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Salmonellae are one of the most important foodborne pathogens, which threaten the

health of humans and animals severely. Glycyrrhizin (GL) has been proven to exhibit

anti-inflammatory and tissue-protective properties. Here, we investigated the effects

of GL on tissue injury, inflammatory response, and intestinal dysbiosis in Salmonella

Typhimurium-infected mice. Results showed that GL or gentamicin (GM) significantly

(P < 0.05) alleviated ST-induced splenomegaly indicated by the decreased spleen

index, injury of liver and jejunum indicated by the decreased hepatocytic apoptosis, and

the increased jejunal villous height. GL significantly (P < 0.05) increased secretion of

inflammatory cytokines (IFN-γ, IL-12p70, IL-6, and IL-10) in spleen and IL-12p40 mRNA

expression in liver. Meanwhile, GL or GM pre-infection treatments significantly (P < 0.05)

decreased ST-induced pro-inflammatory cytokine (IFN-γ, TNF-α, and IL-6) expression in

both spleen and liver and increased (P< 0.05) anti-inflammatory cytokine IL-10 secretion

in spleen. Furthermore, GL or GM pre-infection treatment also regulates the diversities

and compositions of intestinal microbiota and decreased the negative connection

among the intestinal microbes in ST-infected mice. The above findings indicate that GL

alleviates ST-induced splenomegaly, hepatocytic apoptosis, injury of jejunum and liver,

inflammatory response of liver and spleen, and intestinal dysbacteriosis in mice.

Keywords: glycyrrhizin, Salmonella Typhimurium, tissue injury, inflammatory response, intestinal dysbiosis

INTRODUCTION

Salmonellae are facultative intracellular bacterial pathogens, which can invade and survive inside
many cell types, such as epithelial cells, macrophages, microfold (M) cells, and dendritic cells
(1, 2). As one of the most common foodborne pathogens, Salmonellae had strong pathogenicity,
which colonizes, adheres to, and damages the intestinal epithelium by producing enterotoxins
and then invade organs (such as liver, spleen, and kidney) by secreting invasive protein to
induce organic swellings and inflammation (3, 4). Salmonellae-induced Salmonellosis poses a great
threat to the health of food animals and humans. It is reported that Salmonellae-contaminated
food-induced Salmonellosis is one of the major causes of diarrhea of humans globally (5), and the
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total economic loss caused by Salmonellosis is estimated to be
over $3.5 billion per year in the US (6). Salmonellae infection
not only causes enteric diseases that compromise growth
performance and overall health of animals and thereby lead
to serious economic loss for food animal industry but also
leads to serious Salmonellae-contaminated raw food animal
products (meat and eggs) (6, 7). Salmonellae-contaminated
poultry products (raw meat and eggs) are considered as the
leading food sources for human Salmonellosis (8). Traditionally,
in-feed antibiotics is the main strategy to prevent or control
Salmonellae-induced enteric diseases in animal production
(9). As growth promoters, antibiotics have been widely used
in livestock production since the 1940’s to improve growth
performance and overall health of animals (10). However, with
the increasing concerns about antimicrobial resistance (AMR)
and foodborne antibiotic residues, many countries, including
China, have banned the use of antibiotics in animal husbandry
production (11–13). With the strict ban of the in-feed antibiotic
growth promoters (AGPs), gastrointestinal infectious diseases
of food animals and zoonotic pathogen contamination in
animal products severely threaten the health of animals and
humans (11, 14). Therefore, it is a priority to explore the proper
alternatives to AGP under the post-AGP era (13). In recent
years, many studies have been reported that some natural agents,
such as natural plant extracts, probiotics, and prebiotics, are
beneficial for improving growth performance and reducing
morbidity and mortality of food animals, and are considered
“Generally Recognized as Safe (GRAS)” alternatives to
AGP (13, 15–17).

Glycyrrhizin (GL), a triterpene glycoside that is extracted
from licorice root, consists of one molecule 18-β-glycyrrhetinic
acid and two molecules of glucuronic acid and is the
most important active ingredient of licorice root (18, 19).
GL has been proven to exert a variety of pharmacological
activities, such as anti-microbial, anti-inflammatory, anti-viral,
anti-oxidative, anti-tumor, and hepatoprotective activities (18,
20–22). GL can activate specific and non-specific immune
responses by enhancing phagocytosis and bactericidal activities
of macrophage (18), inducing maturation of dendritic cells
(DCs) and proliferation of T lymphocytes (23), augmenting
natural killer (NK) cell activity (24), and inducing cytokine
secretion (18). GL exhibits anti-inflammatory and tissue-
protective properties by binding to high-mobility group box
(HMGB1) to inhibit cytokine secretion activities (25). Many
studies showed that as an alternative to antibiotics, GL had
a beneficial effect in preventing or controlling multi-drug-
resistant pathogen infection (26, 27). As a potential substitute
for AGP, licorice extract showed beneficial effects on the growth
performance of broiler (28, 29). Our previous studies also
found that GL exerts anti-Salmonella activities by inducing
M1 polarization of murine bone marrow-derived macrophages
(BMDMs) and maturation of murine bone marrow-derived
dendritic cells (BMDCs) (18, 30). The present study was
aimed to further investigate whether GL as a potential AGP
substitute has protective effects against ST-induced tissue
injury, inflammatory response, and intestinal dysbiosis in
C57BL/6 mice.

MATERIALS AND METHODS

Reagents
GL was purchased from Sigma-Aldrich (purity ≥95.0%, St.
Louis, MO, USA). Gentamicin (GM) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). ELISA kits for IFN-γ, IL-12p70,
TNF-α, IL-6, and IL-10 were obtained from eBioscience (San
Diego, CA, USA). Caspase-1 activity assay kit was purchased
from Beyotime Institute of Biotechnology (Shanghai, China).

Bacteria Preparation
ST CMCC 50115 was generously provided by Dr. Weihuan
Fang (Institute of Preventive Veterinary Medicine, Zhejiang
University). ST was cultured at 37◦C in Luria–Bertani broth
overnight under aerobic conditions. The ST pellet was harvested
by centrifugation at 4000 ×g for 15min at 16◦C and then
washed three times with sterile phosphate-buffered saline (pH
7.2). Finally, the optical density method (SpectraMax M5, MD,
USA) and spreading plate method were conducted to adjust the
final ST.

Animal Experimental Design
Male C57BL/6 mice (6 weeks old, Slac Animal Inc., Shanghai,
China) were raised in the Experimental Animal Center of
Zhejiang University under light-controlled (12-h light/dark
cycle) and temperature-controlled (22 ± 1◦C) conditions and
had free access to water and food. Fifty male C57BL/6 mice
were randomly divided into five groups (n = 10/group): Control
group, glycyrrhizin-treated group (GL), ST-infected group (ST),
glycyrrhizin protective group (GL + ST), and gentamicin
protective group (GM+ ST, as a positive protective group). Mice
in the Control and ST groups were drinking sterile water. The
mice in the GL, GL + ST, and GM + ST groups were drinking
sterile water containing 0.4 mg/ml GL (80 mg/kg weight) or
0.4 mg/ml GM (80 mg/kg weight) every day, respectively (30).
All mice were fed a basal diet and weighted every 3 days. After
3 weeks, mice were orally infected with 200 µl of Salmonella
Typhimurium (2 × 109 CFU/ml) (31). Mice were euthanized at
day 3 post-infection. Spleen was weighted, and liver, jejunum,
and cecum were collected for further analysis. Spleen index (n =

10/group) was calculated according to the formula: Spleen index
= spleen weight (mg)/body weight (g).

Hematoxylin and Eosin Staining and
TUNEL Assay
For photonic microscope observations, the liver and
jejunal samples (n = 5/group) of mice were fixed in 4%
paraformaldehyde, embedded in paraffin, sliced, dehydrated
with gradient concentrations of alcohol, and then stained with
hematoxylin and eosin (H&E). Images were captured, and the
villus height was measured by an Olympus microsystem (Tokyo,
Japan). The TUNEL assay was determined by using TUNEL
Assay Kit (Abcam, Cambridge, United States) according to the
manufacturer’s instructions. Briefly, the paraffin-embedded liver
sections were deparaffinized with xylene, hydrated with gradient
concentrations of alcohol, and covered with proteinase K. Slides
were incubated with terminal deoxynucleotidyl transferase
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TABLE 1 | Primer sequences used for qRT-PCR.

Gene name Primer sequence (5′-3′) Product

size

Accession no.

TNF-α F: CCCTCACACTCAGATCATCTTCT 61 NM_013693

R: GCTACGACGTGGGCTACAG

IL-12 p40 F: CCCATTCCTACTTCTCCCTCAA 75 NM_001303244

R: CCTCCTCTGTCTCCTTCATCTT

IL-6 F: TAGTCCTTCCTACCCCAATTTCC 76 NM_031168

R: TTGGTCCTTAGCCACTCCTTC

IFN-γ F: TCAGCAACAACATAAGCGTCAT 104 NM_008337

R: GACCTCAAACTTGGCAATACTCA

IL-10 F: GCTCTTACTGACTGGCATGAG 105 NM_010548

R: CGCAGCTCTAGGAGCATGTG

β-actin F: CGTTGACATCCGTAAAGACC 281 NM_007393

R: AACAGTCCGCCTAGAAGCAC

TNF-α, tumor necrosis factor alpha; IL, interleukin; IFN-γ , interferon gamma; F, forward;

R, reverse.

and biotinylated nucleotides and then treated with saline-
sodium citrate buffer, 6% hydrogen peroxide, streptavidin–HRP
conjugate, and DAB substrate solution. Finally, the slides were
counterstained in hematoxylin solution. Images were captured
using an Olympus microsystem (Tokyo, Japan) and the apoptotic
cells were quantified using ImageJ analysis software (National
Institute of Mental Health, Maryland, USA). Apoptosis index
was calculated according to the formula: Apoptosis index (%) =
[the number of apoptotic cells/(the number of apoptotic cells +
the number of intact cells)]× 100.

ELISA and Caspase-1 Activity Analyses
The spleen and liver samples (n = 5/group) were homogenized
with ice-cold sterile saline solution (1:9, w/v) and centrifuged
at 4000 ×g for 20min at 4◦C. Then, the collected supernatant
was used for ELISA and caspase-1 activity analyses. Levels
of interferon-γ (IFN-γ), interleukin-12 subunit p70 (IL-
12p70), tumor necrosis factor-α (TNF-α), IL-6, and IL-10 in
the spleen homogenates were colorimetrically determined
by enzyme-linked immunosorbent assay (ELISA) kits
(eBioscience, San Diego, CA) according to the manufacturer’s
instructions. Caspase-1 activity in liver homogenates were
determined by caspase-1 activity assay kit according to the
manufacturer’s instructions.

RT-qPCR Analysis
Total RNA (n = 5/group) was extracted from spleen tissue
using RNAiso Plus kit (TAKARA, Dalian, China). Reverse
transcription was performed using the PrimeScript II 1st
Strand cDNA Synthesis Kit (TAKARA) according to the
manufacturer’s recommendation. RT-qPCR was conducted using
SYBR PremixEx TaqII (TAKARA) by the StepOne real-time PCR
system (Applied Biosystems). All primer sequences for target
genes (including TNF-α, IL-12p40, IL-6, IFN-γ, and IL-10) are
listed in Table 1. Fold changes were calculated after normalizing
to the housekeeping gene β-actin using the 2−11Ct method.

Microbial Analysis
The cecal bacterial genomic DNA (n = 4/group) was extracted
using the TIANamp Stool DNA Kit (Tiangen, Beijing, China)
according to the manufacturer’s instructions, and the quality
of extracted DNA was checked by agarose gel electrophoresis
and spectrophotometric analysis. The V3–V4 region of the 16S
rRNA gene was amplified using the primer pair 341F/805R, and
sequencing was performed on MiSeq platform (Illumina Inc.,
San Diego, CA, USA). Sequences were filtered and clustered into
operational taxonomic unit (OTU) at 97% similarity by QIIME
software (version 1.9.1). Bacterial OTU representative sequences
were assigned to a taxonomic lineage by Ribosomal Database
Project (RDP) classifier based on the SILVA database (SILVA
132 release).

Alpha diversity (observed OTUs and PD_whole_tree) and
beta diversity were analyzed based on a subsample of a minimum
number of sequences (12,722) by QIIME software. Beta diversity
was displayed by principal coordinates analysis (PCoA) using
R software (https://www.r-project.org/). Analysis of similarities
(ANOSIM), permutational multivariate analysis of variance
(PERMANOVA), and multi response permutation procedure
(MRPP) were calculated using “vegan” package of R software
to determine significant differences in bacterial beta diversity
among the five groups (based on the Bray–Curtis distance
matrices) (32).

Statistical Analysis
Pearson correlation between phenotypic variables and the
relative abundance of microbial communities (phylum level)
were analyzed and visualized by the package “corrplot”
of R software. The co-occurrence networks of microbial
communities in different treatments were built based on
significant correlations (Spearman’s R > 0.6 and FDR-adjusted P
< 0.05) (33) and were visualized by GephiTM software (https://
gephi.org/). The topological properties of the co-occurrence
network were also calculated to describe the complex patterns
of the interrelationships by Gephi software. Comparison of the
intestinal bacteria among different treatments was analyzed and
visualized by statistical analysis of taxonomic and functional
profiles (STAMP) with a 95% confidence interval. The rest of
the data were evaluated by ANOVA, and the contrast of means
was performed by Tukey’s multiple range test, using SPSSTM

software (SPSS Inc., Chicago, IL, USA), and the graphs were
generated using Origin 8.5TM (OriginLab, Berkeley, CA, USA).
The statistical significance was set at P < 0.05.

RESULTS

GL Attenuates ST-Induced Jejunum Injury
H&E staining showed that compared with the Control group,
GL treatment had little effect on villous height (P > 0.05) and
jejunal structure, which exhibited integrated structure, ordered
jejunal villi, and completed gland (Figure 1). However, compared
with the Control group, ST infection significantly (P < 0.05)
decreased the villous height of jejunum. Compared with the ST
group, GL or GM significantly (P < 0.05) prevented jejunum
injury indicated by the higher villous height (Figure 1).
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FIGURE 1 | Effect of GL on jejunum morphology in ST-infected mice. Representative images of the jejunum stained with H&E. Results are presented as mean ± SD

(n = 5/group). Different lowercase letters indicate a significant difference (P < 0.05).

FIGURE 2 | GL alleviates ST-induced splenomegaly. (A) Graphical outline of the animal study. (B) Spleen index. Results are presented as mean ± SD (n = 10/group).

Different lowercase letters indicate a significant difference (P < 0.05).

GL Alleviates ST-Induced Splenomegaly
As shown in Figure 2, compared with the Control group, the
spleen index of mice was significantly (P < 0.05) increased
in the ST-infected group by 50.18%. GL or GM pretreatments
significantly (P <0.05) attenuated ST-induced splenomegaly
by 15.16 or 26.35%, while there was no significant difference
between the two pretreated groups (P > 0.05).

GL Attenuates ST-Induced Liver Injury
Compared with the Control group, GL treatment did not
cause hepatocytic apoptosis exhibiting completed structure,
hepatic lobule, and intact cell and unincreased apoptosis

index (P > 0.05) (Figures 3A,B). However, ST infection
caused hepatocytes with fragmented and pyknotic nuclei
(Figure 3A, H&E, black arrows indicted) and hepatocytic
apoptosis (Figure 3A, TUNEL, cells labeled as brown) and
significantly (P < 0.05) increased apoptosis index (Figure 3B),
which could be significantly (P < 0.05) alleviated by GL
or GM pretreatments (Figures 3A,B). Compared with the
Control group, GL treatment had no effect on caspase-
1 activity (P > 0.05), while ST infection significantly
(P < 0.05) increased the activity of caspase-1, which
could be significantly (P < 0.05) reversed by GL or GM
pretreatments (Figure 3C).
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FIGURE 3 | Effect of GL on liver morphology and hepatocytic apoptosis in ST-infected mice. (A) H&E staining and TUNEL assay (scale bar, 50µm). H&E: Black arrow

indicates apoptotic cells. TUNEL assay: Apoptotic cells were labeled as brown, and intact cells were labeled as blue. (B) Apoptosis index was calculated according to

the formula: Apoptosis index (%) = [the number of apoptotic cells/(the number of apoptotic cells + the number of intact cells)] × 100. (C) Caspase-1 activity in liver

was determined by caspase-1 activity assay kit. Results are presented as mean ± SD (n = 5/group). Different lowercase letters indicate a significant

difference (P < 0.05).

GL Alleviates ST-Induced Spleen and Liver
Inflammation
As shown in Figure 4, compared with the Control group,
GL treatment significantly (P < 0.05) increased the secretions
of IFN-γ, IL-12p70, IL-6, and IL-10 in spleen, whereas, it
had no (P > 0.05) effect on the protein level of TNF-α. ST
infection significantly (P < 0.05) increased the secretion of pro-
inflammatory cytokines (IFN-γ, IL-12p70, TNF-α, and IL-6) and
anti-inflammatory cytokine (IL-10) in spleen. As expected, GL or
GM pretreatments effectively (P < 0.05) decreased the increased
pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) induced
by ST infection, whereas, they increased anti-inflammatory
cytokine IL-10 secretion (P < 0.05).

Furthermore, the mRNA expression of cytokines in liver
showed that compared with the Control group, GL treatment
significantly (P < 0.05) upregulated the IL-12p40 mRNA
expression, whereas, it had no significant (P > 0.05) effect on
the expression of IFN-γ, TNF-α, IL-6, and IL-10 (Figure 5). ST
infection significantly (P < 0.05) increased the mRNA expression
of pro-inflammatory cytokines (IFN-γ, IL-12p40, TNF-α, and IL-
6) and anti-inflammatory cytokine (IL-10). Similarly, GL or GM
pretreatments also significantly (P < 0.05) decreased the mRNA
expression of IFN-γ, TNF-α, and IL-6 (Figure 5).

GL Modulates ST-Induced Intestinal
Dysbiosis
Alpha diversity analysis showed that compared with the
Control group, GL treatment significantly (P < 0.05)
increased the alpha diversities (including observed OTUs,
PD_whole_tree index, Chao1, and Ace) of the intestinal
microbiota, while ST infection had no (P > 0.05) effect on the
alpha diversities (Figure 6). Additionally, the alpha diversity
indices of the microbial communities in the GL + ST and
GM + ST treatment were significantly (P < 0.05) lower
than those of the ST group. PCoA of microbial communities
based on Bray–Curtis distance suggested variation of the
bacterial community structure with treatments (Figure 7).
Significant differences in beta diversity among treatments were
further confirmed by ANOSIM, PERMANOVA, and MRPP
analysis (Table 2), except for that between the Control and
GL treatments.

The differences of the intestinal bacterial compositions
among groups were also analyzed (Figure 8). The results
showed that GL treatment significantly (P < 0.05) increased
the relative abundance of Oscillibacter, Millionella, and
Bilophila, whereas, it decreased (P < 0.05) the relative
abundance of Verrucomicrobiales, Family XIII AD3011
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FIGURE 4 | Effect of GL on splenic cytokine production in ST-infected mice. The levels of pro-inflammatory cytokine (IFN-γ, IL-12p70, TNF-α, and IL-6) and

anti-inflammatory cytokine (IL-10) in spleen were determined by ELISA kit. Results are presented as mean ± SD (n = 5/group). Different lowercase letters indicate a

significant difference (P < 0.05).

FIGURE 5 | Effect of GL on mRNA expression of liver cytokines in ST-infected mice. The expression of pro-inflammatory cytokine (IFN-γ, IL-12p40, TNF-α, and IL-6)

and anti-inflammatory cytokine (IL-10) in liver was measured by RT-qPCR. Results are presented as mean ± SD (n = 5/group). Different lowercase letters indicate a

significant difference (P < 0.05).
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FIGURE 6 | Alpha diversity analysis of intestinal microbiota in different groups (n = 4/group). Different lowercase letters indicate a significant difference (P < 0.05).

FIGURE 7 | Principal coordinates analysis (PCoA) of microbial communities

among groups based on Bray–Curtis distance (n = 4/group).

group, Ruminiclostridium 9, and Lachnospiraceae UCG-
001. ST infection significantly (P < 0.05) increased the
relative abundance of Alphaproteobacteria, Verrucomicrobiales,

TABLE 2 | ANOSIM, PERMANOVA, and MRPP analysis of microbial diversity

among different treatments (n = 4/group).

ANOSIM ADONIS MRPP

R P R2 P A P

Treatment 0.653 0.001 0.765 0.001 0.451 0.001

Control vs. GL 0.000 0.586 0.202 0.129 0.034 0.181

Control vs. ST 0.688 0.028 0.457 0.045 0.204 0.034

ST vs. GL + ST 0.313 0.071 0.327 0.023 0.111 0.029

ST vs. GM + ST 1.000 0.032 0.848 0.043 0.577 0.023

GL + ST vs. GM + ST 1.000 0.028 0.722 0.024 0.450 0.021

DTU014, Prevotellaceae NK3B31 group, and Ruminococcaceae
UCG-013, whereas, it decreased (P < 0.05) the relative
abundance of Desulfovibrionaceae, Rikenellaceae, ASF356,
Rikenella, Ruminococcaceae UCG-009, Lachnospiraceae UCG-
010, Alistipes, Odoribacter, and Muribaculum. Moreover, GL
or GM pretreatments significantly (P < 0.05) decreased ST-
induced relative abundance of Verrucomicrobiales, DTU014,
Prevotellaceae NK3B31 group, and Ruminococcaceae UCG-013.
The relative abundances of Rikenellaceae and Alistipes were
significantly (P < 0.05) increased in the GM + ST group
compared with those in the ST group.

To determine the co-occurrence patterns of microbes in the
different groups, five networks were constructed based on the
genus and species levels (Figure 9 and Table 3). Network analysis
showed that the values of average degree and graph density
in the ST group were higher than those of the other groups
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A
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FIGURE 8 | Comparison of the intestinal bacteria among different treatments. (A) Control vs. GL, (B) Control vs. ST, (C) ST vs. GL + ST, (D) Control vs. GM + ST.

Confidence Interval was set at 95%.
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FIGURE 9 | Co-occurrence networks of microbial communities at genus level. A connection stands for a very strong (Spearman’s R > 0.6) and significant

(FDR-adjusted P < 0.05) correlation. The size of each node is proportional to the relative abundance; the thickness of each connection between two nodes (edge) is

proportional to the value of Spearman’s correlation coefficients. Red lines represent significant positive correlations and green lines denote negative correlations.

TABLE 3 | Topological properties of co-occurrence network.

Control GL ST GL + ST GM + ST

Nodes 120 115 125 114 79

Edges 303 298 428 366 146

Average degree (AD) 5.05 5.183 6.848 6.421 3.696

Graph density (GD) 0.042 0.045 0.055 0.054 0.047

Modularity (MD) 0.893 0.896 0.735 0.877 0.912

Positive correlation 71.95% 67.11% 56.54% 62.57% 64.38%

Negative correlation 28.05% 32.89% 43.46% 37.43% 35.62%

(Control, GL, GL + ST, and GM + ST). The modularity values
of the co-occurrence networks in all groups were higher than
0.4. The modularity value in the ST group was lower than those
in the other groups (Control, GL, GL + ST, and GM + ST).
Additionally, negative correlation of the network in the ST group
was more than those in the other groups (Control, GL, GL + ST,
and GM+ ST).

Pearson’s correlation coefficient was calculated to reveal
correlations between the phenotypic variables and the relative

abundance of microbial communities (phylum level) (Figure 10).
Correlation analysis showed that the relative abundances of
Verrucomicrobia, Cyanobacteria, Tenericutes, and Actinobacteria
were negatively correlated with the final body weight (P <

0.05 or P < 0.01). The relative abundances of Verrucomicrobia
and Cyanobacteria were positively correlated with the spleen
index, caspase-1 activity, and apoptosis index (P < 0.05 or P <

0.01), while the relative abundance of Tenericutes was positively
correlated with caspase-1 activity (P < 0.01) and apoptosis index
(P < 0.05).

DISCUSSION

Salmonellosis, caused by food-borne Salmonella, is largely
associated with tissue injury and intestinal dysbiosis, which
accounts for approximately 109.9 million cases and 264,300
deaths globally per year (34). With the strict prohibition
of AGP, there is an increasing interest in exploring dietary
natural extract products to reduce or prevent against zoonotic
enteric pathogen infection and food-borne contamination in
industrial livestock production. Previous studies found that
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FIGURE 10 | Pearson’s correlation analysis between phenotypic variables and the relative abundance of microbial communities (phylum level, n = 4/group). The color

and dot size represent the correlation coefficient within rows. *P < 0.05; **P < 0.01.

GL, an extract from licorice root, could ameliorate HFD-
mediated intestinal dysbiosis (20) and Streptococcus aureus-
induced acute lung injury (25) in murine models. Our previous
study found that GL could effectively ameliorate the body
weight loss of mice infected with S. Typhimurium infection
(30), which may be related to the beneficial effects of GL
in reducing the inflammation and tissue damage associated
with S. Typhimurium infection. Salmonella Typhimurium may
migrate to the liver and spleen via the blood circulatory
system due to the damage of the intestinal barrier to cause the
hepatosplenomegaly, which is characterized by cell apoptosis and
inflammatory infiltration (35, 36). In the present study, we found
that GL pretreatment significantly prevented S. Typhimurium-
induced jejunal injury indicated by the higher villous height
and splenomegaly indicated by the decreased the spleen index
of mice. Additionally, liver injury induced by S. Typhimurium
infection was also relieved by GL or GM pretreatments as
evidenced by the decreased hepatocytic apoptosis and the
reduced caspase-1 enzyme activity. GL pretreatment significantly
inhibited S. Typhimurium colonization in ileum and colon and
translocation to spleen and liver (30). In addition, GL enhanced
the phagocytosis and bactericidal capacity of BMDM by inducing
the JNK/NF-??B signaling pathway-mediated polarization of M1
macrophages that participate in polarized Th1 responses and act
as the primary line of defense against intracellular pathogens
(18, 37). These results indicate that the attenuated injury of
tissues in the GL + ST group may be related to the inhibition of
colonization and invasion of S. Typhimurium (30), polarization
of M1 macrophages (18), improved inflammation response, and
intestinal dysbacteriosis.

Inflammatory responses induced by pathogenic infection
is one of the most common symptoms of splenomegaly and
hepatomegaly (38). The expression of pro-inflammatory
cytokines (such as IFN-γ, IL-6, IL-12, and TNF-α) is necessary

for the initiation of the innate immune response for pathogen
clearance (39). However, excessive pro-inflammatory responses
could be extremely harmful to the host (40). Thus, excessive
pro-inflammatory responses are tightly balanced by anti-
inflammatory cytokines (such as IL-10 and TGF-β) and
associated negative feedback loops (41). The ameliorated
tissue injury of S. Typhimurium-infected mice in GL- or GM-
pretreated group mentioned above may be due to the attenuated
inflammatory response. Indeed, compared with the uninfected
group, S. Typhimurium infection significantly induced
inflammatory responses as evidenced by the upregulation
of pro-inflammatory cytokines (IFN-γ, IL-6, IL-12, and TNF-α)
and anti-inflammatory cytokine IL-10 in spleen and liver of
mice. Interestingly, GL pretreatment effectively decreased the
upregulation of pro-inflammatory cytokines (IFN-γ, TNF-α,
and IL-6) induced by ST infection in spleen and liver, and
increased secretion of anti-inflammatory cytokine IL-10 in
spleen. The results indicate that GL effectively alleviates S.
Typhimurium-induced inflammatory response by exerting an
anti-inflammatory activity.

Intestinal microbes play an important role in maintaining
gastrointestinal homeostasis. The intestinal beneficial and
commensal microbiota protect host against Salmonella
colonization via competition of adhesion site and nutrition
and secretion of metabolite (SCFAs, indole, and bacteriocin)
(42, 43). It is reported that S. Typhimurium infection is tightly
accompanied by intestinal dysbiosis (44, 45). Salmonella
outcompetes the resident microbes by inducing the host
intestinal immune system to secrete reactive oxygen species
(ROS) and antimicrobial peptides that are non-specific harmful
to the beneficial and commensal microbes (43). In this study,
we observed that Salmonella infection led to dysbiosis by
altering microbial beta diversity and composition. Salmonella
Typhimurium infection significantly increased the abundances
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of Alphaproteobacteria, Verrucomicrobiales, DTU014,
Prevotellaceae NK3B31 group, and Ruminococcaceae UCG-013,
whereas, it decreased the abundances of Desulfovibrionaceae,
Rikenellaceae, ASF356, Rikenella, Ruminococcaceae UCG-
009, Lachnospiraceae UCG-010, Alistipes, Odoribacter, and
Muribaculum. Knowledge about the altered bacteria caused by
S. Typhimurium infection remains unclear and needs further
investigation. Oral administration of GL significantly increased
microbial alpha diversity and altered microbial composition. GL
significantly increased the relative abundances of Oscillibacter,
Millionella, and Bilophila, whereas, it decreased the relative
abundances of Verrucomicrobiales, Family XIII AD3011
group, Ruminiclostridium 9, and Lachnospiraceae UCG-001.
Oscillibacter was proposed to exert an anti-inflammatory effect
(46). Administration of probiotics increased cecal Millionella
abundance of mice (47). Bilophila, a sulfate-reducing bacterium,
is associated with animal-based and fat-enriched diets (48).
The intestinal dysbiosis caused by Salmonella infection can
be reshaped by dietary or antibiotic interventions (31, 49).
In the present study, GL or GM pretreatments significantly
reshaped the intestinal microbes by reducing microbial alpha
diversity, modulating beta diversity, and microbial compositions.
The results indicate that the altered microbial diversities and
compositions induced by GL pretreatment may be related to
the attenuated injury of tissues and pro-inflammatory responses
induced by S. Typhimurium infection, although, more direct
evidences are needed.

Co-occurrence pattern analysis was performed to investigate
the microbial interactions, and we found that the values of
average degree and graph density of microbial network in
the S. Typhimurium infected group were higher than those
of the other groups (Control, GL, GL + ST, and GM +

ST), suggesting that S. Typhimurium infection increased the
connection among the microbes. All the modularity values of
the co-occurrence networks were higher than 0.4, suggesting
that these networks had a modular structure (50). The microbial
network in the S. Typhimurium-infected group was not easier
to form a “small world” as evidenced by lower modularity
value than those of the other groups (33). Additionally, negative
correlation of the microbial networks in the other groups was
less than that of the S. Typhimurium-infected group, which
could be interpreted as a reduction in competitive relationships
within intestinal microbes (51). Finally, the correlations between
phenotypic variables and microbial communities (alpha diversity
and phylum level) were further investigated. The final body
weight was obtained from our previous study (30) and
reanalyzed with the relative abundance of bacterial phyla.
Pearson’s correlation analysis showed that the final body weight
of mice was negatively correlated with cecal Verrucomicrobia,
Cyanobacteria, Tenericutes, and Actinobacteria. Verrucomicrobia
and Cyanobacteria were positively correlated with the spleen
index, caspase-1 activity, and apoptosis index. Tenericutes
was positively correlated with caspase-1 activity and apoptosis
index. The above results indicate that the relieved negative
effect caused by S. Typhimurium infection may be related to
the altered microbial diversities and compositions induced by
GL pretreatment.

CONCLUSION

Collectively, the present study demonstrates that GL exerts
the anti-inflammatory and tissue-protective properties to
attenuate ST infection, as indicated by alleviating ST-induced
splenomegaly, hepatocytic apoptosis, injury of jejunum and
liver, and inflammatory response of liver and spleen in mice.
Moreover, we found that GL modulates ST-induced intestinal
dysbacteriosis. These findings might give a new perspective into
the function of GL in regulating the host immune and intestinal
microbiota to defense against pathogen infection. However,
further studies about the role of the intestinal microbiota
in the progress of GL-mediated anti-Salmonella infection
are needed.

ELISA KIT INFORMATION

According to the manufacturer’s instructions (eBioscience, San
Diego, CA), the detailed information about the used ELISA kits
is IFN-γ (Assay range: 15.6–1,000 pg/ml; Analytical sensitivity:
1.7 pg/ml; Intra- and Inter-assay CV: <6.8 and<7.4%), IL-12p70
(Assay range: 15.6–1,000 pg/ml; Analytical sensitivity: 10.0
pg/ml; Intra- and Inter-assay CV: 8.3 and 11.0%), TNF-α
(Assay range: 31.3–2000 pg/ml; Analytical sensitivity: 3.7 pg/ml;
Intra- and Inter-assay CV: 6.5 and 5.7%), IL-6 (Assay range:
31.3–2,000 pg/ml; Analytical sensitivity: 6.5 pg/ml; Intra- and
Inter-assay CV: 5 and 8.9%), and IL-10 (Assay range: 39.1–2,500
pg/ml; Analytical sensitivity: 5.28 pg/ml; Intra- and Inter-assay
CV: 6.7 and 10.1%).
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