine and alcohol use

patterns were consistent across individual subjects’ lifetime (e.g., no marked periods of absti-

nence or changes in use patterns from the time substance abuse began). Therefore, given sub-

jects’ age range and history of use (cocaine mean years of use = 5.13, range = 5.5–36.0; alcohol

mean years of use = 6.18, range = 2.75–40.0), we determined that years of use was the best

proxy for cocaine and alcohol exposure with regard to recall accuracy, minimizing error in the

measurement of extent of substance exposure. Notably, chronicity has been cited as a critical

component in addiction diagnostics [58]. All regression models controlled for age, education,

sex and Shipley score, with the significance threshold set at p< 0.005. The regression analyses

resulted in a map highlighting all identified significant clusters. The relationship between the

average FA value for all significant clusters was calculated for each subject and plotted as a

function of years of use (see Fig 1). The same pipeline was then used for the MD, RD, and AD

scalars.

Fig 1. Fractional anisotropy (FA) maps, showing coronal, sagittal, and axial views (respectively) of white matter tracts in 22 CUD/AUD subjects. Major tracts are

outlined in green and areas highlighted in yellow represent group-level significant associations with years of cocaine use, controlling for the covariates alcohol use, age,

and gender. The bottom right panel shows a scatter plot of average whole-brain FA value (y-axis) as a function of years of cocaine use (x-axis) for individual subjects (R2

= 0.56). Please note the radiological conventions marked on the sides of the Fig 1 for each view: R (right), L (left), S (superior), I (inferior), A (anterior) or P (posterior).

https://doi.org/10.1371/journal.pone.0199729.g001
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Anti-saccade task: Confirmatory analyses. Consistent with Dias et al [15] and with the

overall literature on saccade-based performance, there were no differences between CUD and

control subjects on pro-saccade trials. Accordingly, data analyses focused on anti-saccade tri-

als. Per Pocock [59], we examined the influence of potential confounding variables (age, edu-

cation, sex, Shipley score) by testing for (1) between-group differences and (2) correlations

with the dependent variables of interest (total anti-saccade errors, attentional bias). Age and

education showed group differences and correlations with p-values < .10, and were thus

treated as covariates in linear regression models that examined differences between CUD/

AUD vs. controls on total anti-saccade errors and attentional bias.

HDDM: Confirmatory analyses. The HDDM package in Python [53,55] was used to fit a

hierarchical model to compare the probability distributions of differences in v (drift rate)

between groups and stimulus types. The HDDM package provides estimation of differences in

Bayesian posterior probability distributions by computing the proportion of posteriors in

which v (drift rate) is greater in one condition than another. Differences were compared for

each stimulus type (cocaine, neutral, shape) both within and between groups. Model fitting

and convergence details are provided in the Supporting Information (S2 File).

After comparing the Bayesian probability distributions of differences in v (drift) between

groups and between stimuli, individual v (drift) values for each subject were extracted and

entered into a linear regression model controlling for age and education, in order to replicate

the confirmatory frequentist models used to analyze total anti-saccade errors and attentional

bias. To create a single dependent variable for the frequentist analyses, a difference score was

created for each subject by subtracting v on cocaine-stimulus trials from non-cocaine stimulus

(neutral+shape) trials.

Telomere length: Confirmatory analyses. The T/S ratio was examined in a linear regres-

sion model that compared differences between CUD/AUD vs. controls with age and education

as covariates in same manner as described above.

Hypothesis-generating analyses: White matter, anti-saccades, and telomere length.

Because the dataset was limited to 22 subjects who provided complete DTI, eye-tracking and

telomere data, we utilized modern regularization techniques with penalized regression. Two

primary penalized regression approaches, ridge and lasso, can be linearly combined via elastic-

net regression, which overcomes limitations of each type but includes both as special cases

[60,61]. Leave-one-out cross-validation (LOOCV) was employed to optimize the tuning

parameters of the model, e.g., to determine the alpha (the mixing or penalty parameter, range

0–1) and lambda (regularization or coefficient shrinkage parameter) parameters of the elastic

net model that minimize the mean squared error [61,62]. These analyses were conducted

using R software version 3.3.2 [63] and the R glmnet package, based on modeling techniques

recommended by the authors [60]. To provide further model interpretability, the R package

selectiveInference [64] was integrated with the glmnet model outcomes to provide z-score, p-

value, and confidence interval estimates for the obtained model coefficients, as per [62]. Using

this approach, we modeled the relationship between DTI radial diffusivity (RD, dependent var-

iable) and the following predictors: telomere length (T/S ratio); anti-saccades (HDDM differ-

ence score on v for cocaine vs. non-cocaine trials); and total years of cocaine use. To control

for relevant covariates, age and years of alcohol use were included in the model. RD was

selected because it contained the largest number of significant clusters related to years of

cocaine use, and because of its probable connection to compromised myelination [11,32,65].

All variables were standardized by z-scoring to provide interpretability of the model

coefficients.
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Results

Diffusion tensor imaging

As shown in Fig 1, FA values decreased as a function of years of cocaine use, controlling for

years of alcohol use, age, sex, education and Shipley score, p< .005, R2 = 0.56. The significant

clusters (in yellow) associated with cocaine use were identified along several major tracts (in

green), including the corpus callosum, the right thalamic radiation, the right superior longitu-

dinal fasciculus, and the corona radiata. Notably, analysis of AD values revealed no significant

relationship between AD and years of cocaine use, while RD and MD values increased with

years of cocaine use, R2 = 0.51 and 0.46, respectively (p< .05 for both RD and MD). RD clus-

ters were the most widespread and included the internal capsule, corona radiata, optic radia-

tion, tapetum, superior longitudinal fasciculus, posterior thalamic radiation, and all clusters

also found in the FA maps. Although there were significant RD clusters in both hemispheres,

clusters were larger in the right hemisphere. Fig 1 highlights the significant FA clusters, and

provides a scatterplot of the relationship between FA and years of cocaine use, controlling for

covariates. Details for all significant clusters for the FA, RD, and MD maps are provided in the

Supporting Information (S1 Table).

No significant clusters were found when examining the relationship between any of the

DTI scalars with years of alcohol use or years of combined cocaine + alcohol use, controlling

for other relevant covariates. With no observed relationships within the AD values, it follows

that the significant clusters in the FA map are probably driven by the relationship between RD

and years of cocaine use. Consequently, all of the areas significant in the FA and MD maps are

also significant in the RD map. The RD map contains the largest number of significant clus-

ters, which were not lessened by input from non-significant AD differences.

Anti-saccade task

Fig 2 summarizes the total anti-saccade error and attentional bias data. For the eye-tracking

data linear models, degrees of freedom and R2 values are provided along with t-values, p-val-

ues, and group means (± SEM) for any significant predictor variables. For total anti-saccade

errors, df = 3, 55, R2 = 0.24: for group (t = 2.70, p< .001); for age (t = 2.31, p< .03). CUD/

AUD made more anti-saccade errors than controls, 28.04 (± 2.96) vs. 17.77 (± 2.34). For atten-

tional bias scores, df = 3, 55, R2 = 0.29; for group (t = 4.69, p< .001); for age (t = 1.04, p< .31).

CUD/AUD had higher attentional bias scores than controls, 0.47 (± 0.03) vs. 0.32 (± 0.03).

Anti-saccade task: HDDM

The posterior probabilities for the HDDM drift rates (v) for the CUD/AUD and control

groups are shown in Fig 3, depicting both consistently longer and more highly variable drift

rates in CUD/AUD across all stimulus types. Between groups, the Bayesian posterior probabil-

ities that v for CUD/AUD > control on cocaine-, neutral-, and shape-stimulus trials were 0.99,

0.94, and 0.95, respectively. Examining v among stimulus types within the CUD/AUD group,

the following Bayesian posterior probabilities were observed: cocaine > neutral = 0.90;

cocaine > shape = 0.96; neutral> shape = 0.68. For the control group, the corresponding

probabilities were 0.47, 0.74, and 0.77, respectively. Shown graphically in Fig 3, note that a pos-

terior probability = 0.50 is essentially chance (note overlapping distributions in the control

group corresponding to p = 0.47). For the frequentist linear model of drift rate (v) difference
scores (cocaine–neutral+shape stimuli), df = 3, 55, R2 = 0.10; for group (t = 2.08, p< .05).

CUD/AUD had higher drift rates than controls, 0.17 (± 0.05) vs. 0.05 (± 0.04).
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Telomere length

Telomere length was measured as the T/S ratio in a linear model with age and education as

covariates, df = 3, 45, multiple R2 = 0.04. T/S ratio of the CUD/AUD group was less than the

control group (0.93 (± 0.07) vs. 1.13 (± 0.14), i.e., shorter telomeres) but these differences were

not statistically significant (t = -1.16, p< 0.26), nor were age (t = -0.50, p< 0.61) and educa-

tion (t = -0.47, p< 0.64).

Associations with white matter

As described above, relationships among RD and cocaine and alcohol use, age, anti-saccades,

and telomere length were examined with penalized regression using the elastic net with leave

one out cross-validation, which established the optimal α and λ parameters based on RMSE.

The best fitting model had the following features: α = 0.10, λ = .019, RMSE = 0.13, and R2 =

0.79. Utilizing the R selectiveInference package as per [62,63], age, anti-saccades (HDDM dif-

ference score), telomere length, and years of cocaine use were all important predictors (p<
.05), while years of alcohol use was not. Fig 4 depicts the multivariate relationships between

RD and the predictors, and Table 2 provides penalized regression coefficients with 95% CI, Z-

scores, and p-values for each predictor. Table 2 reveals that years of cocaine use and age were

the strongest predictors of white matter integrity as indexed by RD. The Supporting Informa-

tion (S3 File) provides comprehensive graphical and numerical indices of the elastic net regres-

sion parameters and model fits.

Discussion

In this dataset we showed that chronic cocaine and alcohol use were associated with: (1) WM

integrity related to duration of cocaine use in extensive WM tracts, and (2) decreased saccadic

Fig 2. Anti-saccade performance of CUD/AUD subjects and control subjects on the cocaine eye-tracking task.

Panels A and B show mean total anti-saccade errors and attentional bias scores (± SEM), respectively. The attentional

bias score was calculated as anti-saccade errors on cocaine-stimulus trials / total anti-saccade errors on all trials,

providing an indicator of attentional bias towards cocaine cues.

https://doi.org/10.1371/journal.pone.0199729.g002

Fig 3. Posterior probabilities of drift rates (v parameter) derived from the Bayesian hierarchical drift diffusion

model (HDDM) for each stimulus type presented on the anti-saccade task. The HDDM models decision making

under two-option conditions; the options here were executing a saccade toward the stimulus or an anti-saccade away

from the stimulus. HDDM uses Markov chain Monte Carlo to estimate posterior distributions for all model

parameters based on both response accuracy and time to execute the response (e.g., execute a saccade), the results of

which are plotted for v in Fig 3 (see [53] for HDDM computational details). Drift rate can be conceptualized as the rate

at which information is accumulated toward a decision-threshold prior to executing a response. Stimulus contexts

presenting, for example, greater conflict or increased background noise should increase drift rate. In Fig 3, drift rate

parameters are shown separately for the cocaine group (panel A, left) and the control group (panel B, right).

https://doi.org/10.1371/journal.pone.0199729.g003
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control in the presence of cocaine-cues compared to control subjects. Additionally, we found

that radial diffusivity was predicted by years of cocaine use, age, anti-saccade performance,

and telomere length. While each of the predictors will require verification via systematic repli-

cation, one interpretation of the collective results is a (partial) depiction of the allostatic load

imparted by chronic cocaine and alcohol use.

Fig 4. Scatterplot of relationships between radial diffusivity and individual predictors in the elastic net regression model.

Within the CUD/AUD group, Fig 4 shows a scatterplot of the relationships between radial diffusivity (x axis) and individual

predictors in the elastic net regression model (y-axis): age, anti-saccade drift rate differences (cocaine–non-drug stimuli, see Fig 3),

telomere length (T/S ratio), years of cocaine use, and years of alcohol use. Predictors are standardized (z-scored) for graphical

interpretability and presentation on a common scale. Large open diamonds (^) show the predicted points derived from the elastic

net model, and the solid black line shows the model-derived line of best fit, R2 = 0.79.

https://doi.org/10.1371/journal.pone.0199729.g004

Table 2. Penalized regression coefficients with 95% CI, Z-scores, and p-values for each predictor in the elastic-net

regression with DTI radial diffusivity as the outcome variable.

Variable Coefficient (95% CI) Z-score p-value

Age 0.375 (0.148–0.595) 2.862 0.004

Anti-Saccade:

Drift rate differene

0.327 (0.088–0.547) 2.453 0.014

Telomere length:

T/S ratio

-0.330 (-0.560 –-0.004) -2.363 0.047

Cocaine use (years) 0.606 (0.352–1.048) 3.884 < 0.001

Alcohol use (years) 0.075 (0.592 –-0.721) 0.540 0.592

https://doi.org/10.1371/journal.pone.0199729.t002
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Studies of this nature are fundamentally constrained by measurement of a limited set of

many potential key variables and the ability to address alternative hypotheses, imposing the

requisite conclusion that the findings should be considered preliminary. In addition, limita-

tions in sample size and study design likely prevented uncovering pairwise associations among

all these individual predictors, if they are indeed related. Accordingly, one might cautiously

presuppose that the present results are related to chronic cocaine use plus the additional bur-

den of alcohol abuse (although alcohol use provided no independent predictive utility), plus

the influence of unmeasured factors. Such factors are likely to include variables known to alter

neurobehavioral trajectories, e.g., trauma exposure, traumatic brain injury, genotypic varia-

tion, and prenatal exposure to abused substances and environmental toxicants [12,16,66–69].

Additionally, as noted in the introduction, CUD is most commonly accompanied by the use

or abuse of other drugs, including marijuana, alcohol, tobacco, and other stimulants. While we

examined the effects of CUD and AUD in the present study, the allostatic burden of a lifetime

of polysubstance use warrants greater consideration. Such considerations must account not

only for the neurobiological changes imparted by multiple drugs of abuse, but also the accom-

panying lifestyle and behavior patterns. The modest scope of this study precludes systematic

examination of these variables, but larger collaborative efforts should consider an allostatic

framework for understanding polysubstance abuse in large multivariate datasets.

With regard to other measurement limitations, markers of HPA-axis, hormone, and

immune system activation, as well as hedonic reward deficits are well-established indicators of

allostatic load [3,70]. The addition of these markers in the present study would have allowed

for analyses of co-variation among established markers and those reported here. Clearly, as

work in this area matures, connecting markers like FA/RD and cell aging with markers of

HPA-axis, immune system response, and hedonic deficits will advance allostatic load hypothe-

ses in human substance use disorders. One challenge to this aim will be overcoming measure-

ment incongruity. DTI and cell aging (e.g., telomere length) markers tend to be static over the

time durations of most experimental work, while HPA-axis and immune responses are

dynamic systems subject to phasic changes over short time periods. Nevertheless, bridging

these measurement domain stands to advance understanding of allostatic processes in SUD.

Collectively, the data suggest that these variables are possible indicators of CUD/AUD dys-

regulation in important biobehavioral systems. For chronic SUD, this is consistent with mod-

els of allostatis, which “. . .involves the whole brain and body instead of simply local

feedbacks. . . When demands become chronic, the brain-body system tonically adapts at essen-

tially all levels of organization . . .” [71]. Notably, duration of cocaine use, anti-saccade perfor-

mance, and telomere length were all predictors of decreased white matter integrity. Given the

study limitations, including the restricted sample, none of the outcomes should be individually

considered as strong evidence of allostatic load. However, together the aggregate results sug-

gest a possible allostatic shift associated with chronic cocaine and alcohol use. Duration of

cocaine use and telomere length can be considered indicators of chronicity. Previous studies

have shown that severity and/or extent of cocaine use (with polysubstance use) was related to

decreased WM integrity [12,72], while abstinence from cocaine was related to specific fiber

tract improvements in FA value [35,73]. Associations between CUD and reductions in white

matter integrity suggest allostatic shifts and possible neurotoxicity to white matter neurons

[11,74,75]. These arguments are not fully verifiable based on the present dataset, but provide

intriguing hypotheses for systematic replications in broader samples of participants with

CUD/AUD. Because the regression analysis was conducted in an exploratory manner, it

should be considered hypothesis generating rather than confirmatory of any relationships

specified a priori. Moreover, alterations in common WM regions have been observed between

substance abuse and other addictions such as gambling [76], raising the alternative explanation
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of preexisting conditions rather than cocaine-alcohol neurotoxicity. Previous work has estab-

lished a link between WM impairment (FA, RD) and chronic alcohol abuse [9,13]. The partici-

pants in the present dataset had considerably less lifetime alcohol use than typically

represented in the alcohol-DTI literature, which may explain why we did not observe indepen-

dent effects of alcohol use on DTI metrics. Such questions are best addressed by comprehen-

sive longitudinal studies such as the ongoing ABCD project [77].

As AD measures diffusivity running along axons and RD measures the diffusion perpendic-

ular to axons, low AD values have been implicated in internal axonal degeneration [40,41].

Conversely, low RD values have been interpreted as indicators of degeneration of myelin, asso-

ciated with neurological pathologies, including multiple sclerosis [42], Alzheimer’s [43], and

schizophrenia [44]. Indeed, our preclinical work in cocaine-exposed rodents indicates that RD

reflects altered myelin integrity [11]. In this context, we observed no relationships between

CUD and AD values but significant associations between CUD and RD / FA (R2 = 0.51 and

0.56), providing additional support linking CUD to myelin impairment [11, 78]. Whether

these findings are related to direct neurotoxic properties of cocaine on white matter fibers, or

water-like edema, or interactions with pro-inflammatory mechanisms (glial cell activation,

[79]), intra-axonal injury, CNS stress mechanisms (HPA-axis activation, [6]), or dysregulation

of myelin-related gene expression (Myelin Basic Protein, [80]) are unknown. In vitro work at

cellular and molecular targets may help reveal the role of these putative mechanisms.

While T/S ratio was shorter in CUD/SUD participants, we did not observe a statistically sig-

nificant difference from controls. This may represent a limitation of sample size; studies of

telomere length in psychiatric or SUD samples have typically examined larger samples

[17,18,26,27,81]. Additionally, while the T/S index is well established, more recent measure-

ment techniques involving DNA methylation and mitochondrial DNA offer potentially greater

measurement sensitivity [82,83]. However, within the CUD/AUD group, T/S ratio was nega-

tively associated with RD. Reductions in telomere length may indicate common processes in

neurodegenerative disease [84].

Collectively, the results add to a growing literature suggesting that chronic cocaine use–and

the risk factors associated with a CUD lifestyle–impart an allostatic load measurable across

multiple domains of inquiry. While not part of the stock indices of allostatic load (e.g., HPA-

axis dysregulation, hypertension, cell aging, oxidative stress), important domains to be consid-

ered for future work include white matter integrity, epigenetic changes, neuroimmune mecha-

nisms, and cognitive integrity.
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