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Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies, where the 5-year survival rate is less than 4%
worldwide. Successful treatment of pancreatic cancer is a challenge for today’s oncology. Several studies showed that increased
levels of oxidative stress may cause cancer cells damage and death. Therefore, we hypothesized that oxidative as well as nitro-
oxidative stress is one of the mechanisms inducing pancreatic cancer programmed cell death. We decided to use silver
nanoparticles (AgNPs) (2.6 and 18 nm) as a key factor triggering the reactive oxygen species (ROS) and reactive nitrogen species
(RNS) in pancreatic ductal adenocarcinoma cells (PANC-1). Previously, we have found that AgNPs induced PANC-1 cells
death. Furthermore, it is known that AgNPs may induce an accumulation of ROS and alteration of antioxidant systems in
different type of tumors, and they are indicated as promising agents for cancer therapy. Then, the aim of our study was to
evaluate the implication of oxidative and nitro-oxidative stress in this cytotoxic effect of AgNPs against PANC-1 cells. We
determined AgNP-induced increase of ROS level in PANC-1 cells and pancreatic noncancer cell (hTERT-HPNE) for
comparison purposes. We found that the increase was lower in noncancer cells. Reduction of mitochondrial membrane
potential and changes in the cell cycle were also observed. Additionally, we determined the increase in RNS level: nitric oxide
(NO) and nitric dioxide (NO2) in PANC-1 cells, together with increase in family of nitric oxide synthases (iNOS, eNOS, and
nNOS) at protein and mRNA level. Disturbance of antioxidant enzymes: superoxide dismutase (SOD1, SOD2, and SOD3),
glutathione peroxidase (GPX-4) and catalase (CAT) were proved at protein and mRNA level. Moreover, we showed cells
ultrastructural changes, characteristic for oxidative damage. Summarizing, oxidative and nitro-oxidative stress and
mitochondrial disruption are implicated in AgNPs-mediated death in human pancreatic ductal adenocarcinoma cells.

1. Introduction

Pancreatic cancer is a very debilitating and refractory cancer.
Although it accounts for only 3% of all cancers worldwide, it
is the fourth leading cause of cancer death [1]. The most
common type of pancreatic cancer is adenocarcinoma, a type
of exocrine pancreatic cancer which is classified as pancreatic
ductal adenocarcinoma [2–4]. Due to the fact that the ethol-
ogy of pancreatic cancer has not been unequivocally

described and an effective pancreatic cancer therapy has not
been developed, successful diagnosis and treatment of
pancreatic cancer are one of the greatest problems of last-
day oncology [2, 3]. In recent years, numerous studies have
claimed that AgNPs, due to their unique cytotoxic features,
size- and shape-depending, antiproliferative, and apoptosis-
inducing activity, can be successfully used as antitumor
agents [3–5]. Indeed, AgNP-induced cancer cell death by
apoptosis, necroptosis, autophagy, and necrosis have been
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observed [6, 7]. However, the molecular mechanism involved
in the cytotoxicity of AgNPs against cancer cells is still under-
way to clarify [8]. Some studies indicate that nanocytotoxic
effect is caused by induction of oxidative and/or nitro-
oxidative stress [9, 10]. Overgeneration of ROS and RNS in
cells can result in pathological processes through damage to
various cellular components, DNA breaks, and impairment
of antioxidant potential and cancerogenesis [11]. Accord-
ingly, we hypothesized that generation of oxidative and
nitro-oxidative stress using AgNPs could be a new anticancer
strategy in the future. During the last decades, it has become
clear that ROS and RNS may also play an important role in
cell cycle regulation and takes part in stress-induced
programmed cells death [12]. Modulation of ROS and RNS
metabolism and recruitment of cells to the sensitive phase
of the cell cycle can have a positive therapeutic impact in
anticancer strategy [13]. ROS are essential secondary
messengers in multiple signalling pathways leading to cell
death including necrosis, autophagy, mitotic catastrophe,
and apoptosis [14, 15]. Oxidative stress-induced programed
cells death could be associated with mitochondrial mem-
brane depolarization and mitochondrial remodelling
through fission, fusion, or mitophagy [16, 17]. On the other
hand, it has been documented that ROS play a crucial role
in the transformation of nonmalignant to malignant cells
and survival of cancer cells [18–20]. Furthermore, the effects
of AgNP-associated metabolic disorders and damage to the
antioxidant system has already been demonstrated in cancer
cells [21, 22]. Reduction of level as well as activity of superox-
ide dismutase in cells emerges rapidly as a novel target for
cancer therapy [23]. Importantly, it has been noticed that
the SOD1 gene is overexpressed in cancers cells [24]. Consid-
ering the above-mentioned findings, the aim of our study was
to evaluate the cytotoxic effect of AgNP in relation to oxida-
tive and nitro-oxidative stress generation, antioxidant system
impairment, mitochondrial damage, and cell cycle distur-
bance in human pancreatic ductal adenocarcinoma cells.

2. Materials and Methods

2.1. Chemicals. AgNPs (2.6 nm and 18nm suspended in
water) were purchased from the US Research Nanomaterials,
USA.

2.2. Characterization of AgNPs. The characteristics of the
AgNPs have been presented in our previous study [6, 25,
26]. We showed stability and monodispersity of 2.6 and
18nm AgNPs in SF culture. We confirmed the negative
charge, regular, spherical shape and the presence of silver
elements (Ag) in water suspension by TEM with EDS. We
described sizes ranging from 1–5nm with a mean diame-
ter of 2.6± 0.8 nm for smaller AgNPs and a size range of
10–26 nm with a mean diameter of 18± 2.6 nm for the
bigger ones. The released Ag+ from 2.6 AgNPs and
18nm AgNPs was 2.8μg/mL and 0.66μg/mL, respectively.

2.3. Cells Culture. Human pancreatic ductal carcinoma
PANC-1 (CRL-1469) and immortalized human pancreas
duct epithelial cell line hTERT-HPNE (CRL-4023) were

obtained from the American Type Culture Collection
(ATCC). Cells were maintained as a monolayer culture in
T-75 cm2 tissue culture flasks. PANC-1 cells were cultured
in Dulbecco’s modified Eagle’s medium with high concentra-
tion of glucose (ATCC, cat. number: 30-2002), supplemented
with 100μg/mL fetal bovine serum (FBS), 100μg/mL of pen-
icillin, and 100μg/mL of streptomycin, and hTERT-HPNE
cells were cultured in a mixture of Dulbecco’s modified
Eagle’s medium without glucose (Sigma-Aldrich, cat.
number: D-5030) and Medium M3 Base (Incell Corp., cat.
number: M300F-500) (3 : 1 ratio) with 2mM L-glutamine
adjusted to 1.5 g/L sodium bicarbonate and supplemented
with 5% FBS, 10 ng/mL human recombinant EGF, 5.5mM
D-glucose (1 g/L), and 750ng/mL puromycin. Cell lines were
cultured in standard condition: at 37°C in a humidified
atmosphere of 95% O2, 5% CO2.

2.4. Treatments. AgNPs concentrations and exposure time
used in these experiments were carefully selected according
to our previous study showing the half maximal inhibitory
concentration (IC50) for PANC-1 cells [6, 25, 26]. To prevent
aggregation, AgNPs solutions were shaken for 1 minute
before usage (according to the manufacturer’s protocol).
AgNPs were suspended ex tempore in serum free (SF) cell
culture medium without FBS and then diluted to the appro-
priate concentrations.

2.5. Determination of ROS Level. Generation of intracellu-
lar ROS level was determined by flow cytometry, detected
by 2′7′-dichlorofluorescein (H2DCF-DA) (Merck, Poland).
PANC-1 and hTERT-HPNE cells were seeded into 6-well
plates at a density of 2× 104. The next day, cells were
treated with 2.6 or 18 nm AgNPs in concentrations of
0.5, 1.5, 2.5, 3.5, 5 and 5, 10, 25, 50, 100μg/mL for 24 h
as indicated in Treatments. Afterwards, PANC-1 and
hTERT-HPNE cells medium were removed, and 10μM
DCF-DA was added to the well for 0.5 h at 37°C. Next,
the cells were detached with trypsin solution, washed with
PBS, and suspended in 1mL PBS. Fluorescence of oxidized
DCF was measured by flow cytometer at excitation and
emission wavelengths of 480 and 525 nm. 10,000 individ-
ual cells were measured. The results were expressed as a
percent of control.

2.6. Determination of NO Level. NO level in PANC-1 cells
was determined by the Muse Cell Analyzer, using Muse®
Nitric Oxide Kit (Merck, Poland). The cells were seeded into
6-well plates at a density of 2× 104 cells/well. After 24 h cul-
turing, PANC-1 cells were treated with 2.6 AgNPs in concen-
trations of 0.5, 1.5, and 2.5μg/mL and 18nm AgNPs in
concertations of 10, 25, and 50μg/mL for 24 h as indicated
in Treatments. Then, the cells were pelleted and incubated
for 30min with membrane-permeable novel reagent DAX-
J2 Orange (Muse Nitric Oxide Reagent, Merck Millipore),
according to the manufacturer’s protocol. Afterwards, sam-
ples cells were analyzed (5000 events/sample) using the Muse
Cell Analyzer. The Muse 1.4 analysis software was used to
analyze the obtained results.
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2.7. Assessment of NO2 Concentration. Nitrogen dioxide
levels in the cytosolic fraction of pancreatic cells (PANC-1
and hTERT-HPNE) were determined on the basis of a
standard curve created according to the author’s method of
Jacewicz [27]. PANC-1 and hTERT-HPNE cells were seeded
into 6-well plates at a density of 2× 104 cells/well for 24 h and
next, treated with 2.6 and 18nm AgNPs in concentrations of
0.5, 1.5, and 2.5μg/mL and 10, 25, and 50μg/mL for 24h as
indicated in Treatments. Afterwards, the cells were pelleted
and fixed in a 200mM ice-cold phosphate buffer, pH7.4.
The cytosolic fraction was obtained after 20min of centrifu-
gation at 100,000×g and used for NO2 assessment. Samples
were prepared by addition of appropriate amounts of the lin-
sidomine (SIN-1) solution and completion of the appropriate
buffer to final 3mL volume. A solution of the complex used
to determine NO2 concentration was prepared by mixing
0.5mL of cis-[Cr(C2O4)(AaraNH2)(OH2)2]

+ (10−3M) with
2mL of 0.2M MES and 2mL of 2M NaClO4. The tempera-
ture was maintained at 20°C with an accuracy of ± 0.1°C.
Nitric dioxide concentrations were computed using Origin
6.0 software on the basis of absorbance variations at 541 nm
using the nonlinear least squares method [28].

2.8. Western Blot Analysis. Protein levels of antioxidant
enzymes (SOD1, SOD2, GPX-4, iNOS, eNOS, and nNOS)
were detected using Western blotting method. PANC-1 cells
were cultured in 10 cm Petri dishes until it reached about
90% confluence. Afterwards, cells were treated with 2.6 and
18nm AgNPs at concentrations of 0.5, 1, 1.5, 2, 2.5, and
3μg/mL or 5, 10, 25, and 50μg/mL and incubated 24 h as
indicated in Treatments. Next, culture media was removed;
cells were resuspended three times with ice-cold PBS,
detached, and centrifuged at 1500 rpm/min for 5min at room
temperature. Then, the supernatant was discharged; cells
were homogenized with protein lysis buffer (50mM Tris
pH7.5, 150mM NaCl, 1% Triton X-100, 0.1% SDS) in the
presence of protease inhibitor (Roche, cat. number:
04693159001). The protein concentrations were measured
by the Bradford method [29]. After electrophoresis, proteins
were transferred onto nitrocellulose membrane (Protran®,
Schleicher and Schuell BioScience) and detected using anti-
bodies: anti-SOD1, anti-SOD2, anti-GPX-4, anti-iNOS,
anti-eNOS, and anti-nNOS. β-Actin was used as a loading
control. The immunoactive proteins were determined using

an enhanced chemiluminescence (ECL) Western blotting
detection kit (Amersham Biosciences, Piscataway, NJ,
USA). Protein levels were quantified using densitometry
software (ImageQuant Software).

2.9. Real-Time PCR. Changes in genes expression were ana-
lyzed by real-time PCR. PANC-1 cells were cultured in
10 cm Petri dishes about 90% confluence. Next, cells were
incubated for 24 h with 2.6 and 18nm AgNPs at concentra-
tions of 0.5, 1.5, and 2.5μg/mL or 5.10, 25, and 50μg/mL as
indicated in Treatments. After treatment, total RNA was
extracted from cell cultures using the ExtractMe Total RNA
Plus Kit (Blirt, Poland) according to the manufacturer’s
instructions. The concentration and purity of isolated RNA
were measured with an Epoch spectrophotometer (BioTek,
Winooski, USA). Two micrograms of total RNA were
subjected to reverse transcription using a RevertAid™ First
Strand cDNA Synthesis kit (Thermo Fisher Scientific Inc.,
USA). The primers used for PCR amplification are listed in
Table 1. The reactions were performed in duplicate for each
primer set with SensiFAST SYBR No-ROX PCR Master
Mix (Bioline, UK). 2μL of cDNA diluted 5-fold and
200 nM of each primer pair. The PCR conditions were 95°C
for 2min followed by 40 cycles of denaturation for 5 sec at
95°C, annealing for 10 sec at primer-specific temperature,
extension for 15 sec at 72°C, and fluorescence reading for
10 sec at 79°C. Dynamic melting curve analysis was per-
formed for all reactions. A total reference RNA (Stratagene)
was used to generate a standard curve. The data were col-
lected using the StepOnePlus™ Real-Time PCR System (Life
Technologies, USA). The amount of amplified product for
each gene was compared to that for the reference gene
(RPL37) using a comparative ΔΔCT method and presented
as a fold change ± SD.

2.10. Cell Cycle. Cell cycle analysis was performed using flow
cytometry, detected by propidium iodide (PI) (Merck,
Poland). PANC-1 cells were seeded at a density of 2× 104
into 6-well plates. After 24 h culturing, cells were treated
with 2.6 or 18 nm AgNPs in concentrations of 0.5, 1.5,
and 2.5μg/mL and 10, 25, and 50μg/mL for 24h as indi-
cated in Treatments. Afterwards, the cells were collected,
washed twice with ice-cold PBS, and fixed 24 h at 4°C with
70% ethanol/30% PBS solution. The samples were

Table 1: The list of primers used in the study.

Gene name Forward primer Reverse primer Annealing temperature

RPL37 TTCTGATGGCGGACTTTACC CACTTGCTCTTTCTGTGGCA 60

nNOS CTCACCCCCTCCTTCGAATACC AAGCTTGCGATTTGCCTGTCTC 60

iNOS ACGGCTCCTTCAAAGAGGCAAA TAACGCACGTGTCTGCAGATGT 60

eNOS ACATGCTGCTGGAAATTGGG TGGTCCACGATGGTGACTTT 60

bNOS AAAGCCCACATGGAAAGGCT AGGTTCCCTTTGTTGGTGGCAT 60

CAT ACGGGGCCCTACTGTAATAA AGATGCAGCACTGGAAGGAG 60

SOD1 CCACACCTTCACTGGTCCAT CTAGCGAGTTATGGCGACG 62

SOD2 TAGGGCTGAGGTTTGTCCAG CACCGAGGAGAAGTACCAGG 62

SOD3 CGAGTCAGAGTTGGGCTCC TCTCTTGGAGGAGCTGGAAA 62
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centrifuged, and the ethanol was removed. Subsequently,
cells were resuspended in PBS containing RNAse A
(50μg/mL) and PI (50μg/ml) and incubated for 0.5 h in
room temperature in the dark. PANC-1 cells were ana-
lyzed by flow cytometry (BD FACSCalibur™) and Cell-
Quest Pro software. Debris and doublets have been
removed by gated appropriate population on FSC/SSC
and FL2-A/FL2-W plots before analysis. The percentage
of cells in each cell cycle phase was determined by using
markers set within the analysis program.

2.11. Changes in Mitochondrial Membrane Potential.
Changes in mitochondrial membrane potential were ana-
lyzed by Muse Cell Analyzer, using the Muse MitoPotential
Assay Kit (Merck, Poland). PANC-1 cells were seeded at a
density of 2× 104 per well in 6-well plates. After 24h of cul-
turing in the standard medium, the cells were treated with
2.6 nm or 18 nm as indicated in Treatments in the concentra-
tions range of 0.5–5μg/mL or 5–100μg/mL for 24 h. Then,
PANC-1 cells were detached and incubated in 5% CO2 at
37°C with the MitoPotential working solution and Muse
MitoPotential 7-AAD reagent according to the manufac-
turer’s protocol (Merck, Poland) [30]. The results were ana-
lyzed using Muse 1.4 analysis software.

2.12. Transmission Electron Microscope. Transmission elec-
tron microscope (TEM) analysis was performed at 100 kV
(JEM 1200EX II, Jeol, Japan). PANC-1 cells were cultured
in 10 cm Petri dishes and treated with 2.6 nm AgNPs in con-
centrations of 0.5, 2.5, and 5μg/mL or 18 nm AgNPs in con-
centrations of 5, 10, 25, 50, and 100μg/mL as indicated in
Treatments. Afterwards, cells were fixed in 2.5% glutaralde-
hyde in 0.1mM sodium-cacodylate buffer and prepared
according to the previously described method [6, 25].

2.13. Statistical Analysis. The obtained data were expressed as
mean± SD for triplicate determination of 3-4 separate

experiments. The results were analyzed using one-way
ANOVA and Tukey’s post hoc test, and p value < 0.05 was
considered statistically significant.

3. Results

3.1. Increase in ROS Level in PANC-1 Cells after Treatment
with AgNPs. We investigated the endogenous ROS level in
pancreatic cancer cells after 24 h exposure to AgNPs com-
pared with nontumor cells of the same tissue, and we found
increased ROS level in both cell lines (see Figure 1). However,
ROS level was about 2 times lower in hTERT-HPNE cells
than in PANC-1 cells after treatment with 2.6 nm AgNPs at
concentrations of 1.5, 2.5, 3.5, and 5μg/mL or 18 nm AgNPs
at concentrations of 10, 25, 50, and 100μg/mL. Moreover,
incubation of pancreatic cancer cells with 2.6 nm AgNPs (at
a concentration of 3.5μg/mL) led to a 6-fold increase in
intracellular ROS level as compared with control cells.
18 nm AgNPs at concentrations of 25 and 50μg/mL acceler-
ated ROS production to 4-fold above control values. On the
other hand, we noticed a slight decrease of ROS level in
PANC-1 cells treated with highest concentrations (5μg/mL
and 100μg/mL) of 2.6 and 18nm AgNPs.

Next, we investigated the role of RNS: NO and NO2 in
AgNP-induced pancreatic cancer cells death.

3.2. Impact on RNS: NO and NO2 and Nitric Oxide Synthases
Protein and mRNA Level in PANC-1 Cells after Treatment
with AgNPs. We demonstrated that 24h incubation of
PANC-1 cells with 0.5–5μg/mL of 2.6 nm AgNPs or 5–
100μg/mL of 18 nm AgNPs caused an increase of NO level
in a concentration-dependent manner (see Figure 2(a)).
The level of NO was 58.8% in cells incubated with minimal
concentration (0.5μg/mL) and about 97% in cells incubated
with highest (3.5 and 5μg/mL) concentration of 2.6 nm
AgNPs when untreated cells showed 1% of NO. In PANC-1
cells treated with 5, 10, 25, 50, and 100μg/mL, 18 nm AgNPs
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Figure 1: Increase in ROS level in PANC-1 and hTERT-HPNE cells after treatment with 2.6 nm and 18 nm AgNPs for 24 h. Data are
mean± SD of 3 separate determinations. ∗p < 0 05; ∗∗p < 0 01; ∗∗∗p < 0 001 treatments versus control.
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level of NO was significantly augmented by 15.8%, 45.7%,
65.3%, 95.8%, and 98.1%, respectively. An increase of NO
level after 24 h treatment with 5μg/mL of 2.6 nm AgNPs
was 6-fold higher than after incubation with the same con-
centration of 18nm AgNPs. Moreover, we demonstrated
2.6 nm and 18nm AgNP-induced generation of NO2 in
PANC-1 cells (see Figure 2(b)). This effect was not depen-
dent on the concentration of AgNPs. For all used concentra-
tions of 2.6 and 18nm AgNPs, the NO2 level was maintained
at 2-3 nM, while positive control (treated with LPS) showed
NO2 level about 7 nM.

Next, we noticed that 2.6 nm AgNPs induced a significant
increase in iNOS, nNOS, and eNOS protein level in PANC-1
cells and 18nm AgNPs induced a significant increase in
eNOS and iNOS protein level (see Figures 2(d)–2(f)). Inter-
estingly, the highest increase we observed in nNOS level
(50-fold higher than control) for 3.5μg/mL 2.6 nm AgNPs
and in eNOS protein level for 2.5μg/mL 18nm AgNPs (5-
fold higher than control).

Furthermore, our result showed that 2.6 nm AgNPs
induced increasing of all NOS isoforms (iNOS, eNOS, and

nNOS) at mRNA level in a concentration-dependent manner
(see Figures 2(f)–2(h)). The highest increase we observed for
eNOS, which was 2-fold higher as the other isoforms. On the
other hand, bigger AgNPs (18 nm) did not affect the level of
investigated isoforms of NOS mRNA (see Figures 2(g)–2(i)).

Additionally, we focused on the determination of protein
and mRNA level of selected cellular antioxidant in PANC-1
cells after treatment with AgNPs.

3.3. Impairment of Enzymatic Antioxidant Defense System in
PANC-1 Cells after Treatment with AgNPs.We evaluated the
protein level of selected antioxidant enzymes: SOD1, SOD2,
and GPX-4. We observed a significant reduction in cytosolic
and mitochondrial SOD and GPX-4 at protein level (see
Figure 3). We noticed a statistically significant decrease of
SOD1 after treatment with both 2.6 and 18nm AgNPs in
the entire range of used concentrations. Interestingly, bigger
AgNPs induced a higher decrease than 2.6 nm AgNPs in
SOD2 protein level, while smaller ones caused a higher
decrease of SOD1 protein level. In a parallel study, we
showed that 2.6 nm AgNPs caused a higher decrease in

NO

C
on

tr
ol 0.
5

1.
5

2.
5

3.
5 5 5 10 25 50 10
0

0

20

40

60

80

100

�휇g/mL

D
AX

-J
2 

or
an

ge
 p

os
iti

ve
ce

lls
 (%

)

2.6 nm AgNPs 18 nm AgNPs

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎⁎⁎

⁎

⁎⁎⁎
⁎⁎⁎⁎⁎⁎

(a)

NO2

Co
nt

ro
l (

+)

Co
nt

ro
l (
−

)

0.
5

1.
5

2.
5

3.
5 5

0

2

4

6

8

2.6 nm AgNPs 18 nm AgNPs

�휇g/mL

N
O

2 
lev

el 
(n

M
)

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

5 10 25 50 10
0

(b)

2.6 nm AgNPs 18 nm AgNPs
Control 0.5

nNOS
iNOS
eNOS

�훽-Actin

1.5 2.5 10 25 50
156 kDa
135 kDa
146 kDa
42 kDa

(�휇g/mL)

(c)

nNOS

C
on

tr
ol 1 2 3 10 25 50

0

10

20

30

40

50

�휇g/mL

Re
lat

iv
e d

en
sit

y

2.6 nm AgNPs 18 nm AgNPs

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(d)

iNOS

C
on

tr
ol 0.
5

1.
5

2.
5 5 25 50

0

5

10

15

�휇g/mL

Re
lat

iv
e d

en
sit

y

2.6 nm AgNPs 18 nm AgNPs

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

(e)

eNOS

Co
nt

ro
l

0.
5

1.
5

2.
5 5 25 50

0

5

10

15

�휇g/mL

2.6 nm AgNPs 18 nm AgNPs

Re
lat

iv
e d

en
sit

y

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

(f)

nNOS

C
on

tr
ol 0.
5

1.
5

2.
5 5 25 50

0

5
25
30
35

170
175
180

�휇g/mL

2.6 nm gNPs 18 nm AgNPs

Fo
ld

 ch
an

ge

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(g)

iNOS

Co
nt

ro
l

0.
5

1.
5

2.
5 5 25 50

0

5
20
25
30

130
135
140

�휇g/mL

2.6 nm AgNPs 18 nm AgNPs

Fo
ld

 ch
an

ge

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(h)

eNOS

Co
nt

ro
l 1

1.
5 2 10 25 50

0

5
60
65
70

325
330
335

�휇g/mL

2.6 nm AgNPs 18 nm AgNPs

Fo
ld

 ch
an

ge
⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(i)

Figure 2: 2.6 and 18 nm AgNPs induced RNS generation and changes in NOS protein and mRNA level in PANC-1 cells. (a) NO. (b) NO2,
changes in NOS protein level: (c) representative Western blot analysis of nNOS, iNOS, and eNOS. (d) nNOS, (e) iNOS, and (f) eNOS. mRNA
level of (g) nNOS, (h) iNOS, and (i) eNOS in PANC-1 cells after treatment for 24. Control (+): cells treated with LPS for 24 h; control:
untreated cells. Data are expressed as mean± SD of 4 independent experiments. ∗p < 0 05; ∗∗∗p < 0 001 exposed cells versus control.
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SOD1, SOD2, and CAT at mRNA level after 24 h incubation
than 18nm AgNPs (see Figure 4). Moreover, after treatment
PANC-1 cells with 2.6 nm AgNPs, we observed a lower
reduction in SOD2 mRNA level than in SOD1 mRNA level,
contrary to the protein level. We have not noticed a signifi-
cant change in CAT mRNA level after treatment with
18 nm AgNPs. On the other hand, we found a significant
increase in SOD3 mRNA level after treatment with 2.6 nm
AgNPs in a concentration-dependent manner, while bigger
AgNPs did not affect the expression of this SOD isoform.

Subsequently, we decided to explore more deeply the
implication of oxidative and nitro-oxidative stress in
AgNPs-induced pancreatic cancer cell death.

Thus, next, we have estimated the effect of AgNPs with
both sizes on cell cycle in PANC-1.

3.4. Cell Cycle Distribution after Treatment PANC-1 Cells
with AgNPs. After 24 h incubation with 2.6 nm and 18nm
AgNPs, we noticed a decrease of G0/G1 phase cell popula-
tion in a concentration-dependent manner compared with
control (Figure 5(a)). 24 h incubation with 0.5, 1.5, and
2.5μg/mL of 2.6 nm and 25 and 50μg/mL of 18 nm
AgNPs resulted in a significantly higher percentage of
cells in the S phase (12.9± 1.5%, 17.7± 2.1%, 28.6± 2.3%,
4.6± 1.6%, and 23.3± 2.7%, resp.) than in control (7.9±
0.8%). Furthermore, we noticed an increase of G2/M

phase for cells treated with both 2.6 nm and 18nm
AgNPs at all used concentrations. Importantly, as shown
in Figure 5(b) a significant increase in the percentage of
cells in the sub-G1 phase was found after treatment with
2.6 nm AgNPs at 0.5, 1.5, and 2.5μg/mL (25.3± 0.8%,
44.3± 1.8%, and 66± 1.2%, resp.) and 18nm AgNPs at
10, 25, and 50μg/mL (29.2± 1.6%, 37.3± 2.4, and 68.2±
2.1%, resp.) in comparison with control (1.8± 1.10%).

Importantly, as shown in Figure 5(b) a significant
increase in the percentage of cells in the sub-G1 phase was
found after treatment with 2.6 nm AgNPs at 0.5, 1.5, and
2.5μg/mL (25.3± 0.8%, 44.3± 18%, and 66± 1.2%, resp.)
and 18nm AgNPs at 10, 25, and 50μg/mL (29.2± 1.6%,
37.3± 2.4, and 68.2± 2.1%, resp.) in comparison with control
(1.8± 1.10%).

Afterwards, we decided to examine the effect of AgNPs
on the mitochondrial membrane potential and ultrastructure
of mitochondria in PANC-1 cells.

3.5. Changes in Mitochondrial Membrane Depolarization and
Ultrastructural Alterations in PANC-1 after Treatment with
AgNPs. We found that 24 h treatment with 2.6 and 18nm
AgNPs resulted in an increase of the percentage of cells with
low mitochondrial membrane potential (Δψm), compared to
the untreated cells (see Figure 6) in a concentration-
dependent manner.
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Figure 3: 2.6 and 18 nm AgNPs induced a decrease in antioxidant enzymes protein level in PANC-1 cells after treatment for 24 h. (a) SOD1.
(b) SOD2. (c) GPX-4. (d) Representative Western blot analysis of SOD1, SOD2, and GPX-4. β-actin was used as internal control. Data are
mean± SD of 3 separate determinations. ∗p < 0 05; ∗∗p < 0 01; ∗∗∗p < 0 001 as compared with untreated cells.
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This effect was accompanied by alteration of mitochon-
drial ultrastructure (see Figure 7). Unaltered mitochondrial
ultrastructure with long, regular cristae, electron-lucent
matrix, and oval-to-rod-shape were observed in a control
sample (see Figure 7(a)), cells treated with 0.5μg/mL of
2.6 nm AgNPs (see Figure 7(b)) and cells treated with 5, 10,
and 25μg/mL of 18 nm AgNPs (see Figures 7(f)–7(h)). We
noticed swelling of mitochondria and degradation of cristae
in cells treated with 2.6 nm AgNPs in a concentration of
2.5μg/mL (see Figures 7(c) and 7(d)). In higher concentra-
tion of 5μg/mL, we observed general cell degradation and
nuclear condensation leading to cell death (see Figure 7(e)).
Also, we observed shrinkage and condensation of mitochon-
dria in the presence of 18 nm AgNPs in a concentration of
50μg/mL (see Figures 7(i) and 7(j)). In the highest concen-
tration of 18nm AgNPs (100μg/mL), we observed cell death,
accompanied by nuclear condensation and cell organelles
degradation, such morphology suggested cell death (see
Figures 7(k) and 7(j)).

4. Discussion

To assess the role of oxidative stress in AgNP-induced
pancreatic cancer cell death, we designated AgNP-
concentration range based on our earlier study [6] and the

half maximal inhibitory concentration (IC50) value determi-
nation, which is presented in Table 2.

Importantly, we showed a significantly higher cytotoxic
effect of AgNPs on PANC-1 than nontransformed pancreatic
cell. In our previous study, we have observed that 2.6 and
18nm AgNPs induced mixed types of pancreatic cancer cells
death [6]. In the present work, we decided to evaluate the
contribution of oxidative and nitro-oxidative stress in
AgNP-induced cytotoxicity against human pancreatic ade-
nocarcinoma cells because of their important role in cancer
cell death. We found that treatment of PANC-1 cells with
AgNPs resulted in the enhancement of ROS production.
Moreover, this increase was more significant in cancer cells
than in noncancer cells of the same tissue. Similarly, Guru-
nathan et al. [31] documented ROS-mediated mechanism
of the mitochondrial pathway of apoptosis after treatment
with AgNPs in human breast cancer cells. Also, Vasanth
et al. [32] noticed that AgNPs have a great anticancer poten-
tial due to selective disruption of the mitochondrial respira-
tory chain, which leads to the production of ROS, oxidative
damage, and ultimately cell death. Edderkaoui et al. [33]
showed that ROS production through activation of NADPH
oxidase resulted in increased pancreatic cancer cell survival.

Moreover, we reported a significant increase of NO and
NO2 level in PANC-1 cells after treatment with 2.6 and
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Figure 4: 2.6 and 18 nm AgNP-induced changes in antioxidant enzymes at mRNA level in PANC-1 cells after treatment for 24 h. (a) SOD1.
(b) SOD2. (c) SOD3. (d) CAT. Data are expressed as mean± SD of 4 independent experiments. ∗p < 0 05; ∗∗p < 0 01; ∗∗∗p < 0 001 exposed
cells versus control.
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18 nm AgNPs. Effective anticancer activity associated with
increasing NO level was noticed in pancreatic, colon, and
ovarian cancer cells [34–36]. Furthermore, aberrant genera-
tion or metabolism of NO increases nitro-oxidative stress
and upregulation of the cell death mediators p53 [37].
Indeed, in our previous study, we described a significant
increase in the level of p53 protein in PANC-1 cells after
treatment with 2.6 and 18nm AgNPs [6]. We also observed
an increase of all investigated NOS isoforms: iNOS, eNOS,
and nNOS at mRNA and protein level after 24 h treatment
with 2.6 nm of AgNPs and in protein level after 24 h treat-
ment with 18nm AgNPs. Thus, our data suggested that 2.6
and 18nm AgNPs regulated NOS protein levels by different
pathways: 2.6 nm AgNPs regulates at the transcriptional
level, whereas 18 nm AgNPs regulates at the translational
level. Similarly, Niu et al. [38] described 1–10 nm CeO2-
induced increase in iNOS mRNA level in human cardiomyo-
cytes, and González et al. [39] showed that 45 nm AgNPs
induced increase in iNOS protein level in the rat tracheal
smooth muscle. Moreover, Xue et al. [40] compared the
induction of protein and mRNA iNOS level depending on
the type and size of NP in primary microglia cells. They
showed the highest iNOS mRNA and protein level in

primary microglia cells after 24 h incubation with 20 nm
TiO2NPs in comparison to 24 h incubation with 12 nm
HAPNPs and 20nm SiO2NPs. 20 nm TiO2NPs showed a
higher increase in protein than in mRNA iNOS level. On
the other hand, they noticed a higher mRNA than protein
iNOS level after treatment with 12nm HAPNPs and 20nm
SiO2NPs [40]. On the other hand, under in vitro exposure,
some types of NPs (2.4 nm PtNPs, 3–5nm CeO2, 13nm
AuNPs) have not significantly affected NOS mRNA nor pro-
tein level [41–43].

It has been documented that NO and other RNS can be
synthesized by two NOS isoforms: eNOS and iNOS in
human pancreatic cancer cells [44–46]. However, current
research also demonstrated the significant role of nNOS
increased overexpression in tumor (lung and ovarian) pro-
gression [47, 48]. We present, to the best of our knowledge
for the first time, a significant increase of nNOS protein
and mRNA level in human pancreatic cancer cells. Our find-
ings are similar to those of Begum et al. [48], who also
noticed that an increase in nNOS and iNOS expression lead
to RNS production, nitro-oxidative stress, and human lung
cancer cells death. Chakraborty et al. [49] observation proved
a significant increase of iNOS protein level and NO level in
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Figure 5: The cell cycle distribution of PANC-1 cells treated with 2.6 nm and 18 nm AgNPs for 24 h incubation. (a) The percentage of cells in
each phase (G0/G1, S, and G2/M). (b) Cell population in a sub-G1 fraction. Results are given as mean± SD of 3 separate determinations.
∗p < 0 05; ∗∗p < 0 01; ∗∗∗p < 0 001 as compared with untreated cells.
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murine fibrosarcoma cells after treatment with 10 nm
AgNPs. Xie et al. [50] showed that overexpression of iNOS
mRNA level reduced the survival and metastatic potential
of a murine melanoma cell line. Also, Jadeski et al. [51]
described that iNOS expression in human pancreatic cancer
cells is positively correlated with apoptosis. On the other
hand, an increase in iNOS expression can affect the stimula-
tion of angiogenesis and tumor progression [52]. However,
Kong et al. [44] have not observed a significant role of iNOS
in pancreatic cancer cells proliferation and regulation of
angiogenesis, which can play a crucial role in tumor growth
and metastasis. Interestingly, Díte et al. [46] suggested that
eNOS have limited role in the normal physiology of
pancreatic cells, while aberration in eNOS expression
may play a significant role in cancer cells progression
and programmed cell death [22, 46]. On the other hand,
the antitumor effects of eNOS inhibition in pancreatic
cancer cells were observed [45]. Gratton et al. [53] showed
that inhibition of eNOS activity decreases tumor vascular

permeability and tumor growth in hepatocarcinoma and
lung carcinoma xenograft models.

Furthermore, we demonstrated that AgNP-induced gen-
eration of ROS and RNS in PANC-1 cells was associated with
a significant disturbance of antioxidant enzymes at protein
and mRNA level. It has been indicated that ROS and/or
RNS production and antioxidant system impairment lead
to programmed cancer cell death [21, 54]. Ahamed et al.
[55] reported that ZnONPs significantly decreased the anti-
oxidant level in hepatoma cells and triggered apoptosis.
Arora et al. [56] and Jin et al. [57] showed a reduced level
of SOD after treatment of human skin carcinoma and human
fibrosarcoma with 7–20nm AgNPs leading to apoptosis.
Moreover, Asadpour et al. [58] noticed that < 100nm
ZrO2NPs-induced decrease in GPX activity in rat pheochro-
mocytoma, and mouse neuroblastoma cells were related to
genotoxic and cytotoxic effect. In PANC-1 cells, we noticed
a decreased level of SOD1 protein and mRNA after treatment
with 2.6 nm and 18nm AgNPs. Papa et al. [24] found that
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Figure 6: (a) 2.6 nm and (b) 18 nm AgNPs induced changes in mitochondrial membrane potential of PANC-1 cells after 24 h treatment.
Changes in mitochondrial membrane potential and induction of cell death were determined using the Muse Cell Analyzer. Values are the
mean± SD of 3 independent experiments. ∗p < 0 05; ∗∗∗p < 0 001 exposed cells versus untreated control.
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inhibition of SOD1 activity in breast cancer cells (MCF-7)
leads to a drastic alteration in the morphology of the
mitochondria associated with increased fragmentation and

swelling of the matrix. This effect was not observed in the
nonmalignant breast epithelial cells line (MCF-10A). Gla-
sauer et al. [59] described that SOD1 inhibition drastically

Table 2: IC50 values obtained after treatment of PANC-1 and hTERT-HPNE cells with 2.6 and 18 nm AgNPs.

IC50 from LDH IC50 from MTT IC50 from LDH IC50 from MTT
(μg/mL) (μg/mL) (μg/mL) (μg/mL)

PANC-1 3.19 1.67 56.46 26.81

hTERT-HPNE 8.06 3.74 160.3 58.46

2.6 nm AgNPs 18 nm AgNPs

The inhibitory concentration, IC50, was calculated from the following equation: log (inhibitor) versus responses curve using the GraphPad Prism 5 program.

1 �휇m 1 �휇m 1 �휇m 500 nm

2 �휇m500 nm1 �휇m

1�휇m 1 �휇m 1 �휇m 1 �휇m

(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Figure 7: The ultrastructure of mitochondria in PANC-1 cells after treatment with 2.6 nm and 18 nm AgNPs for 24 h. (a) untreated PANC-1
cells. (b, c/d, e) cells treated with 2.6 nm AgNPs at concentrations of 0.5, 2.5, and 5 μg/mL, respectively. (f, g, h, i/j, k) cells treated with 18 nm
AgNPs at concentrations of 5, 10, 25, 50, and 100 μg/mL, respectively. N: nucleus; m: mitochondria; arrow: AgNPs. Magnifications: (a–h)
×6000; (i) ×5000; (k) ×4000. Scale bars: (a–c) and (e–i) 1μm; (k) 2μm; (d, j) 500 nm.
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reduces lung carcinoma cells proliferation. Moreover, Peng
et al. [60] suggested that the mechanism by which SOD1
inhibitors cause cell death is likely through a combination
of the regulated mechanism (apoptosis) and unregulated
mechanism (oxidative damage to the organelles). In addition,
we identified 2.6 and 18nm AgNPs induced a decrease in
SOD2 protein and mRNA level. It has been known that in
the mitochondrial matrix, the manganese dismutase SOD2
acts as a major antioxidant enzyme. Mn-SOD low activity
and expression have also been reported in certain colorectal
carcinomas and pancreatic cancer cells [61]. Ahamed et al.
[55] noticed a decrease of SOD1 and SOD2 protein level
and activity in human alveolar adenocarcinoma after treat-
ment with 28–38 nm Zn-doped TiO2NPs. Moreover, we
showed that treatment of PANC-1 cells with 2.6 nm AgNPs
resulted in an increase of SOD3 mRNA level, which catalyzes
the dismutation of superoxide in the extracellular environ-
ment [35]. SOD3 is highly cell-type specific and can be found
most abundantly in the pancreas, lung, kidney, and vascula-
ture [34–36]. It has been known that loss of SOD3 level could
contribute to aggressive and refractory nature of pancreatic
ductal adenocarcinoma. Hayano et al. [62] proved that over-
expression of EcSOD in PDA cell lines resulted in decreased
invasiveness, slower growth, and peritoneal metastasis of
pancreatic cancer cells.

Furthermore, we noticed decreased mRNA level of
CAT in PANC-1 cells after treatment with smaller AgNPs.
Pramanik et al. [63] showed that overexpression of CAT
by transient transfection protected the human squamous
carcinoma cells from capsaicin-mediated ROS generation
and apoptosis. On the other hand, Glorieux et al. [64]
showed that CAT overexpression leads to a less aggressive
phenotype and an altered response to chemotherapy of
breast cancer cells.

In addition, in PANC-1 cells, we observed a significant
reduction of GPX-4 protein level after treatment with 2.6
and 18nm AgNPs. GPX-4 is considered to be the primary
enzymatic defense mechanism against oxidative damage to
cellular membranes [65]. Yang et al. [66] reported that
GPX-4 is an essential regulator of programmed cancer cell
death (ferroptotic). Besides, Hangauer et al. [67] suggested
that silencing of GPX-4 may turn out a new strategy to
prevent acquired drug resistance. This is related to the dem-
onstrated high resistance of melanoma cells (A375) in a high
mesenchymal therapy-resistant to GPX-4 dependence. Loss
of GPX-4 function results in selective ferroptotic cell death
and prevents tumor relapse in mice.

Summarizing, Glasauer et al. [59] suggested that the
reduction of antioxidant enzymes (SOD1, SOD2, GPX-4,
and CAT) level induced apoptosis by the activation of p38
and a decrease in the antiapoptotic factor MCL1 caused by
elevation in ROS level in lung cancer cells.

Furthermore, we observed that AgNPs caused an increase
in PANC-1 cells population with low mitochondrial mem-
brane potential (Δψm) in a concentration-dependent man-
ner. Teodoro et al. [68] noticed a size-dependent effect of
40 and 80nm AgNPs on the activation of the mitochondrial
permeability transition. Interestingly, a stronger effect was
demonstrated for smaller (40 nm) AgNPs. Moreover, it has

been proved that the disruption of mitochondrial membrane
potential (Δψm) and opening mitochondrial membrane
pores are associated with apoptosis or other forms of pro-
grammed cell death [69, 70]. Kim et al. [71] indicated that
the mitochondrial membrane permeabilization leads to the
release of apoptogenic factors and next to apoptosis of
prostate cancer cells. Jung et al. [72] described the model of
apoptotic pancreatic cancer cells death inducing by mito-
chondrial membrane depolarization and caspase activation.
Besides, some reports showed the harmful effect of nano-
structures on mitochondrial function in the lung and kidney
cancer cells [73]. These results suggest that AgNP-induced
mitochondrial-mediated PANC-1 cell death could occur on
the path to apoptosis. Furthermore, some studies described
a close link between NP-induced ROS elevation, cell cycle
arrested, and mitochondrial-mediated apoptosis [23, 74]. In
our study, we noticed a significant increase in sub-G1 popu-
lation induced by AgNPs, and this observation could be
related to PANC-1 apoptotic cell death, which we docu-
mented previously [26]. A relation between an increase of
sub-G1 hypodiploid cells population and mitochondrial-
mediated apoptosis has been described [75, 76]. Similarly,
Zhu et al. [75] described cell cycle arrested in sub-G1 phase
in human liver cancer cells treated with 2nm AgNPs. Fur-
thermore, 2.6 nm AgNP-induced increase of S phase in
PANC-1 cells could also trigger apoptosis [77]. Salehi et al.
[78] reported that chitosan, a semisynthetic biobased
polysaccharide, promotes S phase cell cycle arrest and ROS-
mediated apoptosis in triple-negative breast cancer cells.
On the other hand, Hu et al. [79] described a significant
decrease of S phase and apoptosis pathway in breast cancer
cells after treatment with an alcohol extract of Ganoderma
lucidum. Interestingly, Panzarini et al. [80] suggested that
AgNPs may be exploited for the development of novel
antiproliferative treatment in cancer therapy because of
decreasing Hela cell viability, arresting the cell cycle in S,
G2/M phase, and increasing sub-G1 population. Zhang
et al. [76] reported that AgNP-induced human nasopha-
ryngeal carcinoma and liver cancer cells arrest at G2/M
or G1 cell cycle phase resulted in increased radiation sensitiv-
ity of tumors. In our study, we noticed that AgNPs treatment
leads to cell cycle arrest in S, G2/M-phase in PANC-1 cells.
However, Li et al. [81] reported that AgNPs inhibited cell
cycle in the G2/M phase in glioblastoma U251 cells, and it
could be associated with repair of cell oxidative damage.

Our previous work showed cellular uptake of 2.6 and
18nm AgNPs in PANC-1 cells and their localization in the
cytosol [6]. During this study, we found that AgNP-
induced changes in biochemical parameters were associated
with ultrastructural alteration of pancreatic cancer cells link
to oxidative stress, such as swelling of mitochondria, degra-
dation of cristae, shrinkage, and condensation of mitochon-
dria as well as nuclear condensation [60, 82–84]. These
changes have been also described as characteristic of apopto-
sis via oxidative stress in in vitromodels [84, 85] and are con-
sistent with our previous study [26].

Considering all the information above, our results indi-
cated that induction of ROS and RNS generation along with
disturbance in the enzymatic antioxidant system is
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implicated in the cytotoxicity activity of AgNPs against pan-
creatic cancer cells.

5. Conclusions

To summarize, we observed that exposure to both 2.6 nm and
18nm AgNPs leads to an increased production of ROS and
RNS in PANC-1 cells. We found upregulation of mRNA
and protein level of NOS family, and for the first time, we
have described a significant increase of nNOS in pancreatic
cancer cell death. This effect was associated with arrested
PANC-1 cells in sub-G1cell cycle phase related to pro-
grammed cell death, low level of mitochondrial membrane
potential, and changes in mitochondrial ultrastructure,
typical for oxidative damage. Moreover, we detected AgNP-
induced disturbance of antioxidant system (SOD1, SOD2,
GPX-4, CAT, and SOD3) in pancreatic cancer cells. In con-
clusion, we confirmed our hypothesis that oxidative and
nitro-oxidative mechanism is implicated in AgNP-induced
human pancreatic ductal adenocarcinoma cell death. Our
results can be used in developing new strategies for pancre-
atic cancer nanotherapy.
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