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Summary points

• Efforts to control Plasmodium vivax malaria have been less successful than for Plas-
modiumAU : PerCSE; iftwodifferentspeciessharethesamegenus; thegenusofthesecondspeciesshouldstillbespelledoutinfullatfirstmentiontoavoidpossibleconfusion:Therefore; “P:falciparum”hasbeenspelledoutinitsfirstmentioninSummarypoints:falciparum, resulting in higher prevalence of P. vivax malaria in most coen-

demic regions. One of the key differences between the 2 species is the ability of P. vivax
to form hypnozoites causing relapses which facilitate transmission. Preventing P. vivax
relapses is key for the elimination of P. vivax malaria.

• The widescale use of the radical cure to clear hypnozoites has been underutilized in

most endemic countries. Two breakthroughs have increased the likelihood that the radi-

cal cure will be rolled out in P. vivax endemic regions: To clear hypnozoites, primaquine

can be administered in short, high-dose regimens or a single dose of the recently

licensed tafenoquine is administered. Novel technologies allow measurement of glu-

cose-6-phosphate dehydrogenase (G6PD) activity at the point of care. Identifying

patients with low G6PD activity, not eligible for these novel regimens, is a precondition

for their safe administration.

• Novel approaches to P. vivax elimination such as mass drug administrations of antima-

larial drugs including 8-aminoquinolines require considerable resources and carry

safety risks.

• A safe and protective P. vivax vaccine would be an asset in the elimination of P. vivax
malaria but is unlikely to be available in the near future.

• Case management that includes a radical cure is currently the most promising approach to

P. vivax elimination. New regimens for radical cure and the possibility to minimise the risk

of haemolysis through novel G6PD tests bring up operational challenges, but if deployed

wisely could have sufficient impact to eliminate if not eradicate P. vivax malaria.

IntroductionAU : Anabbreviationslisthasbeencompiledforthoseusedinthetext:Pleaseverifythatallentriesarecorrect:AU : Pleaseverifyifallheadinglevelsarerepresentedcorrectly:
The impact of malaria control interventions has been more pronounced on Plasmodium falcip-
arum than PlasmodiumAU : PerCSE; iftwodifferentspeciessharethesamegenus; thegenusofthesecondspeciesshouldstillbespelledoutinfullatfirstmentiontoavoidpossibleconfusion:Therefore; “P:vivax”hasbeenspelledoutinitsfirstmentioninthemaintext:vivax. In many places where P. falciparum and P. vivax malaria
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coexist, the P. vivax burden is now larger than the burden caused by P. falciparum [1]. Follow-

ing the implementation of antimalarial measures along the Thai-Myanmar border, all malarias

decreased, but the effect was greater on P. falciparum than P. vivax malaria (Fig 1) [2]. Simi-

larly, successful control of falciparum malaria concomitant with delays in the reduction of P.

vivax has been reported in Cambodia (Fig 2), Papua New Guinea, Costa Rica, and Brazil [3–6].

Globally, the number of P. vivax malaria cases nevertheless decreased from 25 million in 2000

to 14 million in 2017, and the number of countries reporting locally acquired cases of P. vivax
decreased from 58 in 2000 to 49 in 2013 [1,7].

P. vivax is more difficult to control than P. falciparum due to its ability to form dormant

liver forms (hypnozoites). Even after clearing P. vivax schizonts from the bloodstream,

infected individuals may experience relapses due to activation of hypnozoites and become

sources of transmission. In tropical regions, 4 of 5 P. vivax patients have early relapses occur-

ring every 3 to 4 weeks. With increasing distance from the equator, the relapse risk decreases

and the latency period increases, which can be as long as 8 to 13 months closer to the arctic cir-

cle [8–10]. Control and elimination of P. vivax requires treatment of all life-stages of P. vivax
(radical cure). Hypnozoites can only be cleared by 8-aminoquinolines, a class of drugs which

can trigger haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals

[11].

Across the Asia-Pacific region and the Horn of Africa between 66% and 95% of acute epi-

sodes are estimated to be caused by relapse [12,13]. The radical cure can prevent relapse and is

therefore expected to play a pivotal part in the elimination efforts [14]. This paper discusses

current evidence and challenges for the radical cure in the context of malaria elimination and

progress of alternative strategies.

Radical cure: Current policy and new approaches

Current World Health Organization (WHO) guidelines recommend coadministration of schi-

zonticidal treatment with a low-dose primaquine (PQ) regimen (total dose 3.5 mg/kg at 0.25

mg/kg/day) for temperate strains and a high-dose PQ course (total dose 7 mg/kg at 0.5 mg/kg/

day) for tropical, frequent-relapsing strains administered over 14 days. Routine testing of

G6PD deficiency (G6PDd) prior to drug administration is recommended by global policies;

however, it is rarely available in poorly resourced communities [11]. To mitigate the risk of

haemolysis, many countries in which the higher dose is recommended, opt for the low-dose

course of PQ (Table 1).

When supervised, this low-dose regimen has an efficacy greater than 70% at 6 months in

some, but not all, locations [15,16]. However, it can be challenging to ensure adherence to a

14-day treatment regimen, especially since initial symptoms in most cases resolve within 2

Fig 1. Number of P. falciparum and P. vivax cases detected between 1995 to 2016 in the refugee and migrant

clinics in the Shoklo Maria Research Unit (SMRU), Thailand. P. falciparum is indicated in blue and P. vivax in

red. A range of interventions (Figure provided by Cindy Chu [2]).

https://doi.org/10.1371/journal.pmed.1003494.g001
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days after start of effective schizontocidal treatment. Adherence is critical for radical cure,

since efficacy is related to the total dose of PQ administered [15,17]. While efficacy is impor-

tant, effectiveness which takes into account adherence and the limitations outside of carefully

controlled trials is the key measure needed to inform malaria elimination strategies. A pro-

spective analysis in 48,000 patients with P. vivax presenting to a district hospital in Papua

Indonesia, demonstrated that an unsupervised 14-day PQ regimen prevented recurrent parasi-

taemia within 1 year in only 10% of the participants [18]. This low effectiveness is likely due to

poor adherence to the 14-day treatment course [19,20]. Direct comparisons of supervised ver-

sus unsupervised treatment support this notion [21–23]. In a recent study in Ethiopia, patients

treated with unsupervised 14-day PQ were at significantly greater risk of recurrent P. vivax
parasitaemia within 6 months of follow-up than those in which treatment was semi-supervised

[21]. Similar findings were reported in Costa Rica where PQ treatment is supervised by trained

personnel [14,24]. Elimination is possible with optimal use of current tools as demonstrated by

Sri Lanka which has recently been declared malaria free [25].

Higher PQ doses and shorter treatment regimens

Although a high-dose PQ regimen is recommended for some areas, there is limited evidence

in which locations and host populations it might be most beneficial and where a low-dose regi-

men might provide adequate cure [26,27]. To date, only 5 published studies have compared

low- versus high-dose PQ directly, and findings are limited due to small numbers and short

follow-up periods [28–32]; further work is ongoing [33]. A recent multicentre study investi-

gated whether a high-dose PQ regimen administered over 7 days (1 mg/kg/day) was non-infe-

rior to the same total dose given as a 14-day regimen (0.5 mg/kg/day). A total of 2,388 patients

Fig 2. Monthly malaria cases reported by Cambodian National Malaria Control Programme CNMCP information system between 2017–2019

[3]. The number of rapid diagnostic tests (RDTs) increased while the number of diagnosed cases dropped.

https://doi.org/10.1371/journal.pmed.1003494.g002
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Table 1. Overview of current policy recommendation by country based on WHO 2018 World Malaria report.

Current treatment recommendation for P.

vivax
Recommendation for Directly Observed

Treatment Strategy

G6PD testing

Country (WHO region) Drug and PQ dosage Year of policy

adoption

DOTs for PQ

recommended

Year of policy

adoption

G6PD testing

recommended

Year of policy

adoption

Africa

Ethiopia CQ+PQ1 2018 No No

Eritrea AS+AQ+PQ (14 d 0.25

mg/kg)

2007 Yes 2016 No

Madagascar PQ (14 d 0.25 mg/kg)2 - Yes 2015 No

South Sudan AS+AQ+PQ1 - No No

Americas

Brazil CQ+PQ (7 d 0.5 mg/kg) 2006 No No

Belize CQ+PQ (14 d 0.25 mg/

kg)

- Yes - No

Bolivia CQ+PQ (14 d 0.25 mg/

kg)

2001 No No

Colombia CQ+PQ (14 d 0.25 mg/

kg)

1960 Yes 2012 No

Costa Rica CQ+PQ (14 d 0.5 mg/kg) 2008 Yes 1957 No

Ecuador CQ+PQ (7 d 0.5 mg/kg) 2004 No No

French Guyana CQ+PQ (14 d 0.5 mg/kg) - No Yes -

Guatemala CQ+PQ (14 d 0.25 mg/

kg)

- No No

Guyana CQ+PQ (14 d 0.25 mg/

kg)

2004 No No

Honduras CQ+PQ (14 d 0.25 mg/

kg)

2011 No No

Nicaragua CQ+PQ (7 d 0.5 mg/kg) - Yes 1980 No

Panama CQ+PQ (14 d 0.25 mg/

kg)

- Yes - No

Peru CQ+PQ (7 d 0.5 mg/kg) 2001 Yes 1994 No

Suriname CQ+PQ (14 d 0.25 mg/

kg)

2004 No No

Venezuela CQ+PQ (14 d 0.25 mg/

kg)

2004 No No

Eastern Mediterranean

Afghanistan CQ+PQ (8 w 0.75/kg) 2014 No Yes 2017

Djibouti AL+PQ (14 d 0.25 mg/kg) - No No

Iran CQ+PQ (8 w 0.75 mg/kg) - Yes 1949 No

Pakistan CQ+PQ (14 d 0.25 mg/

kg)

2017 No Yes 2016

Somalia AL+PQ (14 d 0.25 mg/kg) 2014 Yes 2016 Yes 2016

Sudan AL+PQ (14 d 0.25 mg/kg) - No No

Yemen CQ+PQ (14 d 0.25 mg/

kg)

- No Yes 2009

Southeast Asia

Bangladesh CQ+PQ (14 d 0.25 mg/

kg)

2004 No No

Bhutan CQ+PQ (14 d 0.25 mg/

kg)

2006 No No

North Korea CQ+PQ (14 d 0.25 mg/

kg)

- Yes 2000 No

(Continued)
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were enrolled and followed for 12 months in sites in Ethiopia, Indonesia, Vietnam, and

Afghanistan [34,35]. There was no significant difference in the risk of P. vivax recurrence

between the 7- and the 14-day high-dose regimens, and at 1 year, the overall risk of recurrence

was 13% following high-dose PQ. At the Ethiopian study site, the risk of recurrence at 6

months was almost half compared to a low-dose regimen conducted 2 years previously (10%

versus 17%) [21,36]. WithAU : PleaseconfirmwhethertheeditstothesentenceWithhigherdailydoses; theconcernsoverpotentialdrug � induced:::arecorrect; andamendifnecessary:higher daily doses, the concerns over potential drug-induced hae-

molytic events increase. In this study, 935 of the 2,388 patients enrolled were treated with

high-dose PQ. Four (4/935) haemolytic events occurred, one in a patient who was erroneously

enrolled into the study despite being G6PD deficient and required a blood transfusion. The

other 3 patients recovered rapidly after stopping the trial medication [36]. Complementary

data from a Thai study demonstrated that heterozygous females with intermediate G6PD

activity were at greater risk from haemolysis following a treatment with 1 mg/kg PQ per day

than patients who received 0.5 mg/kg/day; however, this was only clinically relevant in 2

patients, both of whom manifested symptoms at day seven [37]. Studies assessing even shorter

Table 1. (Continued)

Current treatment recommendation for P.

vivax
Recommendation for Directly Observed

Treatment Strategy

G6PD testing

Country (WHO region) Drug and PQ dosage Year of policy

adoption

DOTs for PQ

recommended

Year of policy

adoption

G6PD testing

recommended

Year of policy

adoption

India CQ+PQ (14 d 0.25 mg/

kg)

2007 No No

Indonesia DHA-PQ+PQ (14 d 0.25

mg/kg)

2008 No No

Myanmar CQ+PQ (14 d 0.25 mg/

kg)

2002 Yes 2017 Not yet 2021

Nepal CQ+PQ (14 d 0.25 mg/

kg)

2004 No Yes -

Thailand CQ+PQ (14 d)1 2007 Yes 2011 Yes 2015

Timor-Leste CQ+PQ (8 w 0.75 mg/kg) - Yes 2016 Yes 2016

Western Pacific

Cambodia AS+MQ+PQ (14 d 0.25

mg/kg)

2011 No Yes 2012

China CQ+PQ; ACTs+PQ (8 d

0.75 mg/kg)

2016 Yes 1970 No

Lao People’s Democratic

Republic

AL+PQ (14 d 0.25 mg/kg) 2017 No Yes 2010

Malaysia CQ+PQ (14 d 0.5 mg/kg) 2016 Yes 1993 Yes 1993

Papua New Guinea AL+PQ (14 d 0.25 mg/kg) 2009 No No

Philippines CQ+PQ (14 d 0.25 mg/

kg)

2002 Yes 2010 Yes 2011

Republic of Korea CQ+PQ (14 d 0.25 mg/

kg)

1997 No No

Solomon Islands AL+PQ (14 d 0.25 mg/kg) 2009 No Yes 2009

Vanuatu AL+PQ (14 d 0.25 mg/kg) 2007 Yes 2009 Yes 2009

Vietnam CQ+PQ (14 d 0.25 mg/

kg)

2016 Yes 2014 No

1No PQ dosage provided.
2No information on schizontocidal treatment provided.

ACT, artemisinin combination therapy; AL, artemether–lumefantrine; AQ, amodiaquine; AS, artesunate; CQ, chloroquine; DHA-PQ, dihydroartemisinin–piperaquine;

DOTS, directly observed treatment strategy; G6PD, glucose-6-phosphate dehydrogenase; PQ, primaquine.

https://doi.org/10.1371/journal.pmed.1003494.t001
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high-dose PQ courses with 1.0 mg/kg twice daily dose (bd) for a total of 3.5 days are ongoing

and if found to be safe and effective could shorten treatment regimens even further [38].

Tafenoquine

Tafenoquine (TQ), like PQ, is an 8-aminoquinoline drug but is eliminated much slower than

PQ (14 to 28 days versus 4 to 6 hours). TQ administered as a single dose provides a significant

advantage for adherence but, in contrast to PQ treatment, cannot be curtailed when signs and

symptoms of haemolysis are detected. A recent trial using 300 mg single-dose TQ found that

31% of patients had P. vivax recurrence at 6 months compared to 24% in a low-dose PQ arm

[16]. Major differences in efficacy between the study sites suggests that a 300-mg TQ regimen

is suboptimal in regions where higher PQ concentrations are required to clear hypnozoites

[39]. Declines in haemoglobin following TQ administration of more than 3g per decilitre or at

least 30% of baseline levels were uncommon and did not require clinical intervention [40]. Ini-

tially TQ has been licensed for use with any schizontocidal treatment. A recent label change to

administer TQ exclusively with chloroquine and no other schizonticidal drug has limited its

usefulness. TQ has been licensed for use in G6PD normal patients, defined as a G6PD enzyme

activity greater than 70%, and its use is currently still restricted to patients above 16 years of

age. These restrictions, unique to TQ, make it unlikely that TQ will replace PQ at least in the

short term [41].

Radical cure in G6PD-deficient individuals

Current WHO guidelines for patients with mild to moderate G6PDd recommend weekly PQ

doses of 0.75 mg/kg over 8 weeks following a careful risk–benefit assessment taking into con-

sideration the availability of close medical supervision and access to transfusion services [42].

There is limited data on the safety of this regimen and more recent data from Cambodia sug-

gest caution as G6PDd patients experienced significant, although transient, drops in haemo-

globin levels following the weekly PQ administration [43]. More data are required to make

evidence-based treatment decisions for this neglected patient population.

Universal radical cure

There is a growing body of evidence for an increased risk of P. vivax parasitaemia following

falciparum malaria, higher than would be expected from the risk of reinfection alone [29,44–

46]. In coendemic areas, patients presenting with P. falciparum may have had prior infections

with P. vivax, present either at undetectable levels in the peripheral blood and/or dormant

hypnozoites. Both fever and haemolysis associated with malaria have been hypothesised to

stimulate the reactivation of hypnozoites resulting in relapsing infections [8,47,48]. In a retro-

spective pooled analysis of 10,549 patients with uncomplicated P. falciparum malaria treated

on the Thai-Myanmar border, the cumulative proportion of patients with P. vivax recurrence

was 31.5% by day 63 [44]. A more recent systematic analysis including 153 P. falciparum effi-

cacy studies and a total of 31,262 patients showed that the risk of P. vivax parasitaemia was

greater in regions of short relapse periodicity and after more rapidly eliminated artemisinin-

based combination therapy (ACT) reaching 15.3% after P. falciparum treatment with arte-

mether-lumefantrine [45]. The risk of recurrent P. vivax malaria episodes provides a strong

rationale for universal use of radically curative treatment in patients with P. falciparum malaria

even in the absence of detectable P. vivax parasitaemia in areas that are coendemic for these

species. A review of patient data from the Thai-Myanmar border over 7 years showed a

decreasing risk of P. vivax recurrence after initial falciparum infection from more than 20% in

2003 to below 5% in 2010, suggesting that overall improvements in malaria control led to a
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reduction of coinfected patients [46]. Prospective studies to evaluate the potential benefit of

universal radical cure in different locations are currently ongoing (NCT 03916003) and could

represent a cost-effective approach to clear otherwise unrecognised P. vivax infections and

hence accelerate P. vivax elimination.

The quest for the right G6PD test

The single most important constraint on the global deployment of 8-aminoquinolines is their

potential to cause haemolysis in patients with low G6PD activity. Low G6PD activity, com-

monly known as G6PDd, is among the most prevalent enzymopathies worldwide [49]. In prac-

tice, the lack of available robust diagnostics for G6PDd, fear of drug-induced haemolysis, the

perceived benign nature of P. vivax infection, and fear of additional costs to health systems

have hindered a broad roll out of routine G6PD testing to guide P. vivax radical cure [50].

The G6PD gene is located on the X-chromosome (Xq28); males harbor 1 copy of the gene

and are either G6PD deficient or normal, females harbor 2 G6PD copies and can be homozy-

gous deficient or normal or heterozygous for the gene [51]. Heterozygous females are discrimi-

nated at a 60% to 80% cut-off activity; this can only be determined by quantitative diagnostics.

In contrast, hemizygous males and homozygous females have G6PD activities below 30%

activity, the optimal cut-off for most, if not all, qualitative diagnostics [52–54].

G6PD activity is measured in U/gHb, but no universal cut-off for G6PDd has been defined,

not least because standardization of the phenotypic reference method, spectrophotometry, is

poor [55]. Instead, 100% activity is defined based on the adjusted male median (AMM) G6PD

activity [56]. This definition is site, assay, and population specific and needs to be established

prior to routine use of quantitative diagnostics. In contrast, the variation around the 30%

threshold is smaller, hence qualitative assays can be implemented without prior assessment of

the target population. Depending on radical cure regimen, cut-off activities that guide treat-

ment decision vary between 30% to 70%, the choice of the best G6PD test format varies

accordingly, depending on treatment regimen and sex of the patient [16,42,56,57].

Quantitative UV-spectrophotometry, the phenotypic reference method, is costly and

requires a well-established laboratory infrastructure (Table 2) [55,56,58]. The spectrophotome-

try output requires calculation using the corresponding haemoglobin reading to derive a result

in U/gHb, the necessary format to guide treatment. More recently, a number of handheld bio-

sensors have been developed with superior operational characteristics to spectrophotometry;

however, only 1 device (G6PD Standard, SDBiosensor, Korea) fits currently established target

product profiles [59–62]. Performance of the Biosensor in routine care is yet to be assessed

(Table 2).

The fluorescent spot test (FST) is probably the most widely used qualitative G6PD diagnos-

tic test since its introduction in the late 1960s [63]. When performed under optimal condi-

tions, the FST has a sensitivity of above 95% at a 30% cut-off, but the test requires refrigeration

of supplies, a water bath, a UV-lamp, and an experienced tester, rendering the test unsuitable

for primary care settings [64]. A number of qualitative assays have been introduced to the mar-

ket over the last couple of years; however, only a lateral flow assay from Accessbio/Carestart

(United States of America) shows operational and performance characteristics suitable to

guide radical cure in routine practice [62,65,66] (Table 2). No molecular assays for point-of-

care G6PD testing are currently on the market; respective assays would need to be tailored to

specific populations and would ideally diagnose multiple variants simultaneously [67].

In P. vivax malaria endemic settings with limited resources for G6PD testing, recording the

result of a single G6PD diagnosis for future treatment is appealing. However, G6PD activity is

subject to variation, the extent of which is unknown. G6PD activity varies with age of the red
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blood cell (RBCAU : PleasenotethatRBChasbeendefinedasredbloodcellinitsfirstmentioninthesentenceG6PDactivityvarieswithageoftheredbloodcell:::) population, with reticulocytes and younger RBC having higher G6PD activity

[68–71]. Malaria induces haemolysis, resulting in reactive erythropoiesis, a decrease in the age

of the RBC population and consequently an increase of G6PD activity [71–74]. In a multicen-

tre trial in 6 African countries, a total of 42 out of 124 (19.4%) participants hemi- or homozy-

gous for the A- G6PD variant were phenotypically intermediate or normal when diagnosed by

FST [75]. A transitional increase in G6PD activity is likely to protect against drug-induced,

severe haemolysis, but this assumption needs to be confirmed in real-life settings [71]. Some

countries have introduced neonatal screening for G6PD deficiency to identify newborns at

high risk for kernicterus. Such data could theoretically guide treatment decisions for P. vivax
malaria later in life [76]. However, studies have shown that neonatal G6PD activity is signifi-

cantly higher compared to adult activities [77]. These findings suggest that G6PD testing is ide-

ally done directly prior to each radical cure treatment.

How to roll out the radical cure?

There are 4 main issues that need to be considered in each setting to determine optimal radical

cure strategies: (i) which drug regimen is the most suitable; (ii) which G6PD test is required

for this treatment; (iii) what other measures are available to ensure patient safety; and (iv)

where and by whom (e.g., at which level of the healthcare system) will radical cure be

provided.

More than half of all patients with P. vivax malaria live in remote and rural areas. This adds

challenges, given that the majority of patients with P. vivax malaria only have access to primary

healthcare, and most resource-poor settings have limited functioning mechanisms to transfer

patients to higher-level facilities. The safe delivery of a radical cure is not only a function of

adequate testing, as no test will have 100% sensitivity and specificity and mistakes are likely to

happen in routine setting. Even in well-resourced and tightly controlled clinical trials, a

G6PD-negative patient mistakenly received high-dose PQ [36,78]. Safe radical cure depends

on a functioning healthcare system including adequate capacity for pharmacovigilance.

MeasuresAU : PleasecheckandconfirmwhethertheeditstothesentenceMeasurestoincreasepatientsafety; includingadequatefollow � upthatincreasesarecorrect; andamendifnecessary:to increase patient safety, including adequate follow-up that increases the chance of

detecting potential adverse events early and mitigating them appropriately (e.g., stopping PQ

treatment), are gaining importance.

Table 2. Glucose-6-phosphate dehydrogenase deficiency tests suitable for field use.

Assay Type Manufacturer Sensitivity (30%

cutoff, 70%

cutoff)

Specificity (30%

cutoff, 70%

cutoff)

Price� (USD) Additional requirements Pipetting

steps��
Reference

Spectrophotometry Quantitative Multiple Variable

(Reference

method)

Variable

(Reference

Method)

10.00 Spectrophotometer, Hb

measurement, Fridge,

Water-bath

3 [55,56]

G6PD Standard Quantitative SDBiosensor

(Korea)

100.0, 90.0–97.2 97.0–100.0,

87.0–97.0

350 /

machine, 3.5

/ strip

none 2 [59,60]

Fluorescent spot test Qualitative Multiple 97.9–100.0,

71.9–80.0���
71.1–90.1, 82.0–

91.1

5.50–14.00 Fridge, Water-bath,

UV-Lamp

2 [64,95]

Carestart G6PD

screening test

Qualitative Accessbio-

Carestart (USA)

96.0, ND 95.0, ND 1.50 none 1 [56,65]

ND, No data.

�Prices are approximate, vary significantly from country to country, and exclude required hardware and labor costs.

��As proxy for complexity, not considering preparation of supplies.

���Considering intermediate results as deficient.

https://doi.org/10.1371/journal.pmed.1003494.t002
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Where and by whom the radical cure should be provided is ultimately an operational ques-

tion for control programmes and answers will largely depend on the drug regimen, where the

chosen G6PD test can be performed and interpreted and where the majority of cases are

located. Achieving large impact will most likely require administering the radical cure at the

community level and not only in higher-level healthcare centres to ensure immediate access

for all affected people. The exception are countries with extremely low numbers of cases and

with well-functioning patient transfer mechanisms to higher-level healthcare or those aiming

to avoid reintroduction. The majority of countries will need to make use of community health

workers for the effective roll out of the radical cure. Community-delivered healthcare has

shown to be effective in reducing overall malaria-associated mortality yet their differential

impact on malaria-metric outcomes is difficult to assess [79] and most work on community-

delivered models has focused on falciparum malaria [79,80]. Major barriers to the roll out of

radical cure at community level are concerns over the capacity and training needs for correct

G6PDd testing, adherence to test and treatment algorithms, as well as the capacity to detect

adverse events, stop further doses of PQ and provide blood transfusions, when needed. Opera-

tional research in this area has largely focused on G6PD testing, including user-friendliness,

acceptability, feasibly, training needs, and procurement issues, but less on broader health sys-

tem issues or actual delivery mechanism [81–83]. It remains to be explored what delivery

model is best suited to provide safe radical cure and what level of training and supervision

might be required. Where radical cure is delivered at the community level, patient transfer sys-

tems to higher-level care facilities have to be available. Alternatively, radical cure could be pro-

vided by mobile clinics and community-based healthcare workers provide longer-term follow-

up. Future WHO treatment guidelines are likely to include broad recommendations on the

use of novel tools for P. vivax malaria; however, they will require adaptation for each national

and or subnational level taking the discussed issues into consideration.

Alternative approaches to P. vivax elimination: Vaccines and mass drug

administrations

The falciparum vaccine development has been slow, and the development of vaccines to pro-

tect against P. vivax is lagging further behind. A vaccine targeting the P. vivax circumsporo-

zoite protein PvCSP, the orthologue of the PfCSP targeted by RTS,S/AS01, also adjuvanted by

AS01, did not protect against a challenge with P. vivax sporozoites [84]. P. vivax binds to the

Duffy antigen receptor for chemokines (DARC) via a Duffy binding protein (PvDBP) which

has been the target for 2 blood stage vaccines which are both in early development [84,85].

There is promising ongoing research for P. vivax vaccine targets and vaccination strategies,

but the chances for the rollout of a P. vivax vaccine in the foreseeable future are minimal.

In the absence of a long-lasting, protective vaccine, researchers have experimented with

mass administrations of antimalarial drugs to eliminated malaria. To make an impact on

transmission, such mass drug administrations (MDAs) have to cover the entire or nearly the

entire population in the target area because malaria has a high basic reproductive number

[86]. To engage the community in such an undertaking is time and resource intensive. Past

MDAs in regions surrounded by ongoing P. falciparum malaria transmission have succeeded

to suppress transmission for limited periods but failed to interrupt transmission permanently

probably due to residual parasite reservoirs and reimportation of infections [87]. In the pres-

ence of residual hypnozoites, the suppression of P. vivax prevalence is even shorter than P. fal-
ciparum prevalence [88]. To make a lasting impact, MDAs aiming to eliminate P. vivax
malaria have to include 8-aminoquinolines. During the Soviet era, 8,270,185 people in Azer-

baijan, Tajikistan, North Afghanistan, and DPR Korea received either a 14-day “standard” or a
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17-day “interrupted” PQ treatment to control post-eradication malaria epidemics [89]. The

reported frequency of severe adverse events related to PQ was considered “very low.” Between

1973 and 2009, people living in Jiangsu Province, China received 154,826,505 courses of MDA

which included PQ (22.5 mg) for 8 days [25]. In 2 counties where adverse events were

recorded, the incidence of acute haemolysis was 3.5 and 9.3 per 100,000 population, respec-

tively. Today, few policymakers are willing to accept such a risk even if these are small. More

recently, MDA of antimalarial drugs including PQ have been conducted in populations

thought to be free of G6PDd, e.g., Nicaragua and Costa Rica [6,90]. In Aneityum, the south-

ernmost island of Vanuatu, a 9-week regimen of weekly PQ doses thought to be safe in people

with G6PDd succeeded in interrupting malaria transmission for extended periods [91]. YetAU : PleaseconfirmwhethertheeditstothesentenceYetfewpopulationsatriskforP:vivaxmalariaarethought:::arecorrect; andamendifnecessary:
few populations at risk for P. vivax malaria are thought to be free of G6PDd, and 9 weekly

doses of PQ limit the generalizability of this approach. Using TQ in MDAs would be attractive

as a single dose regimen is likely to result in a higher coverage than multidose regimens. Math-

ematical modelers, free of operational constraints, predict that TQ with screening for G6PDd

administered as part of first-line treatment or through MDA could result in a 58% to 86%

reduction in P. vivax cases in Papua New Guinea [92]. A novel addition to the antimalarial reg-

imens used in MDA is ivermectin. Field studies have shown an added killing effect of mass

ivermectin administrations against malaria vectors and could contribute to a long-lasting

impact against all malarias [3,93,94].

Conclusions

There is a broad consensus in the malaria community that early diagnosis and treatment is key

to malaria elimination. This strategy has been less successful for P. vivax control than for P. fal-
ciparum as evidenced by more recent relative increases in the P. vivax / P. falciparum ratios in

many coendemic countries. The most important reason for this difference is P. vivax’s propen-

sity to relapse and the limited therapeutic options to tackle the hypnozoite reservoir. Two

recent developments provide hope that the radical cure and, hence, the clearance of hypno-

zoites, will become available more broadly. First, TQ, a long-acting 8-aminoquinoline, has

been licensed, and efforts for roll out in endemic countries are underway. Similarly, shorter

courses of PQ are expected to increase effectiveness and could provide alternatives to current

treatment options. Second, rapid point-of-care tests have become available which may allow

G6PD testing in remote settings, reducing the need to transfer patients to higher-level health-

care facilities for radical cure.

These developments have brought up 4 major questions for the elimination of P. vivax
malaria: What is the most appropriate 8-aminoquinoline regimen in a given setting, what is

the most appropriate G6PD test, what other measures are available to ensure safety, and where

and by whom should the radical cure be administered? Finding the optimal solutions for the

operational challenges implied in each of these questions is likely to hold the key for P. vivax
elimination. The implementation of those solutions will require national, regional, and global

leadership and the continued commitment to sustained funding from national and global

funding bodies and national governments.
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