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Abstract

Transcript variation has important implications for organismal function in health and disease. Most transcriptome
studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of
transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript
variants, or RNA–DNA differences (RDDs). Such variation has been understudied, in part because its detection is
obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base sub-
stitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed
the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error
rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and
RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with
STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the
RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated
with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have
important implications for medical genomics, as STR allelic variation is associated with>40 diseases. STR nonallelic
transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to
evaluate the probability of disease-associated transcripts arising due to RDD.

Key words: microsatellites, tandem repeats, RNA sequencing, RNA–DNA differences, transcription errors, reverse
transcription errors, sequencing errors, error correction model.

Introduction
Transcription transfers genetic information from DNA to
RNA, and multiple types of transcripts (e.g., transfer RNA,
ribosomal RNA, messenger RNA, etc.) have critical functions
in the cell. Therefore, the modifications or errors that occur in
transcripts can lead to phenotypic variation among tissues
and individuals. RNA–DNA differences (RDDs) are created by
specific enzymatic machinery leading to RNA editing (Bass
2002; Schaub and Keller 2002), or arise as RNA polymerase
errors during transcription (Blank et al. 1986; Ninio 1991;
Strathern et al. 2012, 2013; Knippa and Peterson 2013;
Zhou et al. 2013). RDDs increase the variability of transcripts
and proteins. Note that RDDs can contribute to inherited
variation in the sense that the enzymatic machinery respon-
sible for RNA editing is genetically encoded (Gu et al. 2016).

Several loci undergo RNA editing consistently in a large num-
ber of species (Corneille et al. 2000; Ibrahim et al. 2008;
Danecek et al. 2012). In comparison with mutations, RDDs
have lower evolutionary cost because an organism with RDDs
can achieve higher phenotypic plasticity while retaining wild-
type alleles (Gommans et al. 2009). As RDDs can enhance the
adaptability of an organism to the environment, some level of
RDDs is expected to be beneficial (Garrett and Rosenthal
2012a, 2012b; Rieder et al. 2015). However, a recent large-
scale comparative genomics study found that, although
some sites undergoing RNA editing might be under selective
constraint (Xu and Zhang 2015), the majority of them do not
have the characteristics of beneficial modifications (Xu and
Zhang 2014).
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With the availability of next-generation sequencing (NGS)
data from whole genomes and transcriptomes of many dif-
ferent species, RDDs have been extensively studied, particu-
larly with respect to base-substitution RNA editing (Li et al.
2009, 2011; Bahn et al. 2012; Bass et al. 2012; Pachter 2012;
Park et al. 2012; Peng et al. 2012; Ramaswami et al. 2012,
2013). Moreover, RDDs arising from RNA editing were dem-
onstrated in biochemical experiments. For example, adeno-
sine deaminases can transform adenosine into inosine (which
is read as guanine by a sequencing instrument) (Bass 2002;
Schaub and Keller 2002), and apolipoprotein B mRNA editing
enzymes can change cytosine into uracil (Wedekind et al.
2003). Other types of base-substitution RDDs have also
been reported (Li et al. 2011). However, the extent to which
technical and methodological errors contribute to RDDs is
unclear (Bass et al. 2012; Pachter 2012). Some studies identi-
fied an excess of RDD sites toward the termini of NGS reads
(Li et al. 2011; Kleinman and Majewski 2012; Pickrell et al.
2012), a location known to have high sequencing error rates
(Kleinman and Majewski 2012; Pickrell et al. 2012), or in du-
plicated regions of the genome (Li et al. 2011; Ramaswami
et al. 2012), in which RDDs can arise from a misalignment of
paralogs (Schrider et al. 2011; Kleinman and Majewski 2012;
Lin et al. 2012). Besides RNA editing, transcription errors lead-
ing to base-substitution RDDs were also studied and were
found to exhibit similar rates across different types of tran-
scripts and growth states of bacteria (Traverse and Ochman
2016).

RDDs in the form of insertions and deletions, particularly
at short tandem repeats (STRs), have been less studied than
base-substitution RDDs. Indeed, RNA editing that expands or
contracts STRs is yet to be demonstrated. Transcription errors
at STRs have been shown both in vitro and in vivo (Strathern
et al. 2012, 2013; Zhou et al. 2013). Although the frequency
with which such errors occur has not been evaluated quan-
titatively, possessing some fraction of malfunctioning RNA is
expected to have a smaller effect on the fitness of an organism
in comparison with malfunctioning DNA, which could affect
the cells and body throughout a lifetime and is transmitted to
daughter cells in the case of a germ-line mutation.

STRs, which after a certain number of repeats are also
called microsatellites (Kelkar et al. 2010; Ananda et al.
2013), exhibit high mutation rates due to polymerase slippage
(Drake et al. 1998; Ellegren 2000; Vigouroux et al. 2002;
Ellegren 2004; Baptiste et al. 2013, 2015). They are particularly
important for understanding disease susceptibility, as muta-
tions at STRs are implicated in over 40 neurological disorders
(Boby et al. 2005; Pearson et al. 2005; Castel et al. 2010), and,
more than 30% of human genes contain one or more STRs in
their exonic regions (Legendre et al. 2007). All classes of long
STRs have been found to be overrepresented in disease-
associated genes (Madsen et al. 2008), and some relatively
short STRs have also been implicated in disease. For example,
a (CGC)n repeat number change from n¼ 11 to n¼ 12 in the
PABPN1 gene can cause Oculopharyngeal Muscular
Dystrophy (Brais 1998). As RDDs at a locus with a wild-type
allele can result in a transcript that mimics a transcript from a
disease-causing allele, STR RDDs may have pathological

consequences. Thus, estimating RDD rates at STRs is critical
for understanding the fidelity of transcription, and for esti-
mating the probability of disease occurrence as a conse-
quence of transcript alteration. If the estimated STR RDD
rates are high, then this observation can significantly change
the paradigm of medical genomics in the diagnostics of dis-
eases caused by STR mutations.

Detecting RDDs at STRs is challenging for a number of
reasons. First, conventional short-read mapping approaches
favor alignments to the reference allele (Gymrek et al. 2012;
Fungtammasan et al. 2015) and, as a result, the transcription
error rates can be underestimated. Second, short-read se-
quencing at STRs is error-prone (Ross et al. 2013;
Fungtammasan et al. 2015) and sequencing errors can be
misinterpreted as transcription errors. These two limitations
can be alleviated with the use of the STR-FM pipeline, which
incorporates flank-based mapping and utilizes previously es-
timated STR sequencing error rates (Fungtammasan et al.
2015). Third, the profile and rates of reverse transcription
(RT) errors at STRs are unknown. If these rates are high,
then they can greatly affect the estimation of RDDs. Thus,
it is crucial to consider RT errors in STR RDD studies. Fourth,
STRs are highly mutable and exhibit substantial somatic and
inter-individual genetic variation (O’Huallachain et al. 2012).
This somatic variation can lead to STR length variation
among tissues. Therefore, to accurately detect STR RDDs, it
is necessary to study DNA and RNA from the same tissue of
the same individual.

Recently, the barcoded RNA sequencing technique (Gout
et al. 2013) was proposed as an approach for studying RDD
and RT errors. In this technique, each RNA molecule is tagged
with a unique barcode, which makes it possible to trace all
subsequent cDNA molecules and sequencing reads. In com-
bination with several rounds of cDNA library construction
from the same set of barcoded RNA, the consensus cDNA
and RNA sequences can be generated, and the RDD and RT
error rates can be estimated based on the proportion of in-
congruent reads.

Although barcoded RNA sequencing is a powerful tech-
nique for estimating RDD and RT error rates, an alternative
approach would still be useful. On the one hand, there is a
need to estimate these rates from the existing data sets not
processed with RNA barcoding. Such data sets are highly
abundant and will allow the reliable estimation of RT error
and RDD rates at STRs that require ample data for their
analysis because of the flank-based mapping (Gymrek et al.
2012; Fungtammasan et al. 2015). The existing barcoded RNA
data sets are currently of limited scale (Gout et al. 2013), and
generating larger data sets is expensive. On the other hand,
batch effects are inevitable, and different library preparation
procedures can greatly affect RT error rates (Quail et al. 2012).
A novel method to estimate RDD and RT error rates that is
compatible with the standard method of RNA sequencing
would be indispensable for correcting for batch effects.

To estimate RT error and RDD rates at STRs, we developed
a maximum-likelihood estimator (MLE) that utilizes sequenc-
ing data from replicate cDNA libraries. Our method can be
employed with conventional RNA sequencing procedures,
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and as such represents an attractive alternative to barcoded
RNA sequencing. Using our method, we addressed three
questions. First, what are the levels of RDDs and of RT errors
at STRs, and do they exhibit contraction or expansion biases?
To address this question, we generated DNA and RNA se-
quencing data from the same tissue of the same individual to
eliminate the effects of somatic genetic variation, and simul-
taneously estimated RT error and RDD rates at STRs. Second,
what are the precision and accuracy of our estimates? To
assess these properties, we validated the estimated rates
with a replicated trial and compared them with those ob-
tained from the published barcoded RNA sequencing data
(Gout et al. 2013). Finally, what are the RT error and RDD
rates compared with the germ-line mutation rates and se-
quencing error rates at STRs? To evaluate these levels, we
contrasted the RT error and RDD rates estimated here with
published germ-line mutation rates and sequencing error
rates (Sun et al. 2012; Fungtammasan et al. 2015).

Results

Experimental Design
To study the RT error and RDD rates at STRs, we designed the
following experiment (fig. 1). We isolated genomic DNA and
total RNA from the same sample (orangutan testis of a single
individual). The genomic DNA was sequenced using two dif-
ferent library preparation protocols—PCR-containing and
PCR-free (see Materials and Methods section for details)—
allowing us to test for genotype congruence between the two
libraries (see “Genotyping STRs Using the DNA Sequencing
Data” in Results). Total RNA was divided into two aliquots
that were used to construct two separate RNA-seq libraries.
Each of these two libraries was sequenced in two separate
batches. Such an experiment, ideally, should allow one to
differentiate between RDDs (such differences from the
DNA sequence should be present in both RNA-seq libraries)
and RT errors (such variants should be present in only one of
the two RNA-seq libraries but in both sequencing batches).
However, empirical data frequently have missing information
at some loci due to limited sampling, which can distort re-
sults. For example, if a deviant STR variant is not sampled in
one cDNA library, then an RT error can be incorrectly inferred
instead of an RDD. For instance, if one-tenth of RNA mole-
cules at a locus was modified from (A)6 to (A)7 due to RDD,
then we should expect to observe (A)7 in both replicated

cDNA libraries sequenced. However, if (A)7 was not sampled
in one library, then we will observe (A)7 only in the other
library, thereby misclassifying this situation as an RT error.
Therefore, we developed a full likelihood method that permits
sampling errors in the likelihood calculation to avoid error
misclassifications.

The rationale behind the method is in the correlation of
variants observed between cDNA libraries. RDDs lead to cor-
related shifts in the distribution of variants between cDNA
libraries, whereas RT errors lead to independent shifts be-
tween these distributions. For example, suppose at a locus
the repeat number in the DNA is D, and we observe variants
with repeat lengths D � 1 at high frequency in one cDNA
library and Dþ 1 at high frequency in another cDNA library.
Such a scenario is likely to have occurred due to substantial
RT errors at this locus, as a large portion of the distribution is
different between the libraries. However, now suppose that
we instead observe variants with repeat length Dþ 1 at high
frequency in both cDNA libraries. Such a scenario could have
occurred through either RDDs or RT errors, though this prob-
ability is lower for RT errors than for RDDs, with the uncer-
tainty accounted for within our likelihood method. Finally,
suppose that we instead observe variants with repeat length
Dþ 2 at high frequency in both cDNA libraries. Such a sce-
nario is likely to have occurred due to both substantial RDDs
and RT errors, because at each step the stepwise mutation
model only permits a change in the STR repeat length by one
unit. By taking the likelihood across independent loci, we are
accumulating evidence for the prevalence of each scenario,
and are also directly accounting for the uncertainty by model-
ing the unobserved states (RNA and actual cDNA).

Genotyping STRs Using the DNA Sequencing Data
Sequencing of the PCR-containing and PCR-free genomic
DNA libraries resulted in the estimated genome-wide mean
sequencing depth of 6.7� (267 million reads) and 1.8� (73
million reads), respectively. We employed our previously pub-
lished software, STR-FM (Fungtammasan et al. 2015), to lo-
cate STRs in DNA sequencing reads. Namely, STRs with at
least five mono-, three di-, three tri-, and three tetranucleotide
repeats were detected in reads from each sequenced library
(see Materials and Methods). After mapping such reads to
the orangutan reference genome, we utilized published se-
quencing error rates (Fungtammasan et al. 2015) to genotype
STRs at each locus. To estimate genotyping accuracy, we used
loci for which we could derive genotypes from both libraries.
For them, the genotypes from the PCR-free library were com-
pared with those from the PCR-containing library. This com-
parison resulted in a 99.86% genotype concordance
(supplementary table S1, Supplementary Material online), a
higher concordance than that achieved in previous studies
(Gymrek et al. 2012; Fungtammasan et al. 2015). After remov-
ing discordant genotypes, we merged the data from the two
libraries and limited our analysis to homozygous loci (supple
mentary table S1, Supplementary Material online) to reduce
complexity of MLE estimation (also see “Samples, DNA
Sequencing, and Genotyping” in Materials and Methods).
They constitute 99.5% of our data. After additional filteringFIG. 1. A schematic representation of the experimental design.
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(see “Samples, DNA Sequencing, and Genotyping” in
Materials and Methods), we retained 5,582,009 mono-,
2,768,451 di-, 309,546 tri-, and 78,454 tetranucleotide STR-
containing loci.

STR Profiling of RNA
For the RNA-seq data, we generated a total of 56.6, 55.3, 39.7,
and 38.9 million paired-end reads for library 1 batch A, library
2 batch A, library 1 batch B, and library 2 batch B, respectively.
These sequencing depths are higher than those recom-
mended by the best practice guidelines for gene expression
studies of species with a reference genome (ENCODE 2011;
Conesa et al. 2016). Though our MLE does not require that
sequencing depth is balanced among cDNA libraries, we
chose to balance the sequencing depths to avoid any unfore-
seen biases. To balance the depths, we downsampled library 1
batch A to 55.3 million reads and library 1 batch B to 38.9
million reads to have the equivalent number of reads be-
tween the two libraries sequenced in the same batch.

To profile STRs in the RNA-seq data, we followed the same
procedure as that used for DNA data. Briefly, STR-containing
RNA-seq reads were mapped to the reference genome, and
reads with uniquely mapping flanking sequences (20 bp up-
stream and 20 bp downstream from an STR) were retained.
This procedure resulted in length profiles (a collection of
lengths from the reads mapping to this locus) for each STR
locus. Each RNA-seq library and each sequencing batch was
analyzed separately (fig. 1).

We focused our analysis on STRs with the (A/T)n motif
((A/U)n for RNA). We call this motif (A)n for brevity. Most
analyses were performed in the range of (A)5–(A)10 because
of the high abundance of STRs with this repeat number (sup
plementary table S2, Supplementary Material online)
(Subramanian et al. 2003), and due to their high propensity
to polymerase slippage (Ellegren 2000, 2004; Ananda et al.
2011; Fungtammasan et al. 2015). Other motifs are discussed
in the “Estimation of STR RDD and RT Error Rates Using MLE”
subsection of Results. Overall, in the RNA-seq data, the num-
ber of loci with the (A)n motif decreased as the STR length
increased (supplementary fig. S6, Supplementary Material on-
line), which is expected based on the distribution of STRs in
the genome (Denver et al. 2004; Fungtammasan et al. 2015).
For each STR length, the (A)n-containing loci with low ex-
pression level (proxied by the number of RNA-seq reads per
locus) were considerably more prevalent than the loci with
high expression level (supplementary fig. S2, Supplementary
Material online). Thus, most (A)n-containing loci in our data
set were short and had low expression levels.

An MLE to Estimate RT Error and RDD Parameters
To estimate the RT error and RDD rates and their expansion
probabilities, we developed an MLE that jointly infers this set
of parameters by maximizing the likelihood of observing a
given set of sequenced STR length profiles. Although the
model includes expansion probabilities for RT errors and
for RDDs, the corresponding contraction probabilities can
be computed as one minus the expansion probability in
each case. The model requires one DNA data set and a

minimum of two replicated RNA-seq data sets from the
same sample. For the observed read data that originated
from the same STR motif and length (e.g., (A)7), our method
calculates the likelihood of the data being generated from all
possible combinations of RNA forms and all possible combi-
nations of cDNA forms given the set of four parameters (RT
error rate, RT expansion probability, RDD rate, and RDD ex-
pansion probability). By identifying the parameter set that
results in the highest likelihood value, our model makes use
of the replicated cDNA library structure (fig. 1) to enhance
our ability to distinguish between RT errors and RDDs.

Performance of MLE
To evaluate the ability of the MLE to infer the four parameters
of interest, we conducted simulations using several sets of
model parameters, numbers of loci, and bin sizes. The bin size
is the number of sampled molecules at the RNA or cDNA
stages, which determines the set of possible distinct STR
length distributions for RNA and cDNA. This bin size affects
the sampling process of each cDNA library from an RNA
sample and each RNA sample from the DNA sample. Small
bin sizes will yield a high sampling error, leading to distortions
in the distribution of RNA or cDNA STR forms relative to the
distribution expected under the stepwise mutation model.
The results of the simulations indicate that the MLE can es-
timate all four parameters with a high level of precision and
accuracy (supplementary figs. S3, S4, and S7–S10,
Supplementary Material online), provided certain conditions
are met. First, the chosen bin size M must be close to the
number of reads per locus of the RNA-seq data, proxying
gene expression level (supplementary figs. S3, S4, and S7–
S10, Supplementary Material online). Although the optimal
combination between bin size and the number of RNA-seq
reads per locus varies among parameter sets (supplementary
figs. S3, S4, and S7–S10, Supplementary Material online), the
MLE performs reasonably well when the number of RNA-seq
reads per locus is between M and 2M. For example, the esti-
mated RT error and RDD rates for a bin size of 2 are the most
accurate when the simulated data were generated using three
molecules of RNA and three molecules of cDNA (supplemen
tary figs. S3 and S4, Supplementary Material online). Second,
the number of loci must be at least the inverse of the error
rates. The higher the number of loci, the more accurate the
estimates. When both conditions are met, the true parame-
ters are bound by 95% of the estimated parameters, and the
median estimates deviate from the true parameters by less
than 10% (supplementary figs. S3, S4, and S7–S10,
Supplementary Material online).

Lumping MLE
Because the optimal bin size for MLE increases with the num-
ber of RNA-seq reads per locus (expression level), it is com-
putationally challenging to estimate RT error and RDD rates
from loci expressed at high levels. Therefore, we developed an
approximation to the MLE, which we call the lumping MLE,
that substantially reduces the number of calculations in the
likelihood (supplementary text S2, Supplementary Material
online) as compared with that in our original, or “full, MLE”
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(see “MLE Formulation” in Materials and Methods). We val-
idated this method using loci expressed at low levels and
compared its results with those obtained using the full
MLE. The parameter estimates and their corresponding
95% confidence intervals of the same data sets are strikingly
similar between the full and lumping MLE methods (supple
mentary table S3, Supplementary Material online). For exam-
ple, at a bin size of 5, both the full MLE and the lumping MLE
can estimate RDD rates for the data with ten RNA-seq reads
per locus with less than 5% error. Because of a similar perfor-
mance but applicability to a larger range of expression levels
than for the full MLE, we will use the lumping MLE to esti-
mate RT error and RDD rates for STR loci with six or more
RNA-seq reads per locus.

Estimation of the STR RT Error and RDD Rates
Using MLE
Using the full MLE and the bin size of 2, we first estimated the
RT error and RDD rates, as well as RT error and RDD expan-
sion probabilities, at (A)n-containing loci expressed at low
levels (i.e., with three to five RNA-seq reads per locus). The
exceptionally low RT error rate for repeat (A)5 was most likely
due to our detection threshold for mononucleotide STRs—
we only collected such STRs starting from five repeats and
thus could not observe RT errors (and RDDs) that changed
(A)5 to (A)4. As the repeat number increased from 6 to 9 bp,
the RT error rates increased exponentially from 2.1� 10�4 to
7.7 � 10�2, (fig. 2A; supplementary table S4, Supplementary
Material online). Our estimates of RT error rates had narrow
95% confidence intervals and were highly similar between the
two sequencing batches (blue and red lines in fig. 2A). The RT
errors from (A)6 to (A)9 exhibited an expansion bias (fig. 2D).
The expansion bias decreased as the repeat number increased
(fig. 2D and supplementary table S4, Supplementary Material
online); the 95% confidence intervals also widened because
the number of loci evaluated decreased (second column in
supplementary table S4, Supplementary Material online).
Similar to the pattern observed for RT errors, RDD rates in-
creased with STR length (table 1). However, the RDD rates
were substantially lower than the RT error rates (table 1 and
supplementary table S4, Supplementary Material online, fig.
2A). For example, the average RT error rate between the two
batches at (A)8 was 3.7 � 10�2, whereas the average RDD
rate at the same repeat number was 4.2 � 10�3. Because
RDD rates were rather low, we could not estimate them for
several repeat numbers (as we lacked sufficient data to detect
such low rates), and the 95% confidence intervals for those
that we could estimate were wide (supplementary table S4,
Supplementary Material online). The same is true for our
estimates of RDD expansion probability (supplementary table
S4, Supplementary Material online).

To confirm that our estimates were not affected by data
selection or sequencing artifacts at loci expressed at low levels,
we repeated the analysis with different bin sizes and ranges of
expression level. We applied the lumping MLE to the data
with the numbers of RNA-seq reads ranging from 6 to 16
(supplementary table S5, Supplementary Material online) us-
ing the bin size of 5 (fig. 2B and E), and from 49 to 102 using

the bin size of 40 (fig. 2C and F). This range of RNA-seq read
numbers does not overlap with the one used for the bin size
of 2 (see “Estimation of RDD and RT Errors Using the MLE” in
Materials and Methods) and thus provides an opportunity to
estimate the parameters independently, but for the same
sequencing batches. The resulting estimates of RT error rates
and of RT error expansion probability were strikingly similar
to those calculated based on the smaller number of RNA-seq
reads and the bin size of 2 (fig. 2A–F). The RDD rates esti-
mated using three different bin sizes all increase with repeat
number; however, their more detailed comparison is chal-
lenging because of wide confidence intervals (table 1).

Our MLE can be applied to more than two replicated RNA
sequencing data sets (see supplementary text S3,
Supplementary Material online, for equation). For example,
we simultaneously analyzed both cDNA libraries 1 and 2 for
both batches A and B (four sequencing data sets) with lump-
ing MLE with bin size of 5. The estimated RT error and RDD
rates (supplementary fig. S11, Supplementary Material online)
are similar to those obtained after analyzing batches A and B
separately (fig. 2).

We also attempted to estimate RT error and RDD rates for
other STR motifs. However, the numbers of loci were insuffi-
cient to estimate these rates accurately (supplementary table
S2, Supplementary Material online). For example, the next
most abundant group of STRs in our data after the (A)n-con-
taining STRs were (AC)n- and (AG)n-containing STRs (supple
mentary table S2, Supplementary Material online). Among
them, we identified only 5,142 loci with three to five RNA-
seq reads per locus in batch A (supplementary table S6,
Supplementary Material online). For such loci (combined for
these two motifs), we only detected one deviant STR form at
the consensus repeat number of 4 (one locus contained two
reads of (AG)3), and inferred RDD rate of 0 and RT error rate of
5.84� 10�4 (95% confidence interval from< 1.0� 10�9 to 1.
76� 10�3) (supplementary table S7, Supplementary Material
online). The RT error expansion probability was inferred to be
0, indicating a contraction bias; however, the 95% confidence
interval was wide (supplementary table S7, Supplementary
Material online). We conclude that we presently lack a suffi-
cient amount of data to accurately evaluate the RT error and
RDD rates at STRs others than (A)n.

RDD and RT Error Rates Estimation Using Barcoded
RNA Sequencing
To validate the MLE, we analyzed publicly available C. elegans
barcoded RNA data (Gout et al. 2013) and evaluated RT error
and RDD rates with an independent method, that is, bar-
coded RNA sequencing. According to this method, RNA mol-
ecules are tagged, allowing a direct inference of RDD rates by
tracing cDNA molecules and sequencing reads that origi-
nated from the same RNA molecule (i.e., from the same
“family”; supplementary fig. S5, Supplementary Material on-
line). In the barcoded RNA data, using the modified STR-FM
(Fungtammasan et al. 2015), we detected a total of 9,074,690
STR-containing cDNA reads (5,574,030 mono-, 2,455,300 di-,
21,018,578 tri-, and 26,782 tetranucleotide containing cDNA
reads), based on which we inferred a total of 949,826
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STR-containing cDNA molecules (supplementary table S8,
Supplementary Material online). Because most of the cDNA
families were present in just one of the three RNA-seq librar-
ies (Gout et al. 2013), we could infer STR lengths in only 7,922
STR-containing RNA molecules (with 4,596 mono-, 1,376 di-,
1,948 tri-, and two tetranucleotides; supplementary table S9,
Supplementary Material online). No errors were detected
among the reads for each RNA molecule allowing us to esti-
mate only maximal RDD rate as one divided by the number of
loci for a specific motif (e.g., 1/3,549 for (A)5; supplementary
table S9, Supplementary Material online).

For this data set, the barcoded RNA was also reverse tran-
scribed (and sequenced) independently three times, allowing
one to infer RT error rates. We found that all RT errors oc-
curred at the (A)n-containing motif and that the RT error
rates increased with increasing repeat number (supplemen
tary table S10, Supplementary Material online). The 12
erroneous reads stemmed from RNA families with only two
reads, and so we could not immediately determine whether
these were expansion or contraction errors. However,
based on the consensus repeat numbers of all reads mapped
to these loci, we concluded that the RT errors had a
preference toward expansions (eight expansions vs. four con-
tractions; supplementary table S10, Supplementary Material
online).

Notably, the point estimates of RT error rates were remark-
ably concordant between the C. elegans data set (where they
were inferred with the RNA barcoded approach) and orang-
utan data set (where they were inferred with the MLE ap-
proach; fig. 3), even though the C. elegans data were more
limited in scale and thus the estimates from it had wide
confidence intervals. This concordance is particularly excep-
tional given that the rates were inferred by two different
methods and from two independent data sets generated in
two different laboratories (Gout et al. 2013). Indeed, the RT
error rates estimated from the orangutan data using MLE and
from the C. elegans data using barcoded RNA increased with
increasing repeat numbers and their confidence intervals
overlapped (fig. 3). The maximal RDD rate for C. elegans (sup
plementary table S9, Supplementary Material online) appears
to be higher than but overall is comparable to the RDD es-
timates for orangutan (table 1 and supplementary table S4,
Supplementary Material online). Because we can only esti-
mate the maximal RDD rate from the C. elegans data (as one
over the number of studied loci), we are not in a position to
compare it with the RDD rate obtained from the orangutan
data rigorously.

To additionally test the performance of our MLE, we ap-
plied the lumping MLE to the C. elegans data (Gout et al.
2013) after removing the barcodes, and estimated the RT

FIG. 2. A comparison of RT error rates and RT expansion probabilities as a function of repeat number for motif (A)n between sequencing batches A
(blue) and B (red). (A) RT error rates for the bin size of 2; (B) RT error rates for the bin size of 5; (C) RT error rates for the bin size of 40; (D) RT
expansion probabilities for the bin sizes of 2; (E) RT expansion probabilities for the bin size of 5; (F) RT expansion probabilities for the bin size of 40.
Repeat numbers between 5 and 10 were chosen due to their high abundance. Median values across 100 empirical bootstrap replicates (boot-
strapped across loci) are plotted with open circles, whereas point estimates are plotted with stars. Solid lines connect the median bootstrap
estimates. The 95% confidence intervals were calculated from the 100 bootstraps replicates. Each estimate was based on five sets of random initial
parameters to minimize the possibility of reaching local maxima, and the set of parameters that had the maximal likelihood was taken as the
estimate for a given bootstrap replicate. The estimations for the bin size of 2 were performed using full MLE, whereas the estimations for the bin size
of 5 and 40 were performed using lumping MLE. The number of loci analyzed for each bin size is listed in supplementary tables S4 and S5,
Supplementary Material online.
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error rates for this data set (supplementary fig. S12,
Supplementary Material online). The resulting RT error rate
estimates for the C. elegans data set were strikingly similar
between the lumping MLE and barcoded RNA methods. This
validates the use of the MLE method for reliable RT error rate
estimation.

Discussion

Application of Estimated RT Error Rates
Knowing RT error rates can be instrumental in functional
genomics analysis where RNA-sequencing data are one of
the most important sources of information. RNA-
sequencing data have been used to study differences in
gene expression among tissues (GTEx Consortium et al.
2015), between samples of healthy and diseased individuals,
and among organisms inhabiting various environments
(Wang et al. 2009; Wilhelm and Landry 2009; Oshlack et al.
2010; Garber et al. 2011; Ozsolak and Milos 2011; McCarthy
et al. 2012). Such data can also be utilized to study biological
pathways (Feng et al. 2012; Khatri et al. 2012; Trapnell et al.
2013), metabolic flux (Gowen and Fong 2010; Lee et al. 2012),
and individual health (Chen et al. 2012). Without estimating
RT error rates, it is challenging to quantify expression level for
such genes accurately. For example, if the RT error rate is high,
then a large number of STRs in cDNA will vary in length,
thereby reducing their mappability to the reference genome,
which can lead to an underestimation of expression levels of
genes containing STRs. Removing STR-containing regions can
alleviate this problem, but will lead to an underestimation of
true variation at the level of RNA.T
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FIG. 3. A comparison of RT error rates estimated using the full MLE
(orangutan data) versus barcoded RNA sequencing (Caenorhabditis
elegans data). The 95% confidence intervals for the rates estimated
with the full MLE were generated from 100 empirical bootstrap rep-
licates (bootstrapped across loci), whereas the 95% confidence inter-
vals for the barcoded RNA sequencing were generated from 1,000
bootstrap replicates of inferred cDNA molecules with at least two
cDNA molecules in that family. The lower bounds of the RT error rate
confidence intervals for the barcoded RNA sequencing are zero and
thus are outside the plotting area.
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Applications of RT error rates are not limited to functional
genomics. STRs have been widely used as markers in popu-
lation genomics due to their high polymorphism level
(Wright and Bentzen 1994; Gupta and Varshney 2000;
Sunnucks 2000; Miah et al. 2013; Abdul-Muneer 2014).
According to a recent study (Gayral et al. 2013), RNA-
sequencing can be applied to study population genomics of
nonmodel organisms without a reference genome (De Wit
et al. 2012; Gayral et al. 2013). (For model organisms with
reference genomes, exome sequencing data are usually used
as an alternative [DaRe et al. 2013; Guo et al. 2013; Samuels
et al. 2013; Griffin et al. 2014]). It is crucial, however, to take
into account such errors in order to distinguish genetic var-
iation from technical errors.

Relative Rates and Patterns of RDD, RT Errors, and
Mutations at STRs
The RDD rates obtained here provide the first opportunity to
understand the propensity of STRs to increase in repeat num-
ber not only at the level of DNA but also at the level of RNA.
For (A)n-containing STRs, we found that the RDD and RT
error rates increase exponentially with repeat number—a
pattern similar to that previously identified for germ-line mu-
tations (Sun et al. 2012; Fungtammasan et al. 2015) and se-
quencing errors (Ross et al. 2013; Fungtammasan et al. 2015).
This similarity can be explained by the increased propensity of
polymerase slippage with an increase in the STR repeat num-
ber. Moreover, we inferred the RT error rates to be higher
than the RDD rates, which were higher than the sequencing
error rates (with the minimal Phred sequencing quality of 20),
which, in turn, were higher than the germ-line mutation rates
for STRs (fig. 4) (Kong et al. 2012; Gout et al. 2013;
Fungtammasan et al. 2015). For mononucleotides with repeat
numbers of 6 and 7, these differences were approximately 1
order of magnitude in size. For SNPs, the RT error rate (Gout
et al. 2013) is also higher than the RDD rate (Gout et al. 2013;
Traverse and Ochman 2016). Critically, the level of technical
errors is higher than the level of biological errors. Therefore,
accurate inferences of germ-line mutations must consider

sequencing errors, and accurate estimations of RDD rates
must consider RT errors.

Regarding technical errors, the most commonly used re-
verse transcriptase in molecular biology applications is the
Moloney murine leukemia virus RT (MMLV-RT). The
MMLV-RT enzyme has an in vitro error rate of 1/29,000 nu-
cleotides synthesized using an RNA template, and 1/37,000
nucleotides using a DNA template, as determined using a
genetic reporter assay (Ji and Loeb 1992). Although the ma-
jority of MMLV-RT errors are base substitutions, a mutational
hotspot of one-base indels within an (A)4 sequence has been
reported (Barrioluengo et al. 2011). Many protocols for gen-
erating cDNA, including the Illumina TruSeq RNA library
preparation, use a modified version of MMLV-RT known as
Superscript II reverse transcriptase. The Superscript II RT has
improved thermostability but reduced fidelity, with an error
rate of 1/15,000 nucleotides synthesized using a DNA tem-
plate (Azeri and Hogrefe 2007). These reported MMLV-RT
error rates are of similar magnitude to error rates measured
for the Taq polymerase (�1/10,000–1/50,000) for
proofreading-proficient thermostable polymerases, measured
using the same in vitro assay (Eckert and Kunkel 1990, 1991).
Therefore, cDNA synthesis and sequencing error rates are not
expected to vary substantially, unless a thermostable DNA
polymerase with a highly efficient proofreading activity is
used. Importantly, the extent to which the accuracy of
MMLV-RT, Taq or proofreading-proficient thermostable po-
lymerases will vary when copying longer STRs remains to be
determined.

The Reliability of the Estimates
The RT error rates we obtained were congruent between two
independent methods—MLE and barcoded RNA
sequencing—and between two independent data sets—the
one obtained from an orangutan sample and the one ob-
tained from the C. elegans sample—produced in two separate
laboratories. This concordance suggests that our estimates
are reliable.

We followed several procedures to control for technical
errors that could distort RT error and RDD rates. We used the
same tissue sample for both DNA and RNA sequencing to
prevent somatic variation among different tissues. We geno-
typed the sample with two separate library preparation tech-
niques, and tested for genotype concordance to ensure the
correct genotype. We utilized a flank-based mapping ap-
proach in the read-mapping process to avoid bias in the
STR-length profiling (Gymrek et al. 2012; Fungtammasan
et al. 2015). This flank-based mapping approach also removed
STRs adjacent to the read termini, which were shown to
exhibit high sequencing error rates (Kleinman and
Majewski 2012; Pickrell et al. 2012). Finally, we included scaf-
folds not mapped to particular chromosomes, and removed
potentially duplicated regions that were missing from the
reference genome. These procedures have been demon-
strated to reduce false genetic variation observed in RNA
sequencing data (Peng et al. 2012), as paralogous variants
could be mistaken for STR variation when an incomplete

FIG. 4. A comparison among STR RT error rates (this study), STR RDD
rates (this study), STR germ-line mutation rates (Fungtammasan et al.
2015), STR sequencing error rates (Fungtammasan et al. 2015), base-
substitution germ-line mutation rates (Kong et al. 2012), and base-
substitution RDD rates (Gout et al. 2013 [lower line], Traverse &
Ochman 2016 [upper line]).
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reference genome is used (Ho et al. 2011; Bass et al. 2012; Peng
et al. 2012).

Several factors may still affect our RT error and RDD rate
estimates. First, the RNA expression levels at the same locus
vary even among cells from the same tissue. Such variation is
stochastic (Elowitz et al. 2002; Ozbudak et al. 2002; Raser and
O’Shea 2005; Kaufmann and van Oudenaarden 2007), and
our measurement represents the mean expression level
among cells in a tissue. The variation in expression level
among cells in tissues could lead to improper matching be-
tween the bin size of the MLE and the expression level, which
might bias our error rate estimates. One solution to alleviate
this limitation in the future would be to implement single-cell
RNA sequencing or the G&T-seq (simultaneous DNA- and
RNA-sequencing at a single-cell level) (Saliba et al. 2014;
Macaulay et al. 2015), which would enable us to estimate
the number of RNA molecules expressed from a specific lo-
cus. Note that in order to use single-cell RNA sequencing
data, it is necessary for the sampling from RNA to cDNA
and from cDNA to sequencing reads to be modeled as mul-
tivariate hypergeometric sampling. This is necessary because
there would be only a small number of actual RNA and cDNA
molecules, such that the sampling process cannot be a proxy
for sampling with replacement as in multinomial sampling.
Despite the caveat of uncertainty in expression level, our es-
timations of RT error levels agree well with those estimated
using barcoded RNA sequencing, which does not consider
expression level information. This comparison provides an
independent validation of our approach as well as points to
the credibility of the estimates obtained.

Second, the MLE possibly reported a suboptimal solution if
local maxima exist. However, we do not believe our estimates
were distorted by this potential limitation because 1) we
considered five sets of initial parameters for each bootstrap
procedure of the loci and the initial parameters for the RDD
and RT error rates were randomized on a log scale to accom-
modate error rates that have a large search space; 2) in most
cases, all five of the initial parameters converged to the same
solution, which suggests that the landscape of our maximum-
likelihood surface may not contain many local maxima; and
3) despite the independent analysis of error rates by STR
length, the estimated error rates increased exponentially
with the STR length, as expected based on the known STR
sequencing error and mutation patterns (Sun et al. 2012; Ross
et al. 2013; Fungtammasan et al. 2015). Also, the estimation
from loci with different numbers of RNA-seq reads and se-
quencing batches yielded similar results (fig. 2A–F).

Conclusions and Future Directions
In this study, we provide the first model-based method to
estimate the rates of RT errors and RDDs at STRs from RNA
sequencing of replicated cDNA libraries. This method can be
applied to existing RNA data sets with replicated cDNA li-
braries and a known genotype (or existing DNA-sequencing
data). The merit of our approach is in that it does not require
significant changes to be made to the established, general
RNA-sequencing procedures. Also, our approach allows one
to utilize a large number of STR loci throughout the genome,

thus reducing the contextual bias due to sequencing compo-
sition around STRs. Therefore, the MLE provides a suitable
alternative for estimating batched RT errors to the barcoded
RNA sequencing approach (Gout et al. 2013). The currently
available barcoded RNA-sequencing data are insufficient in
scale to detect RDD events given the requirement that the
entire STR and sufficient flanking regions need to be embed-
ded in the reads.

Future studies should evaluate RDD error rates at STRs
with more precision. Unlike RT error rates, which depend
on an enzyme used for RT during library preparation, RDD
rates might differ among species as they depend on species-
specific biology. Moreover, both RT error and RDD rates
should be evaluated for STRs others than (A)n from a larger
data set. The MLE method we developed can be used for this
purpose.

A minority of repeats in our data set are heterozygous
(supplementary table S1, Supplementary Material online),
therefore including them would not have substantially
changed our estimates, while analyzing them is computation-
ally challenging for our model. The increased genetic poly-
morphism of STRs at heterozygous loci has been controversial
both in terms of observations and in terms of mechanistic
explanations (Amos 2016). Nevertheless, it will be interesting
to analyze RDDs at heterozygous STR loci in future studies.

Another important area for future studies is the impact of
RDDs on disease-causing STRs. As RDDs can modify tran-
scripts and protein products, they could alter the phenotype
and disease manifestation. Interestingly, the classification of
repeat numbers for disease-causing STRs into normal, pre-mu-
tation, and disease-causing relies on the correlation between
genotype and phenotype. It is possible that, although a geno-
type has a non-disease repeat number, an RDD can create a
disease-causing repeat in the RNA originating from the same
locus. Future analyses of RDD error rates at disease-causing
STRs are needed to establish the validity of such a mechanism.

Materials and Methods

Samples, DNA Sequencing, and Genotyping
Using the DNeasy Blood and Tissue Kit (Qiagen), we ex-
tracted genomic DNA from testis of a Bornean orangutan
(Pongo pygmaeus pygmaeus; ID 1991-0051, Smithsonian
Institute). Polymerase chain reaction (PCR)-containing and
PCR-free libraries with insert size of 250–280 bp were con-
structed with the TruSeq DNA LT Sample Preparation Kit
(Illumina) and the TruSeq DNA PCR-Free LT Sample
Preparation Kit (Illumina), respectively, following the manu-
facturer’s protocol. The libraries were sequenced with the
150 bp � 150 bp paired-end reads on HiSeq2500 (Illumina).

The STR length arrays were profiled with STR-FM
(Fungtammasan et al. 2015). Briefly, STRs with at least five
mono-, three di-, three tri-, and three tetranucleotide repeats
were detected in sequencing reads. We retained the reads
possessing flanking regions of at least 20 bp on each side of
an STR and having Phred quality score of at least 20 in the
STR and their flanking regions. Flanking regions of STRs were
mapped to the Sumatran orangutan (ponAbe2) reference
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genome with Burrows-Wheeler Aligner (BWA) (Li and Durbin
2009). We retained STRs for which both 20-bp flanking se-
quences mapped uniquely to the reference genome se-
quence. Random genomic scaffolds, that is, the ones that
have not been assigned to specific chromosomes, were also
used in mapping to avoid false unique mapping of some
reads. STRs located closer than 10 bp to other STRs of the
same class (e.g., mononucleotides) were discarded to mini-
mize the effect of nearby STR loci on error estimation.
Sequencing reads from PCR-containing and PCR-free libraries
were processed separately.

For each library, the identified STR loci were genotyped
using STR-FM and utilizing previously estimated sequencing
error rates (Fungtammasan et al. 2015). In this step, we re-
tained loci with a minimum of one order of magnitude dif-
ference in the probability of being the most likely
homozygote versus heterozygote because such loci have a
high likelihood to be genotyped correctly (Fungtammasan
et al. 2015). The STR genotypes from both PCR-containing
and PCR-free libraries were then compared. Discordant geno-
types were removed, and the remaining genotyped loci from
libraries were then combined to represent the STR length of
DNA at each locus (supplementary table S1, Supplementary
Material online). We limited the subsequent analysis to ho-
mozygous loci because 1) they represent the majority of our
data (supplementary table S1, Supplementary Material on-
line) and 2) heterozygous loci can display biased expression
between the two alleles (Borel et al. 2015; Leung et al. 2015;
Perez et al. 2015). Additionally, the use of one allele per locus
simplified the model used in our MLE by reducing the num-
ber of expected STR RNA forms and their derived error forms
(see “MLE Formulation” in Materials and Methods). Finally,
the homologous regions between human (assembly version
hg19) and orangutan (assembly version ponAbe2) genomes
that had a high score in human self-alignment assembly ver-
sion GRCh38 (http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/vsSelf/hg38.hg38.net.gz, last accessed July 16, 2016)
were removed. Conversion between hg19 and GRCh38 was
performed with the lift-over tool in Galaxy (Giardine et al.
2005; Blankenberg et al. 2010, 2014; Goecks et al. 2010). This
removal was performed to exclude the regions in the orang-
utan genome that might be paralogous and might have been
collapsed in the reference assembly.

Replicated cDNA Construction, Sequencing, and
Profiling
Total RNA was extracted from the same Bornean orangutan
testis sample that was used for genomic DNA sequencing,
with the RNeasy Mini kit protocol (Qiagen). The extracted
RNA was divided into two aliquots that were utilized to gen-
erate two separate sequencing libraries (libraries 1 and 2)
using the TruSeq RNA sample preparation kit (Illumina)
with the stranded protocol (fig. 1). Each of the two resulting
libraries was sequenced twice in two separate batches (A and
B) with 150 bp� 150 bp paired-end reads on the HiSeq 2500
(Illumina).

To profile STRs in RNA, we followed the same procedure as
that employed for DNA, except that we did not run the

genotyping model. BWA (Li and Durbin 2009) was also em-
ployed for mapping the RNA-seq reads in our analysis to 1)
minimize differences between the current procedure and the
procedure used to estimate RNA sequencing errors in previ-
ous studies that also used BWA (e.g., Gout et al. 2013), 2)
guard against biases that may result from applying a different
algorithm for mapping RNA than for DNA, and 3) be con-
servative, as our preliminary results demonstrated that most
STR loci that can be uniquely mapped with BWA can also be
mapped with Tophat (Trapnell et al. 2009; Kim et al. 2013)
and STAR (Dobin et al. 2013), whereas the opposite was not
true (supplementary fig. S1, Supplementary Material online).
Each RNA-seq library and each sequencing batch was ana-
lyzed separately (fig. 1). As a result, we conducted identical
analyses on four different library–batch combinations.

MLE Formulation
We formulated the MLE to infer four parameters—RDD rate,
RDD expansion probability, RT error rate, and RT expansion
probability—that maximize the probability of observed data
(maximum-likelihood estimation of the parameters) in STRs
obtained from RNA-seq. The model includes an expansion
probability for RDD, pRDD, and the contraction probability
can be computed as 1 – pRDD. The same is true for an ex-
pansion probability for RT errors, pRT. The model used in the
MLE is based on the following key assumptions:

(1) All loci are independent.
(2) The error rates and the expansion probabilities

for both RT errors and RDDs are identical for
all DNA loci with the same STR motif and repeat
number.

(3) Both RT errors and RDDs follow the stepwise mutation
model (Kimura and Ohta 1978; Valdes et al. 1993; Di
Rienzo et al. 1998; Sainudiin et al. 2004) that only allows
expansion or contraction by one repeat unit after a
single round of each process (i.e., transcription or RT).
Thus, starting from DNA (e.g., (AG)6), there are three
possible STR forms for RNA (e.g., (AG)5, (AG)6, and
(AG)7), and five possible STR forms for cDNA (e.g.,
(AG)4, (AG)5, (AG)6, (AG)7, and (AG)8). We denote
the number of possible STR forms at a given stage
(RNA or cDNA) as K.

(4) The model uses a fixed bin size (denoted by M), which
represents the number of sampled RNA or cDNA mol-
ecules after transcription or RT, respectively. This finite
bin size M permits alterations in the expected distri-
bution of STR forms in a given stage (RNA or cDNA) by
conditioning on the number of STRs of a given form
passed on from the previous stage. For example, sup-
pose that at the RNA stage the relative proportions of
STR forms for four, five, and six repeats are 0.1, 0.5, and
0.4, respectively. Based on the previous point, five pos-
sible cDNA forms are expected—those with three,
four, five, six, and seven repeats. If we sample only a
small number M of STRs to be passed from the RNA to
the cDNA stage, then it is likely that the STR form with
three repeats will not be represented in the cDNA
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stage. However, if M is sufficiently large, then the prob-
ability of observing all possible forms at the cDNA stage
is high. This sampling permits different cDNA libraries
for the same RNA sample to be correlated, as the STR
forms observed in these libraries are conditional on the
RNA STR forms that they share, and allows us to take
advantage of the structure of our experimental design
(fig. 1). We use this bin size to generate all possible
compositions of STR length for RNA and cDNA, de-
pending on expression level proxied by the number of
RNA-seq reads (see below). For example, for DNA with
an STR of (AG)6 and the bin size of 2, there are six
possible compositions of RNA forms (i.e., (AG)5(AG)5,
(AG)5(AG)6, (AG)5(AG)7, (AG)6(AG)6, (AG)6(AG)7,
and (AG)7(AG)7) and 15 possible compositions of
cDNA forms (i.e., (AG)4(AG)4, (AG)4(AG)5, . . . , and
(AG)8(AG)8). Considering all possible compositions al-
lows us to calculate the probability of changes
from DNA to RNA, and from RNA to cDNA, which
permits the derivation of the distribution of STR forms
at the RNA and the cDNA stages.

With this formulation, the likelihood function at locus j can
be represented as

L h; data jð Þ ¼
X

c1

X

c2

P data jjc1; c2ð Þ
X

r

P c1; c2jr; hð ÞPðrjhÞ;

where h is a vector of model parameters; c1 and c2 are vec-
tors of the numbers of STRs at each STR form in cDNA
libraries 1 and 2, respectively; and r is a vector of the numbers
of STRs at the RNA stage. The log likelihood of the data at all L
loci is then

‘ðh; data 1; 2; . . . ; LÞ ¼
XL

j¼ 1

log½Lðh; data jÞ�:

Note that for a bin size of M at a stage with K possible STR
forms, the number of compositions is MþK� 1 choose K�
1, which grows quickly as the bin size M increases. See supple
mentary text S1, Supplementary Material online, for the der-
ivation of our MLE. Note that the bin size incorporates ex-
pression level into the model. In practical terms, and
assuming RNA sequencing was performed at high depth to
capture the vast majority of unique transcripts, expression
level is proxied by the number of RNA-seq reads for each
locus.

We calculated the probability that the observed data are
generated from all possible distributions of RNA and cDNA
STR lengths for a given number of sampled molecules M under
the stepwise mutation model (assumptions 3 and 4), to ensure
that the estimation is not distorted by an incorrect inference of
RNA and cDNA STR profiles. In the transition from cDNA to
sequencing reads, we incorporated the sequencing error rates
estimated by Fungtammasan et al. (2015).

The MLE was implemented in R (R Development Core
Team). We chose the L-BFGS-B (Limited-memory Broyden–
Fletcher–Goldfarb–Shanno with box constraints) method

(Byrd et al. 1995; Malouf 2002) from the “optim” function
for parameter searching. The box constraints (parameter lim-
its) were set from 10�9 to 0.5 for the RT error and RDD rates,
and from 0 to 1 for the expansion probabilities. We used the
lower bound of 10�9 as it is several orders of magnitude lower
than known STR germ-line mutation rates (10�5–10�2; Sun
et al. 2012; Fungtammasan et al. 2015). The upper bound of
0.5 assumes that half of the reads are erroneous. For the
expansion probability, a value of 0 indicates all contractions,
0.5 indicates an equal ratio between expansions and contrac-
tions, and 1 indicates all expansions.

Lumping MLE
Due to the computationally intensive nature of the algorithm
when bin size M is large, we also considered a reduced form of
the model that lumps the two cDNA forms with smallest
repeat number into one class and the two forms with the
largest repeat number into another class. That is, in our orig-
inal model there are five cDNA forms with repeat numbers
D � 2, D � 1, D, Dþ 1, and Dþ 2, where D is the DNA STR
length. In this modified approach, we lump forms with length
D � 2 and D � 1 into a single form (D � 1)lump and lump
forms Dþ 1 and Dþ 2 into a single form (Dþ 1)lump. This
formulation reduces the complexity of the calculation as we
now have K¼ 3 forms instead of K¼ 5 forms at the cDNA
stage, and this substantially reduces the number of compo-
sitions needed to be evaluated from Mþ 5� 1 choose 5� 1
to Mþ 3� 1 choose 3� 1, thereby permitting consideration
of larger bin sizes for a fixed amount of computing time. The
probability of state (D � 1)lump is the sum of the probabil-
ities of states D � 2 and D � 1, and the probability of state
(Dþ 1)lump is the sum of the probabilities of states Dþ 1
and Dþ 2. As an example, if the genotype is (A)8, then based
on the stepwise mutation model there are three possible
forms of RNA ((A)7, (A)8, (A)9) and five possible forms of
cDNA ((A)6, (A)7, (A)8, (A)9, (A)10). We lump the probabilities
of (A)6 and (A)7 and those of (A)9 with (A)10 to reduce the
complexity of the calculation. We will refer to this algorithm
as “lumping MLE.” Its full description can be found in supple
mentary text S2, Supplementary Material online. The full and
lumping MLE were implemented in R and the resulting soft-
ware, STR-RNA-MLE, can be downloaded from https://
github.com/Arkarachai/str-rna-mle.

MLE Method Evaluation
To test the ability of our method to estimate its four param-
eters, we performed simulations to generate random STR
length profiles based on fixed RT error and RDD rates (0.01
or 0.05) and expansion probabilities (0.3, 0.7, or 0.8), the num-
ber of studied loci (10, 100, 1,000, or 10,000), two replicated
cDNA libraries, and the number of RNA and cDNA molecules
(ranging from 2 to 17 molecules). We then employed our
MLE to infer the parameters for each simulation set using bin
sizes of 2, 3, and 5. We generated 100 replicate data sets for a
given parameter set, and estimated the parameters for each
replicate. The 95% confidence interval for each estimated
parameter was calculated from the average of the second
and third lowest inferred values to obtain the lower bound,
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and the average of the second and third highest inferred
values to obtain the upper bound, from a set of 100 replicates.
We also tested the lumping MLE by comparing the estimated
parameters from the data with the number of RNA and
cDNA molecules set at 6 and 10, RT error and RDD rates
set at 0.1, expansion probabilities of RT errors and RDDs of
0.8, 1,000 loci, and two cDNA libraries using both our stan-
dard MLE model and lumping MLE model at a bin size equal
to 5.

Estimation of RDD and RT Errors Using the MLE from
the Orangutan Data
For each batch of RNA sequencing, the RNA profiling data of
replicated libraries were paired with the DNA genotypes at
the same loci. Each batch of replicated sequencing data was
analyzed separately. We selected subsets of data with an ap-
propriate number of RNA-seq reads to analyze specific bin
sizes. Initially, we chose a bin size of 2 and analyzed a subset of
data that had a mean number of RNA-seq reads of three to
five reads per locus, requiring a minimum of two reads. The
loci within this range of RNA-seq reads were chosen because
1) 65% of the STR-containing loci in our data set have low
expression level (with less than five reads per locus; supple
mentary fig. S2, Supplementary Material online) and 2) their
estimated rates of RT errors and RDDs are less than 2-fold
different from the expected values based on our simulations
(supplementary figs. S3 and S4, Supplementary Material on-
line). To ensure that our estimated rates are valid for the loci
with higher expression levels, we used the lumping MLE
model to analyze 1) a subset of data with 6–16 RNA-seq
reads per locus, using a bin size of 5, and 2) a subset of
data with 49–102 RNA-seq reads per locus, using a bin size
of 40. For each sequencing batch, each STR length, and each
binning of the data, we generated 100 bootstrap replicates in
which the loci had the same DNA length and STR length
profiles as in our RNA sequencing data from the two repli-
cated cDNA libraries. We analyzed each bootstrap replicate
with the MLE starting with five random initial sets of the four
parameters of interest, and chose the parameter estimates
with the highest likelihood. We started with five initial pa-
rameter sets to avoid hitting local maxima. We then calcu-
lated the 95% confidence interval for each of the four model
parameters by taking the average of the second and third
lowest inferred values as the lowered bound, and the average
of the second and third highest values as the upper bound,
with parameters estimated at each of 100 bootstrap
replicates.

Analysis of the Barcoded mRNA Sequencing Data
To verify the RT error and RDD rates estimated with the MLE,
we evaluated them using the publicly available barcoded RNA
sequencing data (Gout et al. 2013) to which we applied the
same stringent filtering parameters (see “Replicated cDNA
Construction, Sequencing, and Profiling” in Materials and
Methods). The published RNA sequencing data are derived
from three different strains of Caenorhabditis elegans (Gout
et al. 2013). In this data set, the RNA extracted from each
strain was barcoded and then reverse transcribed sequentially

three times, and each product of RT was sequenced sepa-
rately. Based on the barcodes, we traced all sequencing reads
that belonged to the same original RNA molecule (referred to
as “family”) based on the shared barcode and shared starting
genomic mapping coordinate (supplementary fig. S5,
Supplementary Material online). We mapped flanking regions
of the STR-containing sequencing reads to the C. elegans ge-
nome assembly version Ce10 using BWA (Li and Durbin
2009), and applied a modified STR-FM pipeline
(Fungtammasan et al. 2015). To reduce sequencing errors,
at least two STR-containing reads from the same family
were used to infer one STR-containing molecule at the
cDNA step for each library (note that if two reads mapping
to the same locus had STR lengths of 10 and 11, we did not
infer cDNA state for this locus in this library). Ideally, these
two STR-containing reads should come from overlapping
paired-end reads (Gout et al. 2013). However, due to our
requirement that STR and 20 bp of their flanking regions
upstream and downstream must be located within the reads,
we found only six pairs of reads that came from overlapping
paired-end reads. Therefore, to infer STR length at a cDNA
molecule, instead of using overlapping paired-end reads, we
considered all reads from the same family in a library, even
though some of them might have constituted PCR duplicates.
Next, to infer STR lengths at RNA molecules and RT errors, we
utilized cDNA STRs from the same family present in at least
two cDNA libraries. Finally, to infer RDDs, we collected all
inferred RNA molecules that mapped to the same STR locus.

The rates of RT errors of RDDs were calculated from the
proportion of reads with incongruent STR length per locus.
For example, if in a cDNA library STR reads with lengths of 10,
10, and 11 bp belonged to the same family, then we inferred
the consensus RNA to have an STR length of 10 bp, two
cDNA reads with no RT errors, and one cDNA read with a
1-bp expansion RT error. If we observed only two cDNA reads
that differed from each other, then we used the consensus
length (the unambiguous majority length of STR reads map-
ping to that locus regardless of the family or library), to po-
larize the direction of an error. For example, if two cDNA
reads in a certain family had an STR with lengths of 10 and
11 bp at the same locus, and the most common cDNA STR
length for all the families at this STR locus was 10 bp, then we
inferred that the STR of 11 bp was erroneous. Our error esti-
mation did not include any cDNA families or RNA molecules
for which we could infer only one cDNA molecule, or one
RNA molecule, at a certain locus, as errors could not be in-
ferred in such cases.

As an alternative method of comparison, the RNA se-
quencing STR length profile of C. elegans (Gout et al. 2013)
was also used to estimate the RDD and RT error rates inferred
using MLE without utilizing the barcode information. For
each of the three C. elegans strains, the two (out of three)
replicated cDNA libraries with the highest sequencing depths
were chosen, and the data were processed exactly as for the
orangutan data above (with M¼ 2). To infer cDNA mole-
cules, we employed the sequencing error rates from
Fungtammasan et al. (2015) instead of using the information
from barcoded RNA sequencing reads.
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