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Abstract

The modeling of gene regulatory networks (GRNs) is limited due to a lack of direct mea-
surements of regulatory features in genome-wide screens. Most GRN inference methods
are therefore forced to model relationships between regulatory genes and their targets with
expression as a proxy for the upstream independent features, complicating validation and
predictions produced by modeling frameworks. Separating covariance and regulatory in-
fluence requires aggregation of independent and complementary sets of evidence, such as
transcription factor (TF) binding and target gene expression. However, the complete regu-
latory state of the system, e.g. TF activity (TFA) is unknown due to a lack of experimental
feasibility, making regulatory relations difficult to infer. Some methods attempt to account
for this by modeling TFA as a latent feature, but these models often use linear frameworks
that are unable to account for non-linearities such as saturation, TF-TF interactions, and
other higher order features. Deep learning frameworks may offer a solution, as they are
capable of modeling complex interactions and capturing higher-order latent features. How-
ever, these methods often discard central concepts in biological systems modeling, such as
sparsity and latent feature interpretability, in favor of increased model complexity. We pro-
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pose a novel deep learning autoencoder-based framework, StrUcture Primed Inference of
Regulation using latent Factor ACTivity (SupirFactor), that scales to single cell genomic
data and maintains interpretability to perform GRN inference and estimate TFA as a la-
tent feature. We demonstrate that SupirFactor outperforms current leading GRN inference
methods, predicts biologically relevant TFA and elucidates functional regulatory pathways
through aggregation of TFs.

1 Introduction

Transcription factor (TF) regulation of mRNA transcription is a main mechanism through which cells control
gene expression and respond to context-specific signals [1, 2]. The relationship between TFs and the genes
they control forms an interconnected gene regulatory network (GRN), and interpreting this network is
necessary to understand cell and organism heterogeneity, development & differentiation, tissue organization,
and diseases [3—6]. GRNs are typically represented as causal graphs, which have regulatory TFs linked to
target genes. Regulatory interactions in the GRN are difficult to collectively determine experimentally, so it
is necessary to computationally infer the structure of the GRN. This inference is complicated by regulatory
relationships between TFs and genes that are context-dependent [7], as TFs may control gene expression
differently in different cell types or under different conditions [8].

TFs themselves can be regulated transcriptionally (by changing their mRNA levels), translationally (by
changing the amount of protein produced from mRNA), or post-translationally (by modifying the protein
to alter localization or DNA binding ability). Transcription factor activity (TFA), the relative ability of
a TF to alter the expression of target genes, is the aggregate combination of all TF regulation, and is
difficult to measure experimentally. Inferring TFA as a latent model parameter is a core component of
several GRN inference methods [9-13]. Generally, TFA is inferred from existing evidence of TF to target
gene regulation, combined, using linear models, with the measured expression of the target genes. Although
powerful, this framework lacks the flexibility to account for heterogeneity and contextual relations observed
in biological systems, and the activity estimates have limited interpretability. Workarounds to contextualize
regulatory relationships have been proposed [14, 15], however the inflexibility of the models and the lack of
interpretability of latent factors remains an issue.

Using more complex models to better match known transcriptional regulatory biology places numerous
demands on optimization and inference machinaries and limits scale; using scalable learning and optimization
methods from the deep learning field to meet these needs is an appealing way to infer GRNs. They have
been used to model expression and covariance networks [16], to build a sparse representation of gene clusters
[17], to group genes into co-regulated modules [18, 19], to do supervised clustering of gene sets [20, 21]
and for dimensionality reduction and denoising[22]. However, interpretable deep learning models for gene
regulation, which provide biological insight into causal relationships in addition to prediction, have been
difficult to construct [23]. Techniques to interpret deep learning latent features often focus on removing
latent features to quantify their influence and importance [24]. Feature quantification can use change in
mean squared error on removal of input features (COM) [25], backpropagation of the output layer into
latent features (Grad-CAM) [26], or forward propagation of the latent layers into the output layer [19].
These techniques cannot be used for model pruning or selection, and are not bounded or informative for
model structure evaluation.

Knowledge priming embeds existing evidence into the model structure by constraining connectivity between
features. This informs the model of constraints which are not directly measured in the training data.
These constraints both improve model selection and strengthen interpretability, as priming with biological
interactions allows biological interpretation of the resulting network graph [27]. However, this approach lacks
the ability to infer novel regulatory structure and is limited to what has been previously documented, as well
as to data sets where all required evidence types are extant. Most target genes are regulated by a limited
number of TFs that have no direct effect on other genes, encapsulated in the concept of sparsity in GRNs[28].
Model selection, choosing a limited set of regulators per gene, is therefore a key problem for GRN inference,
and many techniques have been applied [29-37]. Deep learning models generally remain overparameterized,
making biological interpretation difficult, and techniques must be applied after training to eliminate model
parameters and enforce sparsity.
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Figure 1: Outline of the SupirFactor framework. The SupirFactor model is constructed like an autoencoder
where we embed gene expression data on the transcription factor manifold, exploring two architectures, the
“hierarchical” A, and the shallow B architecture. The output of the first layer defines the latent features
marked as TFs (Transcription Factors) and the activation ¢ is the transcription factor activity (TFA). The
prior P connect the evidence of TF to a set of informative downstream genes, with learnable weights W.
For A, II connects the TFs to the latent features, here called the meta TFs (mTFs). © weights the mTF
activity (mTFA) to predict genome wide gene expression profiles. In B the TFs directly weights TF to gene
influence in ®. C: To make the model completely interpretable and transparent we use explained relative
variance (ERV) 2. ERV estimate importance of all latent factors influence on model output features. This
is then used to evaluate the model and its performance. The GRN is cross validated, where genes to TF
connections are held out in the input W and predicted in the GRN which for the shallow model is ® and
for the hierarchical model is © the indirect effect from the TFs to output features. The measured recovery
of these links gives insight on stability and biological relevance of the GRN where parameters are ranked by
their predictability measured by £2. D: Gene regulatory network extracted as indirect TF-gene interaction
in hierarchical SupirFactor and direct TF-gene interactions in shallow SupirFactor. E: Multi-task learning
is implemented in SupirFactor through a joint representation learning (JRL) architecture where biological
distinct contexts is independently weighted into a joint GRN representation. F: Architecture pruning and
sparsity procedure in SupirFactor is used to stabilise and eliminate over-parameterization by eliminating non
predicting model parameters facilitated be ERV.
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2 Results

We present a model inspired by white-box machine learning approaches [38], that we call StrUcture Primed
Inference of Regulation using latent Factor ACTivity (SupirFactor). This model incorporates knowledge
priming by using prior, known regulatory evidence to constrain connectivity between an input gene expression
layer and the first latent layer, which is explicitly defined to be TF-specific. This model ties the latent TF
layer causally to informative genes, and allows this layer to be directly interpreted as transcription factor
activity (TFA). This latent layer is then linked to gene expression in an output layer, which is interpreted
as an explicitly inferred GRN.

We also adapt new metrics for model interpretation in this context, we define explained relative variance
(ERV), a novel concept to interpret the structure of the inferred network graph for any architecture. Briefly,
ERV is defined as the change in residual variance when a latent feature is removed from the model, and
is used to rank and interpret graph weight importance within the model. Using ERV allows TF to gene
interactions to be interpreted through additional latent layers placed between the TF latent layer and the
output layer.

Benchmarking across multiple datasets we find that SupirFactor outperforms previous methods using similar
frameworks for recovering GRNs. We find that our model uncovers biologically-relevant TFA and predicts
biological function of latent aggregates of TFs in deeper layers, suggesting our model is useful for predictive
analyses beyond inferring GRNs. In particular we expect to predict activity of specific TFs and to aggre-
gate TFs into regulatory pathways, that we demonstrate on an experimental S. cerevisiae data set and a
mammalian large single cell PBMC dataset. GRN interpretability and context specific network analysis is
facilitated by using ERV and, we demonstrate its utility by applying trained models to context specific and
unseen data.

2.1 The SupirFactor Regulation Model

The SupirFactor model learns a set of weights connecting genes to TFs in the prior, where these genes
functionally serve as reporters for the activity of connected TFs. As opposed to inferring TFA explicitly, as
in network component analysis (NCA) (Section 4.4.4) where regulatory evidence is static in the prior, we set
¢ = g(W,x), where W € P is the weighted influence of genes to TFs derived from prior evidence P, and
x is the expression of genes informing on ¢ which may be a subset of informative genes connected through
W. This extends our model to = f(g(W,x), ®), where © is the GRN.

We actualise this model using a deep learning framework choosing f, and g and learn W, and © with ¢
as a latent feature prduced by the weighted output from @ mapped through a learned W. Depending on
the form of f, and including non-linearities, we can learn additional higher order interactions and regulatory
pathways (Section 4.1). The complex version of the model that can capture other interactions in f we call
“hierarchical” SupirFactor (Figure 1A). A simple version of this framework uses a single bottleneck layer for
our function f we refer to as “shallow” SupirFactor (Figure 1B).

Constructing a prior matrix P is a challenging but essential task for including informative evidence of
regulation. This step is also a way to integrate data types that can shed light on TF-target relationships. This
matrix can represent previously known interactions, and it can also encode higher probability interactions
derived from chromosome accessibility or TF-chromatin interactions (experimentally measured by ATAC-seq
and ChIP-seq) [39, 40]. A more dense P is likely to include more false positives and will therefore result
in an noisier propagation of TF variance. A sparser P is likely to have many false negatives, limiting the
variance that the model is able to explain, resulting in an model that may be less predictive.

A concern is that prior connectivity P rarely includes reliable sign or weight estimates. Inferring signs
for P from the direction of change after perturbations is technically difficult, as it requires perturbing all
TFs included in the model. Relying on expression correlation to infer signs will conflate both indirect and
co-varying regulation. We expect that refitting weights W € P dependant on ©® will mitigate these problems.

2.2 Selection of SupirFactor hyperparameters

We evaluate the SupirFactor framework (Figure 1) for GRN inference from bulk and single-cell RNA expres-
sion data. First, to test our model setup, explore interpretability, and compare performance to other models,
we benchmark using multiple data sets where a partial ground truth network is available (called the gold
standard in this work) on the “shallow” SupirFactor. We have previously assembled a GRN inference data
package that consists of two prokaryotic Bacillus subtilis bulk RNA expression data sets (B1 and B2), two
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Saccharomyces cerevisiae bulk RNA expression data sets (S1 and S2), and one S. cerevisiae single-cell RNA
expression data set (scY)[41]. This data package also includes a B. subtilis gold standard network [10] and a
S. cerevisiae gold standard network [12], both derived from literature databases. Single-cell RNA expression
data is preprocessed (Section 4.7.1) and both bulk and single-cell data is feature normalized (Section 4.7.2)
prior to model fitting.

To be able to extract a GRN from our model that gives us latent feature to output connections, we need
to be able to interpret model weights, features and their relative importance. This is difficult in multi-layer
architectures, and weights may not be scaled with biological importance. Instead, we devise a metric to
quantify the direct effect a latent feature has on its targets in the output, Explained Relative Variance
(ERV) &2 (Figure 1C), with appealing properties for GRN inference. This metric is based on feature removal
[24], and is computed as the coefficient of partial determination (CPD) [13]. We silence each latent model
feature and compute the consequent effect on the output variance MSE, scoring the silenced model feature
against the full model prediction without retraining (Section 4.4.1).

Deep learning models have a number of hyperparameters that needs to be tuned for optimal model per-
formance. Two critical hyperparameters for GRN inference are the weight-decay, typically called the L2
penalty, and dropout, stochastic perturbation of the data during training to attenuate noise and improve
model generalisation (Section 4.3). We test dependence on these hyperparameters by searching for L2 and
dropout (on input and latent features) with the simplified shallow SupirFactor model. Each hyperparameter
value is tested by splitting expression data 50-50 into training and validation set, using 80% of the gold
standard network as prior network information for the model and holding out 20% for scoring. Negative
controls consist of either shuffling the data or the prior network. Area under precision recall curve (AUPR) is
used to score the network structure against the gold standard network, and R? is used to quantify prediction
accuracy. Each configuration is rerun repeatedly and average performance is reported (Supplemental Figure
52-59).

We observe that in some cases (for S2 and B1 datasets), when increasing L2 beyond a specific value, R?
decreases while AUPR increases (Supplemental Figure S3 & S4). We interpret this as overfitting to the
prior network structure and increasing recovery of the gold standard in cases where the these two structures
align, such as in scale-free networks with dense highly connected TFs. The model then emphasises these
TFs at the cost of prediction accuracy and inclusion of less connected TFs. This is undesirable, so we select
hyperparameters that maximises R? while maintaining a high AUPR. Negative controls perform as expected;
shuffling the data eliminates the biological interpretability and predictive power of the resulting GRN, and
shuffling the prior network eliminates only biological interpretability while still achieving good predictive
power.

To determine an optimal L2 we look for where R? is maximized. We find that prediction accuracy is
maximised in the span R2 € 1076 — 10* for all data sets, where we select an L2 of 10~ for B1 and B2 and
10~° for S1, S2 and scY for further comparisons (Supplemental Figure S2C-S9C). For dropout, in general,
we find that setting larger dropout on input and smaller dropout on latent features increases AUPR while
maintaining a higher RZ.

2.3 SupirFactor benchmarking demonstrates improved biological regulatory network
recovery

We summarize the performance of the shallow SupirFactor model using a linear activation function with
several modeling choices (Figure 2A). Using ERV as an estimator for biological relevance outperforms in-
terpretation based on model weights alone, as determined by AUPR. Selecting the optimal dropout hyper-
parameters based on maximum R? for the selected L2 (max R2) improves model R? at a cost of decreasing
network prediction performance (AUPR), when compared to setting a fixed dropout (fixed; input=0.5 and
latent=0).

For single-cell RNA expression data (Figure 2B) we extend the comparisons, comparing linear and recti-
fied linear (ReLU) activation functions (Section 4.8), and comparing standard normalization to a robust
sparsity-retaining normalization (Section 4.7.2). RobustMinScaler outperforms StandardScaler normalisa-
tion, implying that preserving sparse data for model training is advantageous (Figure 2B). To summarize
these benchmarking results, ERV should be used to evaluate model parameters, and dropout hyperparame-
ters can be fixed without loss of prediction accuracy and GRN recovery.

Finally, we compare shallow SupirFactor performance to that of the Inferelator (Figure 2C), a method which
takes comparable RNA expression and prior network inputs and learns a GRN. We note that other methods
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Context: A B A B
E(A) > £(B)> &(A)> &(B)> Total Total
A B §*(B) §2(A) §*(B) §2(A) OR  p-val
G1 S 589 152 83 196 1881 465 9.2  6.0e-49
S G2 104 181 62 217 465 305 2.0 2.2e-04
G2 M 108 166 109 652 305 1452 3.9 6.4e-17
M M/Gl 549 232 96 222 1452 717 55  2.0e-34
M/G1 Gl 583 184 111 222 717 1881 6.3 &.Te-41
G1 G2 623 132 176 108 1881 305 2.9 1.3e-11
S M 591 197 43 207 465 1452 14.4 8.9e-61
G2 M/G1 104 171 74 262 305 717 2.2 2.4e-05
M G1 582 190 192 584 1452 1881 9.3  5.5e-92
M/G1 S 238 97 62 212 717 465 8.4 8.3e-34

Table 1: Pairwise comparisons between context-specific cell cycle phase networks from hierarchical Supir-
Factor. Network edges are classified into cell cycle phase context based on the existing annotation of the
target gene. ERV of the network edges (where £€2 > 0.01 in one or more contexts) is then compared as
a contingency table. Network edge counts in gray columns are edges where ERV is higher in the correct
context-specific network, based on existing annotations. The total column counts network edges (where
€2 > 0 for that context) for the context-specific network, and does not total the columns of the contingency
table. Odds Ratio (OR) and p-values are calculated by one-sided fisher exact test, using the contingency
table.

which take these inputs are not amenable to scoring on holdouts that we are employing for our benchmark
[41], making comparison difficult. Using the configurations from our benchmarking, SupirFactor improves
significantly over previous results on all of the data sets tested. Comparison of the Inferelator to several
alternate methods on the same data sets used here has been previously shown [41].

2.4 Hierarchical SupirFactor with non-linear activation facilitates interpretation of latent
feature activation as biological activity in cell contexts

To account for more complex, multi-TF regulatory interactions we extend our mode in multiple ways, intro-
ducing non-linearities and adding additional latent layers that represent interactions. Non-linear functional
forms are necessary in the proposed hierarchical SupirFactor architecture to model interactions more com-
plex than linear relationships. This is necessary as GRNs are context- and cell-type-dependent; and thus a
TF to gene regulatory interaction may e.g. exist when the organism is in one state, but be inaccessible in
another.

SupirFactor can distinguish contextual networks by embedding context specific assigned data and computing
ERV only within that data set. We explore learning context-dependent GRNs here; we evaluate this abil-
ity on the single-cell RNA expression data set, which has samples annotated by growth conditions (Figure
S1A). We compare hierarchical SupirFactor (Figure 1A), shallow SupirFactor (Figure 1B), and a comparable
multi-task learning approach (AMuSR) in the Inferelator that also learns context-dependent networks. Both
the shallow SupirFactor and hierarchical SupirFactor outperform the Inferelator (Figure 2D). Shallow Supir-
Factor outperforms the hierarchical SupirFactor in some contexts, although the shallow model uses a linear
activation function, and the hierarchical model uses a ReLLU activation function. As this activation function
constrains the latent features to be strictly positive, latent features are interpretable in the hierarchical
model.

We use hierarchical SupirFactor to construct context-specific GRNs for cell cycle phases, by inferring cell
cycle phase from transcriptional markers (Figure S1B). Regulatory edges that are actively used in a context-
specific GRN should explain more relative variance, compared to edges which are inactive. For each cell cycle
we used the gene annotation of cell cycle phase genes and compare ERV between phases for each relevant
gene (Table 1). We compare both neighbouring phases and phases skipping the immediate following phase.
Computing a one sided fisher exact test classifying genes in the GRN where they have the highest ERV,
only using ERV that has £€2 > 0.01 in at least 1 of the conditions, we find that for all comparisons we have
a strong enrichment of the phases relevant genes in terms of ERV in the corresponding phases.
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Figure 2: SupirFactor benchmark and hyperparameter evaluation. Performance is evaluated on gold-
standard networks consisting only of edges held out of the prior network P, measuring recovery using
AUPR. R? is computed on a validation set of 50% of the data samples held out of the training data. Data
sets are labeled for species, with B. subtilis (B1 and B2), S. cerevisiae bulk RNA expression (S1 and S2), and
S. cerevisiae single-cell RNA expression (scY). A: Comparing network interpretation using model weights
(©) to interpretation using Explained Relative Variance (ERV), measured using AUPR against edges held
out of the prior network P. R? is calculated from the full network model. Model hyperparameters are set
based on Supplemental Figure S2-S9 and Section 4.3. B: Comparing normalization and activation functions
for single-cell RNA expression data, as in (A). SS- is normalizing to mean of zero and unit variance, RM- is
normalizing to maintain a minimum value of 0 (retaining sparsity), -L is linear activation, and -R is ReLU
activation. C: Benchmarking SupirFactor with optimal parameters selected from (B) against a comparable
GRN inference method, the Inferelator. D: Comparing multi-context network performance between shallow
SupirFactor, Hierarchical SupirFactor, and the multi-task Inferelator. GRNs are learned from single-cell
(scY) data, with context/task groupings determined by growth condition. Global GRNs are learned from
the data without separate groupings (using StARS-LASSO for the Inferelator [41]). Context networks are
computed post-training in SupirFactor and split here on growth condition. E: Evaluating model prediction
R? on four novel test data sets, using a GRN trained by Hierarchical SupirFactor. F: Comparing contextual
network for GRNs defining cell cycle M-phase and S-phase (Table 1). Each point is an interaction from
the two contextual networks, colored by the target gene functional annotation. X and Y axis are £2 of the
S-phase and M-phase networks. GRN interactions targeting S-phase genes (purple) have higher ERV in
the S-phase contextual network, and interactions targeting M-phase genes (green) have higher ERV in the
M-phase contextual network.
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Hierarchical SupirFactor introduces a larger set of learnable weights and a potential over-parameterisation
of the model, and, thus, the expanded model presents new model selection challenges in the context of
sparse GRN inference. We test if an iterative method for removing model weights could be used without
loss of model performance. ERV is used to rank model weights, and an £ < 0 indicates a non predictive
model weight. Identifying these non-predictive links, pruning them, and then refitting the model attenuates
over-parameterization (Figure 1E). After 1 iteration of pruning, nonzero weights reduce to ~ 57% € ©,

~ 52% € © and ~ 80% € II of the pre-pruning model trained on scY. It is critical to determine if models
learned by hierarchical SupirFactor generalize. We evaluate the predictive ability of a hierarchical SupirFactor
model trained on data set scY using prior knowledge P without holdouts (Figure 2B, RM-R). To do this, we
generate four new experimental test single cell RNA expression data sets by collecting and sequencing cells
grown in environmental conditions seen in the training data set (YPD and MMD). This model explains the
variance of the training data well (R? = 0.37), and also explains the variance of the YPD (R? = 0.62) and
MMD test data sets (R? = 0.52) well (Figure 2E). We conclude that SupirFactor generalises and predicts
expression patterns of new data even when model weights have been removed.

The SupirFactor model explicitly fits an intermediate layer which can be directly interpreted as latent
Transcription Factor Activity (TFA) for each TF, when this layer uses a ReLU activation function [44].
Using hierarchical SupirFactor, we calculate latent TFA for all TFs. When examining the role of cell cycle
TFs, the advantages of TFA are apparent. The TFA for cell cycle TFs is maximal in phases the TFs are
expected to regulate (Figure 3A), based on known TF roles from literature[15]. Almost all cells have non-zero
TFA for cell cycle TFs in at least one phase of the cell cycle, but TF expression is highly sparse, complicating
causal linkage to targets based on TF expression (Figure 3B). We note that for these cell cycle TFs, the
expression of the TF often peaks in the phase before the TFA of the TF.

We also wanted to test the role of functionally related TFs. Transcription factors often interact with each
other to define regulatory states, as part of multisubunit complexes, or by competing for the same DNA
binding regions. These interactions should be reflected in how TF activity correlates, even if these interactions
are not explicitly embedded in the model. We select several typical examples of TF pairs with known
interactions and compare inferred TFA between hierarchical SupirFactor and the Inferelator (Figure 3C).
MSN2 and MSN4 are partially redundant stress response TFs that bind to the same DNA motif, and we
expect their activity to be partially correlated. Hierarchical SupirFactor TFA is weakly correlated (r =
0.18), unlike expression of MSN2 and MSN4, which are uncorrelated (r = 0.01). RTG1 and RTG3 are
obligated to form a physical dimer for functionality, and we expect their activity to be strongly correlated.
Hierarchical SupirFactor TFA is strongly correlated (r = 0.61), unlike expression of RTG1 and RTG3, which
are uncorrelated (r = 0.01). Finally, HAP2 and HAP5 are part of the multisubunit heme-activated TF
complex, and we expect their activity to be strongly correlated. In this case, hierarchical SupirFactor is less
successful at correlating TFA (r = 0.14) than the Inferelator (r = 0.33), expression is again uncorrelated
(r = 0.03). Overlaying TFA onto a reduced-dimensionality plot allows for the comparison between TF
activities and the experimental conditions which cause them to be correlated or uncorrelated (Figure 3D).

Finally, we compare the TFA between perturbed, rapamycin-treated cells and untreated control cells (Figure
3E). Rapamycin is expected to inhibit TOR pathway signalling, altering stress response and nutrient response
TF activities [45]. By comparing the TFA between perturbed and control cells, hierarchical SupirFactor is
able to reconstruct which TFs are activated and deactivated by this perturbation.

2.5 Hierarchical SupirFactor combines TFs into pathways

In hierarchical SupirFactor we introduce an additional latent layer, which we interpret as meta transcription
factors (mTFs) that aggregate TFs into multi-regulator pathways. As this mTF layer is directly connected
to the output gene expression, we expect that the mTF layer activity (mTFA) can be interpreted as the
activity of a regulatory pathway.

To test this hypothesis, we explore the hierarchical SupirFactor model trained on the single-cell yeast data
(scY). mTF functions are determined by enrichment for regulation of genes that are annotated with Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways [47]. As this data was collected from cells growing
in different carbon and nitrogen sources, we focus on enrichment of a specific subset of metabolic pathways.
42 of 148 mTFs are enriched for target genes (defined as mTF to gene connections with ¢2 > 0.1) to these
metabolic KEGG pathways (Figure 4A).

We focus on the 12 mTFs which are enriched for glycolysis target genes, a pathway which is a core part of the
central carbon metabolism. Many of the growth conditions in the training single-cell yeast gene expression


https://doi.org/10.1101/2023.02.02.526909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.02.526909; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

FEBRUARY 2, 2023

A (i) TFA (ii)Expression D RTG1 RTG3
weei 144siall | LLLLLTR o L
swia 1 AVbLa ™ Ll 8 . o .2
HOML o (hu P L1111 fe N .8 b q = B
woor {11110 411L0T N
memi 4 Lddda |8 411111 |1 D L
FKH1 144404 [E 111111 [F
FKH2 1 ¢ 444 ¢ 11111l y 4
SWIS ~ LL;L‘ ]5 7 lLLLL ]g Median MSN2 MSN4
ACE2 1@ 114 111l in group
B T 1T 17 17T T T T 17T m .
low high ’ ?) ” ’)
MBP1 -COOOO]O 1 ]o 5.
= — i
swu 1 OO0~ A R D
HCM1 4 0000 o [n <4 -« [dn Fraction
NDD1 - L. i o 'ofcells
memt AGOO00IR 4+ - - (R e
FKHL A OOO0COIR 4+ | - c0@@® HAP5S
FKkH2 41OC000 4 o
SWI5 -O.... :Iz - P :Iz 20 60 100
ACE2 1@0000. - - - - = log FC @ ’,
L L I T I .‘-"
“'w8§§ 8")825 -25 00 25 Q
] ]
C E
Genel Gene2 r p )
SupirFactor MSN2 MSN4  0.18 0 MSN2 7 o O LSTARVE
Inferelator ~ MSN2 MSN4  -0.08 | MSN4 446 , ® MMEroH
Expression MSN2 MSN4  0.008 0.04 RPN4 740 o & b & Nim-pro
SupirFactor RTG1 RTG3  0.608 0 O3 1.iblE R o @ NLIN-UREA
Inferelator ~RTG1 RTG3 0.311 0 OCN4 11ié @ DIAUXY
Expression RTG1 RTG3  0.014 0001 ©G7F 1.9 D o evpetoH
SupirFactor HAP2 HAP5 0.14 1.8.10-195 DPAL8O 'g} & Sitcoseton
Inferelator ~HAP2 HAP5  0.33 0 RAPL 174 ]ﬁ eio03h
Expression ~HAP2 HAP5 0.026 1.9.1070  'FH1 7 Life Mix-glucose-maltose

Figure 3: Transcription factor activity in single cell yeast. TFA estimated from hierarchical SupirFactor
model. Violin plots are generated by scaling [0, 1] the underlying measurement. A: Cell cycle TFs regulate
gene expression in specific cell cycle phases, with the phase the TF regulates annotated on the right y-axis
[45]. Cell cycle phase of each cell is inferred from transcriptome, and annotated on the x-axis. Panel (i) plots
TFA, and panel (ii) plots the RNA expression of the TF. B: Same as A. Dot size represents the percentage
of cells with a non-zero value. Color represents log fold-change (log FC) across the cell cycle phases. Panel
(i) plots TFA, and panel (ii) plots the RNA expression of the TF. C: Interacting TF pair pearson correlation
for SupirFactor TFA, Inferelator TFA, and TF expression D: Comparing TFA between rapamyacin (RAPA)
treated and untreated (YPD) cells TFs known to be activated by treatment [46] or known to be more active
in untreated cells are annotated on the right y-axis. E: UMAP projection of the scY dataset showing TFA
estimate of co-regulator TFs and growth conditions.
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data set use glucose as a primary carbon source (Supplemental Figure S1E), and we see that these conditions
have very similar mTF activation (Figure 4B). The remaining growth conditions use different carbon sources,
requiring different regulation of the central carbon metabolism. Six of the glycolysis mTFs are activated in
these non-glucose carbon sources, but have considerably more repressive (negative weighted) links to target
genes (Figure 4C), suggesting that they are mainly downregulating glycolytic genes. We can further overlay
mTF activity onto a low-dimensionality projection in order to identify mTFs which are linked to carbon
source with little heterogeneity (e.g. 74 & 79) and which have heterogeneity within growth conditions (e.g.
57 & 78) (Figure 4D). We observe that mTFs aggregate biologically functional groups in their targets and
can be evaluated quantitatively as activities of these pathways.

2.6 SupirFactor models regulation of mammalian PBMCs with multimodal single cell
sequencing data

We evaluate the use of SupirFactor to model complex biological systems by applying the method to model
Peripheral Blood Mononuclear Cell (PBMC) gene regulation, using a paired multi-omic single cell ATAC-seq
and RNA-seq dataset [18] (Figure 5A). These two data types are integrated by using ATAC-seq chromatin
accessibility as a cell-specific mask (Section 16).

PBMCs are a heterogeneous pool of multiple cell types, and each cell type may have subsets of cells in
different states. We annotate these cells as dendritic cells (DC), monocytes (Mono), natural killer cells
(NK), B-cells (B), CD4*1 T-cells (CD4 T) and CD8*" T-cells (CD8 T). To account for this heterogeneity, we
build a context aware Joint Representation Learning (JRL) SupirFactor model (Section 4.2). This allows the
model to weight regulatory evidence based on context and aggregate into a joint latent feature space to build a
joint SupirFactor GRN model. We define cell contexts for JRL by clustering cells using Leiden clustering[49)],
with a resolution = 0.2, generating 7 clusters (Supplemental Figure S11A-B). The PBMC SupirFactor model
was trained using JRL on ATAC masked data (epochs=400) and subset to the most explanatory model
weights once (epochs=100), resulting in a model that is scored on held-out cells (R? = 0.35). The modeled
PBMC regulatory network predicts 818 active TFs regulating 13698 genes, connected through 492 mTFs in
a latent mTF layer (€2 > 0) (Supplemental Figure S11C).

Eleven of these mTFs are linked to target genes which are functionally enriched for immune cell specific
KEGG pathways (Figure 5B), and we interpret these mTFs as regulatory pathways. As an example, mTF-
637 is active in B cells but largely inactive in other PBMCs (Figure 5B-D); the target genes of this mTF
are functionally enriched for B-cell receptor signaling (Figure 5B). mTF 313 is activated in dendritic cells
(DCs) and regulates genes functionally enriched for phagocytic activity and for Neutrophil extracellular trap
formation, which activate DCs and allow them to mature [50]. mTF 227 is also linked to phagocytosis,
although is principally active in monocytes. mTF 17 is active in NK cells with functional enrichment for
Natural Killer cell mediated cytotoxicity genes. Overall, this demonstrates the utility of SupirFactor mTFs
as a tool for identifying cell type specific regulation.

We can further examine TFs that have inferred cell-type specific activity (Figure 5E). SupirFactor distin-
guishes activation between myeloid (monocytes and DCs) and lymphocytic (B, NK and T cells) lineages
(Figure 5E). The framework also recovers known cell-type specific regulators along the myeloid lineage,
monocytes and DCs, (KLF1) [51], B cells (PAX5, SMAD5) [52, 53], NK cells (ARNT) [54], CD4 T cells
(IRF1, RUNX3) [55, 56], and CD4 T cells (NR4A1) [57]. We show that SupirFactor infers cell-type-specific
differential mTF activation and TF activation among distinct cell types that correspond with known bio-
logical processes and protein activity for multiple key cell types. The analysis of SupirFactor performance
on the PBMC dataset demonstrates that SupirFactor can learn biologically relevant interactions in complex
organisms and datasets.

3 Discussion

In this study we describe StrUcture Primed Inference of Regulation using latent Factor ACTivity (Supir-
Factor), a model within the class of knowledge primed deep learning models. SupirFactor explicitly treats
transcription factor activity as an interpretable latent state which drives gene transcription. This model
uses a single objective function where the influence of the prior regulatory structure is optimized together
with the GRN. SupirFactor combines the power of DNN optimization with prior structure constraints for
inferring GRNs and explicit estimation of TFA. These TFA estimates are bounded by a ReLU activation
function, and are directly quantifiable and interpretable on a per-observation basis.
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Figure 4: Meta transcription factor (mTF) functional enrichment analysis in single cell yeast. TFA
estimated from hierarchical SupirFactor model trained in Figure 3. mTFs are nodes in the SupirFactor
model & latent layer and are numbered from 1-148. A Pathway enrichment of mTFs to selected core
metabolic KEGG pathway annotations on target genes. B mTF activity for cells in each growth condition
(mTF activity scaled [0, 1] for comparison). C Positive (activating) and negative (repressing) weights from
mTFs to target genes within the Glycolysis KEGG-pathway for each mTF. D mTF activity for cells overlaid
on a low-diensional UMAP projection. Cell metadata plotted in Supplemental Figure S1.
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Figure 5: Single cell PBMC TFA and mTF functional enrichment analysis. TFA and mTFA are estimated
from a JRL SupirFactor model. mTFs are associated with latent features ¢ and are numbered 0-881. A
UMAP projection of the single cell PBMC dataset, labeled with cell type annotations. B Selected enriched
terms and associated mTFs for cell-type specific KEGG pathway based on mTF target genes, ¢2 > 0.01. C
Activity of functionally enriched mTFs, over each cell-type. D UMAP projection of PBMCs colored by mTF
activation. E Significant TF activation for specific cell-type populations and corresponding gene expression
(scaled [0, 1] for comparison). Dot plots of (i) TFA and (ii) TF mRNA expression. Violin plots of (iii) TFA
and (iv) TF mRNA expression.
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SupirFactor has been carefully benchmarked using both bulk RNA expression data sets and single cell RNA
expression data sets. We rely on model organisms B. subtilis and S. cerevisiae for benchmarking, as these
organisms are well-characterized and have a partial experimentally validated ground truth network available,
which we use for scoring recovery of GRN structure. This model organism benchmarking is important, as
mouse and human data sets used for GRN inference benchmarking often lack reliable ground truth networks
for scoring, and are restricted to using predictive metrics which have limited value. This benchmarking shows
that the SupirFactor framework is versatile and has improved GRN inference over a comparable framework
that relies on statistical learning, measured by recovery of network edges which are held out of the modeling.
The SupirFactor GRN models are also predictive, and we expect that future work will tune the model
to optimize network recovery using AUPR, or other model selection appropriate metrics, of held out gold
standard network edges, by maximizing R? for predictive power.

SupirFactor provides a novel metric for evaluating DNN architectures, specifically designed for the needs of
GRN inference. Explained relative variance (ERV) estimates the importance of each latent feature to each
output feature, directly and indirectly. This metric has appealing properties; ERV is bounded and facili-
tates ranking regulatory relationships and discarding non-predictive model weights. DNN models are often
overparameterized, which results in problems interpreting model weights for GRN inference. As biological
GRNs are sparse model selection must be part of the evaluation of any GRN inference algorithm. The model
evaluation metric and model selection criteria we propose are also useful for evaluating the contribution of
intermediate DNN layers which are not explicitly defined as TFs. By using ERV to evaluate linkages from
regulatory TFs, through a latent meta-TF layer, to target genes, we are able to use the meta-TF layer as a
powerful pathway analysis tool.

We demonstrate the validity of ERV by comparing it directly to GRN inference using model weights alone,
and find that it improves GRN inference link interpertation. ERV also allows for post-training analysis of any
gene expression data to determine which parts of the network are specific to that context. We show this by
extracting context-specific networks from the S. cerevisiae single cell data set, which contains observations
from fifteen different growth conditions. The recovery of these post-training context-specific networks is an
improvement over previous work, which requires that the context is embedded into the model pre-training.
SupirFactor is therefore a valuable tool to identify context specific and contextual regulatory interactions.

The driving features of GRNs can be condensed into TFs. Another core concept explored in this work is that
of latent feature inference and interpertation, i.e. TF activity (TFA). In the model organisms S. cerevisiae
we demonstrate that the model latent feature activity, the TFA of a TF is distinct from the expression of
that same TF. We do this by studying the cell-cycle where we see a clear delay of relevant TFA compared
to expression. Demonstrating that reliance on expression of TF as independant features to model a GRN
does not capture the regulatory structure of GRNs. A drawback in many works related to GRN inference.

To demonstrate that SupirFactor scales to the complexity of mammalian systems we evaluate a model learned
from a PBMC multi-ome single cell dataset, and characterize the pattern of TFA and functional enrichment
in different contexts. The model make use of context specific prior evidence to further restrict TF variance.
And we find that we can extract functional enrichment based on annotated celltypes reliably.

Reuse of computational models can be valuable as a tool to understand and conceptualize new experimental
data evident by recent reuse of single cell sequencing atlases in the field of genomics[48, 58]. Unfortunately,
the reuse of GRNs themselves is rare, and for most studies gene regulatory networks are inferred entirely based
on new data. We consider this to be a general limitation in current-generation GRN inference models, which
do not have mechanisms to embed new data into an existing GRN. SupirFactor tackles this by using a DNN
architecture together with the transparency framework (ERV). We demonstrate this reuse by embedding
novel data and by contextually analysing sub-networks after the model has been trained, gaining insight not
explicitly provided to the model before training.

Developing explainable deep learning models for GRN inference is a critical requirement for improving models
of gene expression and regulation[23]. The goal of this work was to build a formalized GRN inference model
with explicit optimization and objective functions, from which latent states can be directly interpreted.
The resulting formalism, SupirFactor, is a powerful GRN inference tool with additional pathway analysis
and protein activity functionality, that can be applied to both bulk and single cell data. SupirFactor can
harmonise regulatory evidence, epigenetic data and expression readout in a regulatory and functionally
meaningful way. While challenges still exist, like model stability and model selection; tightly connected
to the nature of non-linear machine learning algorithms, advances in single cell multi-omics and epigenetic
sequencing are steadfast and will further narrow the specificity in model constraints with its inclusions.
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With additional work related to architecture, algorithm development, and prior evidence construction, the
framework can be further extended and prove even more useful.

4 Methods

4.1 StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor)

We define two SupirFactor models. The shallow model, used mainly for testing, which consists of a single
layer that represents individual TFs and their activity. The hierarchical model, which consists of two layers,
the first representing individual TFs and their activity, and the second representing TFs aggregated into
pathways, termed meta TFs (mTFs). The hierarchical model is the main model used in this work.

4.1.1 Shallow SupirFactor

Starting from our model framework (Section 2.1), gene expression is a function of TFA and is used as the
independent feature to weight influence on gene expression from TFs. We can formulate the problem as

& = h(z) = (9o f)(z) (1)
where & € R™ is the gene expression of one observation with n genes, with g, f as functions of the form
¢=flx)=0(Wgz) (2)
and
z=g(¢)=0(09) (3)

with the activation function o, aggregating the linear combination of inputs for each latent feature. The
linear combination of inputs without activation is similar to the NCA framework described in section 4.4.4
with the distinction that this formulation weighs W instead of fitting ¢ with a static P.

® and W are the weighted connections of input features to output features in a single layer, with equation
(3) corresponding to the shallow SupirFactor (Figure 1C). ¢ is the inferred latent activity interpreted as
TFA of expression mapped through f. We set W € P, such that the sparsity structure of W is identical to
P. This ensures that (I) ¢ € R, with K TFs, constraining the informative genes influences to those in the
prior P, and (II) the causal flow from regulator to target defined by the prior is enforced. Causality does
not imply direct binding but rather in this case the variance of each TF being constrained to the variance
of its targets as opposed to the covariance of the TF expression.

4.1.2 Hierarchical SupirFactor

In Hierarchical SupirFactor (Figure 1A) we add an additional mTF layer between TFs and output gene
expression. This allows higher order interactions between TFs (representing biological concepts like redun-
dancy, competition, and physical complexing), and other conditional non-linear dependencies to be modelled.
This extends the formulation of SupirFactor so that it can generate TF interaction hypotheses and be used
as a tool for pathway analysis.

& = h(@) = (goso f)(a) (4)
where R
¢ = s(¢) = o (I19) (5)
and
& =g() =0 (00) (6)

IT is the weight matrix of TF-TF interactions that maps individual TF activity to the mTF layer.

4.2 Joint representation learning for context specific constraints

Joint representation learning is a transfer learning method where context-specific evidence is aggregated into
a common model structure [see 44, chap. 15] (Figure 1E). This is implemented in SupirFactor by adding
a biological context-specific constraint on the prior evidence. We define P¢ as prior evidence for C' where
C is a biological context, like a cell type, growth condition, or temporal group. Weights W € P are also
context-specific, and are mapped jointly through IT and ©® that are common to all contexts. Experimental
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data is labeled with the appropriate context and data for each context is submitted batch-wise to the model
for training. Context weights W are individually trained and may vary between contexts if P¢ is the
same. Equation (4) then takes the form;

o = (goso fo)lxc) (7)

where fc is the context specific structure (P¢) primed encoder.

4.2.1 Fitting model

To train the SupirFactor model, W, II, and © are fit to minimize mean squared error between & and .
1 2
MSE = — >l — b (8)
i

This is implemented as minimization by batch stochastic gradient descent with the Adam solver [59] and
pytorch [60].

Nonzero encoder weights are initially mirrored and made non-negative in both the decoder ® and encoder
W, although all elements in © are free to be fit by the solver. The prior assumption is that TFA is positively
correlated with gene expression during model initialisation if no other evidence is available.

4.3 Model regularization
4.3.1 Parameter penalties

Model weights are penalized, regularizing models to mitigate overfitting and to balance bias and variance
[61]. We use a weight decay factor, corresponding to a ridge penalty [see 62, section. 6.7.6]. The objective
function to be minimized is then

MSE+( W[, + ¢[[©]l, + ¢ |[TT], 9)

where ( is the ridge penalty applied. The  parameter is set by cross validation, splitting the data into equal
training and validation sets and evaluating model performance where ¢ € {0,1071°9,107°,...,1071} [33, 63].

4.3.2 Dropout

Dropout is an additional regularization method [64] where a fraction of nodes are removed from each sample
during training, mitigating the risk that noise in the data will trap the model in a local minimum. Dropout
can be applied to input or to latent layers. In short, training data is randomly batched into groups, and
each batch is then used to train a network where a fraction, p of data points are removed randomly from
each sample in each batch before feeding it through selected layer(s). This is implemented in SupirFactor
through the Dropout module in pytorch. Droput is tested by cross validation as above on both the input
and the latent TF layer, searching p € {0,0.01,0.05,0.1,0.2,0.3,0.4,0.5}.

4.4 Explained Relative Variance (ERV)

4.4.1 Model selection and model parameter ranking

GRNs are sparse and most genes have a limited number of directly regulating TFs. The importance of
model parameters is quantified, and relatively unimportant parameters are shrunk to zero. Two different
ways of ranking inferred interactions are evaluated in this work: (I), Ranking the magnitude of model weights
|0;.x| (MODEL), and (II), ranking interactions by their explained relative error (ERV). ERV perturbs latent
features and quantifies the consequence of that perturbation [37]. The goal is not to eliminate redundancy,
but rather to eliminate over-parameterization and constrain the parameter space of SupirFactor.

ERV is calculated as coefficient of partial determination [43] so the bound on the error contributing to
predict gene expression can be evaluated £2 € ] — o0, 1] where a predictive link has an ¢2 € ]0,1]. The GRN
model is trained once, as re-training for each perturbed latent feature is computationally intractable. ERV
is determined from the ratio of the full model MSE to the perturbed model MSE.

e i MSE; (h(z)g)
i,k MSE; (ﬁ(w)fl’K#k)

(10)
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h is the trained model, MSE; (h(x)g) is the MSE of the full, unperturbed model for gene 4, and
MSE; (h()g,_,) is the MSE of the perturbed model for gene i where the activation of the latent layer
for regulator k is set to 0. Model parameters for each gene i are ranked by the value of §2i’k for all k.

4.4.2 Ranking model parameters for models with multiple layers

To be able to interpret any parameter in the model we use the ERV concept (section 4.4.1). To determine
the importance in any hidden layer L not directly connected to the output we compute two &2 matrices. &2,
and €2, +1- Where L indicates the layer with corresponding latent feature input to the layer in question and
L + 1 the next layer with corresponding latent feature input. For layer weights IT we compute each element
T,k With m as output feature and k as input feature by first computing the vectors §2z,k7L and 52:’m~L+1.
That is, the £2 of each element of ©.,, and the £ of each element of the indirect contribution of latent
feature k in layer L to the output genes 52:,k,L' To eliminate weights in IT we threshold 52:,,%L+1 > €1 and
€2, ... > €2 and compute the ERV;

>ickrm MSEi (h(®)g)
> ickrm MSEi kL (M), )

(1)

2 —
f m,k,II — 1-

where ¢ € k N'm is the intersection set of predictive TF to gene interactions for latent feature k from layer
L, and m for layer L+ 1. If kNm = then &2, ; 7 = 0.

The classical GRN realisation is interpreted as the indirect connections from &2, ; ;, connecting the latent
input features in layer L, k to the output target genes i. With L in this case representing the TFA activation
layer.

4.4.3 Stable architecture and non predictive weight elimination

To select an interpretable model we want to reduce the model size in terms of individual weights to arrive
at a model with parameters that are predictive and stable. We define predictive as when an individual
parameter that can be determined to connect an upstream regulator to its downstream target, has £2 > e.
Stable in this case means that the parameter is predictive on unseen data when the model is trained on
reduced subset of parameters.

We apply model constraints on individual weights. Parameter weights éi,k ( and 6, ,,, in hierarchical Supir-
Factor), with ¢ output and k, and m input features are removed if 522»7 k., < € for the respective layer L, with
a choice of € = 0 7.e. not predictive of the output, is the most conservative.

To enforce these constraints in number of regulators per gene we use a model selection step after an initial
training run (Figure 1E). The model selection step is derived from &2 where

o> ik
2, =" (12)

with €2; as the maximum &2 for gene i. Selection is done iteratively by selecting a threshold e. The model
is then refit with parameters where §A2i’k > €. This is done iteratively until convergence where at each step
€2 is recomputed. € is a measure of inclusion of relative predictive power. Using ¢ = 0 means all predictive
links are kept after sub-setting and relative predictive power §A2 is not impacting the subset.

Using EAQL i facilitate selecting regulator subsets where, unless the gene is too noisy or the prior lack sufficient
information that can reliably predict the specific expression pattern (i.e. all £€2; < e for the gene in question),
at least 1 TF can be inferred to be predictive relative to all k for that gene 7 and other regulators are ranked
relative to it.

For the hierarchical model sub-setting, weights are eliminated if no predictive interactions can be derived
from the indirect path between a latent feature k through the latent feature m in the subsequent layer to the
set of joint output features, above the chosen € threshold. If ¢2 k.m a1 < 0 the hidden layer weight is pruned.
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4.4.4 Network Component Analysis (NCA)

Network component analysis (NCA) can be used to estimate TFA directly by formulating the causal network
inference problem so that

Y = $0 (13)
where Y € R%™ is gene expression with n genes and S samples, ® € R™F is the TFA with k& TFs, and
© < R*"™ is the regulatory effects linking genes to TFs. The unknown “true” @ is the regulatory interaction
between genes and TFs we want to find. ® is unknown given the assumption that the expression level of
a transcription factor k& does not correlate well with the activity of the protein [65]. Therefore we need to
solve for both ® and ®, which forces us to convolve our estimation of regulatory effect and the TFA. To
deconvolve and solve this we impose a prior P with elements € {0, 1} as an initial guess to the structure of
® and use that to solve for an initial estimate for ®.

A

® = argmin [|Y — ®P|| (14)
L
This is solved by ordinary least squares. The estimated ® is then used to solve for ®

A~

® = argmin
e

’Y - <i>®” (15)

This is interpreted as an estimate of TFA given a number of reporter genes defined by the prior P, i.e. the
expression level of the target genes is a proxy for how active a TF is in any given sample. The variance of
the TF activity is defined and constrained by the variance of the reporter genes.

4.5 Epigenetic masking

To incorporate the paired ATAC- and RNA- sequencing data we create a masking scheme to mask input
gene expression profiles with the ATAC so that expression input

&is =xi5-1ifaps € A; else 0 (16)
with x; ¢ being the expression of gene ¢ in sample s and a, s being an available ATAC peak p in the set of
accessible regions A; associated with gene 1.

4.6 Data Acquisition

4.6.1 Bulk expression data

Bacillus subtilis bulk expression data for data set 1 (B1) [10] and data set 2 (B2) [66], and the known prior
network [10] were used as previously described [11]. Saccharomyces cerevisiae bulk expression data for data
set 1 [67] and data set 2 [68], and the known prior network [(69] were used as previously described [41].

4.6.2 Single cell expression data

Saccharomyces cerevisiae single cell training data was assembled from [13] and [70] as previously described
[41].

S. cerevisiae test data was collected using a method previously published [13]. In short, biological replicates
containing unique, transcriptionally-expressed molecular barcodes of a wild-type strain 1 (MATa/MATa
Aho::NatMX/Aho::KanMX) and a wild-type strain 2 (MATa/MATa HO/Aho::NatMX HAP1+::pACT1-
Z3EV::NatMX/HAP1 ura3A0/URAS3 canlA::prSTE2-HIS5/CAN1 HIS3/his3A1 LYP1/lyp1AQ) were gen-
erated as previously described [13].

Strains were grown overnight in rich media (YPD as previously described [13]) and then subcultured into
100mL YPD or minimal media (MMD as previously described [13]) for 3 hours. Cells from each flask
were then taken, fixed with saturated ammonium sulfate, processed, and sequenced using the protocol as
previously described [13]. Raw sequencing data was processed into count data using a previously-described
pipeline [13] which joined the transcriptional barcodes to individual cells, assigning specific genotypes to cells
and removing any cell containing multiple distinct barcodes as doublets. Four data sets were then created
from this count table; YPD 1 (n=1531, wild-type strain 1 in rich YPD media), YPD 2 (n=1428, wild-type
strain 2 in rich YPD media), MMD 1 (n=492, wild-type strain 1 in minimal MMD media), and MMD 2
(n=463, wild-type strain 2 in minimal MMD media). This data is deposited in NCBI GEO as GSE218089.
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4.6.3 Yeast Annotations

Cell cycle related yeast genes are annotated based on [71]. Ribosomal, ribosomal biogenesis, and induced
environmental stress response genes are annotated based on [72].

Individual cells in single cell RNA expression data sets are assigned a cell cycle phase based on cell cycle
gene annotations. Expression of each cell cycle gene is normalized to a mean of 0 and unit variance. All
marker genes annotated with a specific cell cycle phase (G1, S, G2, M, or M/G1) are grouped, and the cell
is assigned to the phase that has the maximum mean group expression.

Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations [17] were selected to cover the majority
of the core yeast metabolism. KEGG annotations are KEGG:04111 (Cell cycle), KEGG:00010 (Glycoly-
sis), KEGG:00020 (TCA cycle), KEGG:00500 (Starches), KEGG:00660 (C5-Branched), KEGG:01210 (C5-
Branched), KEGG:00250 (AA (A, D, E, N, Q)), KEGG:00260 (AA (G, S, T)), KEGG:00330 (AA (R & P)),
KEGG:00400 (AA (F, Y, W)), KEGG:00270 (AA (C & M)), KEGG:00920 (Sulfur), KEGG:00061 (Fatty
acids), KEGG:00230 (Purines), and KEGG:00240 (Pyrimidines)

4.6.4 PBMC multi-ome dataset prepocessing

Paired PBMC scRNA-seq and scATAC-seq was downloaded from the 10x website (https:
//support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_
sorted_10k). This data was preprocessed using a previously published workflow [48]. In short, the RNA-seq
data is preprocessed as detailed in Section 4.7.1, with the additional filtering of cells with > 25000 or < 1000
counts and < 20% mitocondrial counts of total. For the ATACseq data we used epiScanpy[73], filtereing
peaks in < 10 cells and cells with < 5000 or > 7 - 10* counts, and with a variability score < 0.515. Final
data contains 10411 cells, 21601 genes and 75111 peaks,

Cell types are annotated using the reference PBMC dataset[58] passed to scanpy’s [74] inject label transfer
function, resulting in 8 annotated celltypes (Figure 5A).

4.6.5 ENCODE PBMC prior knowledge network construction

TF-ChIP peaks were obtained as narrowPeak BED files from the ENCODE project database. The GRCh38
genomic annotations (NCBI GCF_000001405.39) were obtained as a GTF file from NCBI and filtered for
protein-coding genes.

TF-ChIP peaks were linked to candidate target genes with the inferelator-prior package [11]. TF peaks were
annotated as possible regulators of a gene if they were within 50kbp upstream of a gene transcription start
site and 2kbp downstream of a gene transcription site, with no other gene between the TF peak and the
gene transcription start site. TF Peaks were further filtered to remove any regulators not annotated as TFs
(including GTFs, chromatin modifiers, and polymerase subunits).

This large pool of potential TF regulatory peaks were then subset for intersetion with annotated regulatory
regions for PBMC cell types (ENCODE Accession IDs ENCFF776AJJ, ENCFF497NXM, ENCFF984SPH,
ENCFF079TQT, ENCFF862ULW, ENCFF504FDC, and ENCFF905BHJ). The peak intensity (signalValue)
was summed for all peaks annotated to each TF-gene pair to generate a genes by TFs putative regulatory
matrix. This matrix was further constrained for sparsity by retaining at most 1.5% non-zero values for each
TF, shrinking all values below this threshold to zero, and producing a genes by TFs prior knowledge network
matrix with a sparsity of 1.22%.

4.7 Data preprocessing and model parameterisation

4.7.1 Single cell pre-processing

For the single cell data, unless otherwise stated, we follow standard normalization procedures which include,
(i) filtering genes with expression in < 10 cells, (ii) count normalization; scaling each cells total count to
the same value over the dataset. This serves to eliminate the effect of variable sequencing depth in the
experimental technique, and (iii) log transforming the (data + 1) using the natural logarithm.
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4.7.2 Feature normalization
For bulk data we use the standard normalization of each input feature so that

T —p
g

for each gene with p = mean and o = standard deviation over the gene.

To preserve the sparse structure of single cell data we, in addition to the above, adopt a robust normalization
approach without centering. Each gene is scaled by the range of the 1 and 99 percentile and shifted so the
lowest value for each gene = 0 implemented using the scikit-learn RobustScaler method [75] which we call
RobustMinScaler.

4.8 ReLU in hierarchical SupirFactor

For DNN linear activation does not contribute meaningfully in different layers and can be reduced to a single
linear map. The rectified linear unit (ReLU)[44] truncates activation to stay strictly positive and injects
non-linearities into the model architecture. For hierarchical SupirFactor we therefore use ReLU and define
the gradient for the ReLLU function

ReLUp = o(z) = max (0, z)

so that with z = 0 the gradient is = 1. With z as the linear combination of inputs to each feature.

4.9 Visualisation

Visualisations throughout this work, if not stated otherwise, was generated in Matplotlib[76] with some
components done with seaborn|[77] and scanpy[74].
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growth condition.
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S2: Dataset S1[68]. Hyper-parameter cube search. Each column of squares indicate a weight-decay (L2)
penalty, with 0 and then 10 log linear values between 1070 — 10~!. Each square is the grid search of
dropout on input feature (y-axis) and latent features (x-axis). Rows in blue shade (a, b, d and f) indicate
GRN recovery performance measured by area under precision recall curve (AUPR) on 20% held out of
gold-standard network. ERV (a, d and f) indicate the GRN is ranking based on explained relative variance
(Section 4.4.1), model (b) indicate network interactions are ranked based on their weights magnitude, with
larger magnitude indicate more influential. Red shades (c, e and g) indicate prediction accuracy R? on
held out, n=50%, of samples. Negative controls are done by shuffling either the data (d and e) or the prior
network structure (f and g).

27


https://doi.org/10.1101/2023.02.02.526909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.02.526909; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

FEBRUARY 2, 2023

S2
a
00
008
2 01 0.05x0.5
£ o2 0.05
0.4
0.5
0.0
008
303 05x0.05 | 05x001 | 05x005 | 0.4x001 | 04xo. 4 | 005x05
o 0.2
g o2 0.21 0.21 021 0.21 22 0. R 0.05
0.4
0.5
0.0
0%
«~ 03 005x00 00x00lL 005x0.0 001x005 001x00l 00x00l 001x00 005x00  0.0x0.0 0 [ 0.05x0.01
© 0z 0820078 082077 0820077 082076 08200.78 082078  0.8200.75 081074 0.710.68 NS 0.08/0.05
0.4
0.5
0.0
£o01
=T %% 0.01x0.01 | 0.01x0.01
o
£3 o2 .04 0.04
£ 03
£ 04
? 05
0.0
Soo01
Rel 05x05 | 05x05 | 05x05 | 05x05 : 05x05 | 05x05 | 05x05 | 001x00 | 0.0xo00
L3l 000-002 | 0.00-001 | 0.00~0.01 | 0.00/0.00 0.00-0.01 | 0.00/-0.01 | 0.00~0.01 | 0.00/0.00 | 0.00/0.00
= 0
0.4
ﬁ 0.5
2501 03x0.01 | 05x0.05 02x0.05 | 03x0.01 [ 0.01x0.05 [ENIEEES
B o2 0.03 0.03 i 0.03 0.05 0 - 023
2 04 L 01
® 05 L 00
. 00 [ o8
2 g.g% L o6
~Z2%)3% 005x00L 005x001 005x00l 005x001 005x00l 005x0.01 00x00 001x00 00x00 LR BEEELIY °
©& 07 083074 083078 083077 08308l 083078 083075 083077 0820076 073072 [MUKEbkAN B - o4
= o
0.4 + 0.2
ﬁ 0.5 - 0.0

OHWLHANMTN OHNAHNMTI OHRANM TN O ANMTN OHNHNM T O ANM TN OHDHNMTY OHNHANM TN O HNMTN OHDANMTL O ANM TN

0.0 le-10 1e-09 1e-08 1le-07 1e-06 1le-05 0.0001 0.001 0.01 0.1

S3: Dataset S2[67]. Description as in Figure S2
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S4: Dataset B1[10]. Description as in Figure S2
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S5: Dataset B2[66]. Description as in Figure S2
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S6: Dataset scY[13, 78] with StandardScaler normalisation and linear activation (SSL) configuration.
Description as in Figure S2
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S8: Dataset scY[13, 78] with RobustMinScaler normalisation and ReLUj activation (RR). Description as
in Figure S2
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S9: Dataset scY[13, 78] with RobustMinScaler normalisation and linear activation (RL). Description as in
Figure 52
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S10: Distribution of ERV (£2) for hierarchical SupirFactor trained on scY.
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S11: Single cell PBMC Contexts and Networks A: UMAP projection of the scRNA-Seq PBMC dataset
with “Context” via leiden clustering (0.2) B: UMAP projection of the scATAC-Seq PBMC dataset with
“Context” via leiden clustering (0.2) C: Distribution of ERV for ©, IT and © networks
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S12: UMAP projection of all functionally enriched mTF activation (mTF activity scaled [0, 1] for com-
parison).
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