organic compounds

 $0.45 \times 0.32 \times 0.17 \text{ mm}$

14309 measured reflections

3734 independent reflections

3576 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.024$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1,3-Benzothiazol-2-ylsulfanyl)-1phenylethanone

Hossein Loghmani-Khouzani,^a* Dariush Hajiheidari,^a Ward T. Robinson,^b Noorsaadah Abdul Rahman^b and Reza Kia^c‡

^aChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran Correspondence e-mail: loghmani_h@yahoo.com

Received 10 August 2009; accepted 19 August 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.027; wR factor = 0.068; data-to-parameter ratio = 21.7.

In the molecule of the title compound, $C_{15}H_{11}NOS_2$, the 1,3benzothiazole ring is oriented at a dihedral angle of 6.61 (6)° with respect to the phenyl ring. In the crystal structure, intermolecular C-H···O interactions link the molecules in a herring-bone arrangement along the *b* axis and π - π contacts between the thiazole and phenyl rings [centroid-centroid distance = 3.851 (1) Å] may further stabilize the structure.

Related literature

For applications of the title compound in organic synthesis, see: Marco *et al.* (1995); Fuju *et al.* (1988); Ni *et al.* (2006); Grossert *et al.* (1984); Oishi *et al.* (1988); Antane *et al.* (2004). For its biological activity, see: Padmavathi *et al.* (2008).

Experimental

Crystal data $C_{15}H_{11}NOS_2$ $M_r = 285.37$ Orthorhombic, $P2_12_12_1$ a = 5.1060 (1) Å

Mo $K\alpha$ radiation $\mu = 0.40 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.841, T_{\rm max} = 0.935$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.027 & \Delta\rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) &= 0.068 & \Delta\rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3} \\ S &= 1.07 & {\rm Absolute \ structure: \ Flack \ (1983),} \\ 3734 \ {\rm reflections} & 1550 \ {\rm Friedel \ pairs} \\ 172 \ {\rm parameters} & {\rm Flack \ parameter: \ 0.01 \ (5)} \\ H-{\rm atom \ parameters \ constrained} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$C2-H2A\cdots O1^i$	0.93	2.51	3.2299 (17)	135	
Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.					

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2004); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

We thank the University of Isfahan and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2756).

References

- Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun. 34, 2443–2449.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2004). J. Appl. Cryst. 37, 258–264.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.
- Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). *Can. J. Chem.* **62**, 798–807.
- Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem. 60, 6678–6679.
- Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem. 71, 6829-6833.
- Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.
- Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

‡ Additional corresponding author, e-mail: zsrkk@yahoo.com. Thomson Reuters ResearcherID: A-5471-2009.

supplementary materials

Acta Cryst. (2009). E65, o2441 [doi:10.1107/S1600536809033121]

2-(1,3-Benzothiazol-2-ylsulfanyl)-1-phenylethanone

H. Loghmani-Khouzani, D. Hajiheidari, W. T. Robinson, N. Abdul Rahman and R. Kia

Comment

2-(Benzo[d]thiaazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β -keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco *et al.*, 1995; Fuju *et al.*, 1988; Ni *et al.*, 2006). In addition, β -keto-sulfones can be converted into optically active β -hydroxy-sulfones, halomethyl and dihalomethyl sulfones. Halomethyl and dihalomethyl sulfones are very good α -carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides and β -hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert *et al.*, 1984; Oishi *et al.*, 1988; Antane *et al.*, 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi *et al.*, 2008). We prepared the title compound as a precursor for the synthesis of gem-difluoromethylene-containing heterocycle, and reported herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the benzothiazole ring is oriented with respect to the phenyl ring at a dihedral angle of 6.61 (6)°. In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules in herringbone mode along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π - π contact between the thiazole and phenyl rings, Cg1—Cg2ⁱ, [symmetry code: (i) x - 1, y, z, where Cg1 and Cg2 are centroids of the rings (S1/N1/C1/C6/C7) and (C1-C6), respectively] may further stabilize the structure, with centroid-centroid distance of 3.851 (1) Å.

Experimental

For the preparation of the title compound, sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzothiazole (3 mmol) in ethanol (15 ml) and water (15 ml) and stirred at room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min showed the complete disappearance of the starting material. The reaction mixture was poured into HCl (1M, 100 ml) containing crushed ice (50 g). The product was filtered under vacuum and filtrate washed with ice-cold ethanol (10 ml) and water (10 ml). Recrystalization from petrol ether and filtration gave the title compound (m.p. 387-389 K). ¹H NMR (400 MHz; CDCl₃): 8.15-7.75 (m, 4H), 7.55-7.32 (m, 5H), 5.10 (s, 2H). ¹³C NMR (126 MHz; CDCl₃): 194.2 (C=O), 162.1, 151.8, 135.3, 134.2, 131.1, 126.7, 126.5, 124.7, 124.1, 119.8, 119.6, 37.5. Anal. Calcd. for CHNS: C, 63.13; H, 3.89; N, 4.91. Found: C, 63.07; H, 3.86; N, 4.93.

Refinement

H atoms were positioned geometrically with C-H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level

Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.

2-(1,3-Benzothiazol-2-ylsulfanyl)-1-phenylethanone

Crystal data

$C_{15}H_{11}NOS_2$	$D_{\rm x} = 1.460 {\rm ~Mg~m}^{-3}$
$M_r = 285.37$	Melting point: 388 K
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 8370 reflections
a = 5.1060 (1) Å	$\theta = 2.3 - 30.5^{\circ}$
b = 14.6220(3) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 17.3920 (4) Å	T = 295 K
$V = 1298.49 (5) \text{ Å}^3$	Block, pale-yellow
Z = 4	$0.45\times0.32\times0.17~mm$
$F_{000} = 592$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3734 independent reflections
Radiation source: fine-focus sealed tube	3576 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 295 K	$\theta_{\text{max}} = 30.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -7 \rightarrow 6$
$T_{\min} = 0.841, T_{\max} = 0.935$	$k = -20 \rightarrow 20$
14309 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.027$	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.1348P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.068$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
3734 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
172 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1550 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.01 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.32503 (6)	0.26829 (2)	0.744608 (17)	0.02052 (8)
S2	0.01546 (7)	0.10723 (2)	0.799872 (17)	0.02062 (8)
01	-0.3471 (2)	-0.02751 (8)	0.84299 (6)	0.0341 (3)
N1	0.3955 (2)	0.19530 (7)	0.87979 (6)	0.0178 (2)
C1	0.5575 (2)	0.31781 (8)	0.80443 (7)	0.0173 (2)
C2	0.7199 (3)	0.39273 (9)	0.79124 (8)	0.0226 (3)
H2A	0.7112	0.4252	0.7453	0.027*
C3	0.8936 (3)	0.41738 (9)	0.84818 (8)	0.0240 (3)
H3A	1.0056	0.4666	0.8402	0.029*
C4	0.9045 (3)	0.36954 (9)	0.91801 (8)	0.0223 (3)
H4A	1.0230	0.3876	0.9557	0.027*
C5	0.7413 (3)	0.29592 (9)	0.93148 (7)	0.0188 (2)
H5A	0.7477	0.2648	0.9781	0.023*
C6	0.5668 (2)	0.26908 (9)	0.87415 (6)	0.0159 (2)
C7	0.2610 (3)	0.18779 (9)	0.81703 (7)	0.0171 (2)
C8	0.0085 (3)	0.05695 (9)	0.89446 (7)	0.0219 (2)
H8A	0.1752	0.0279	0.9053	0.026*

supplementary materials

H8B	-0.0207	0.1041	0.9327	0.026*
C9	-0.2085 (3)	-0.01289 (9)	0.89821 (8)	0.0208 (3)
C10	-0.2437 (3)	-0.06360 (9)	0.97210 (8)	0.0197 (2)
C11	-0.4423 (3)	-0.12874 (9)	0.97723 (9)	0.0255 (3)
H11A	-0.5527	-0.1388	0.9355	0.031*
C12	-0.4758 (3)	-0.17854 (10)	1.04421 (9)	0.0296 (3)
H12A	-0.6096	-0.2215	1.0476	0.036*
C13	-0.3103 (3)	-0.16447 (9)	1.10627 (9)	0.0271 (3)
H13A	-0.3309	-0.1991	1.1507	0.032*
C14	-0.1145 (3)	-0.09906 (10)	1.10233 (8)	0.0271 (3)
H14A	-0.0055	-0.0891	1.1443	0.032*
C15	-0.0816 (3)	-0.04858 (10)	1.03552 (8)	0.0240 (3)
H15A	0.0493	-0.0044	1.0329	0.029*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.02236 (15)	0.02516 (15)	0.01403 (13)	-0.00182 (12)	-0.00251 (11)	0.00181 (11)
S2	0.02335 (15)	0.02168 (14)	0.01685 (13)	-0.00322 (13)	-0.00214 (12)	-0.00344 (11)
01	0.0360 (6)	0.0339 (5)	0.0323 (5)	-0.0120 (5)	-0.0132 (5)	0.0001 (4)
N1	0.0199 (5)	0.0188 (5)	0.0148 (5)	-0.0008 (4)	0.0011 (4)	-0.0018 (4)
C1	0.0166 (5)	0.0199 (5)	0.0154 (5)	0.0016 (4)	-0.0003 (4)	-0.0011 (4)
C2	0.0233 (6)	0.0220 (6)	0.0224 (6)	0.0001 (5)	0.0012 (5)	0.0051 (5)
C3	0.0223 (6)	0.0193 (6)	0.0303 (7)	-0.0026 (5)	-0.0002 (5)	0.0022 (5)
C4	0.0202 (6)	0.0231 (6)	0.0237 (6)	0.0003 (5)	-0.0041 (5)	-0.0042 (5)
C5	0.0207 (6)	0.0197 (6)	0.0160 (5)	0.0021 (5)	-0.0016 (4)	-0.0006 (4)
C6	0.0168 (5)	0.0164 (5)	0.0144 (5)	0.0018 (5)	0.0012 (4)	-0.0015 (4)
C7	0.0188 (6)	0.0175 (5)	0.0150 (5)	0.0002 (4)	0.0019 (4)	-0.0021 (4)
C8	0.0226 (6)	0.0233 (6)	0.0199 (5)	-0.0065 (6)	-0.0036 (5)	0.0005 (5)
C9	0.0197 (6)	0.0173 (6)	0.0253 (6)	-0.0004 (5)	-0.0011 (5)	-0.0033 (5)
C10	0.0172 (6)	0.0155 (5)	0.0265 (6)	0.0010 (4)	0.0018 (5)	-0.0026 (5)
C11	0.0211 (7)	0.0221 (6)	0.0333 (7)	-0.0042 (5)	-0.0012 (5)	-0.0039 (5)
C12	0.0255 (7)	0.0225 (6)	0.0409 (8)	-0.0054 (6)	0.0072 (6)	-0.0009 (6)
C13	0.0282 (7)	0.0229 (6)	0.0301 (7)	0.0020 (6)	0.0098 (6)	0.0020 (5)
C14	0.0280 (7)	0.0280 (7)	0.0253 (6)	-0.0025 (6)	-0.0006 (5)	0.0005 (6)
C15	0.0206 (6)	0.0228 (6)	0.0285 (6)	-0.0051(5)	-0.0006(5)	0.0006 (5)

Geometric parameters (Å, °)

S1—C1	1.7365 (13)	С5—Н5А	0.9300
S1—C7	1.7548 (13)	C8—C9	1.5080 (18)
S2—C7	1.7459 (13)	C8—H8A	0.9700
S2—C8	1.8022 (13)	C8—H8B	0.9700
O1—C9	1.2122 (16)	C9—C10	1.4945 (19)
N1—C7	1.2944 (16)	C10-C11	1.3943 (18)
N1—C6	1.3923 (17)	C10-C15	1.3964 (19)
C1—C2	1.3929 (18)	C11—C12	1.384 (2)
C1—C6	1.4073 (17)	C11—H11A	0.9300
C2—C3	1.3774 (19)	C12—C13	1.386 (2)

C2—H2A	0.9300	C12—H12A	0.9300
C3—C4	1.4026 (19)	C13—C14	1.385 (2)
С3—НЗА	0.9300	C13—H13A	0.9300
C4—C5	1.3813 (19)	C14—C15	1.387 (2)
C4—H4A	0.9300	C14—H14A	0.9300
C5—C6	1.3934 (17)	C15—H15A	0.9300
C1—S1—C7	88.68 (6)	S2—C8—H8A	109.8
C7—S2—C8	97.66 (6)	С9—С8—Н8В	109.8
C7—N1—C6	109.87 (11)	S2—C8—H8B	109.8
C2—C1—C6	121.32 (12)	H8A—C8—H8B	108.3
C2—C1—S1	129.51 (10)	O1—C9—C10	121.56 (13)
C6—C1—S1	109.17 (9)	01—C9—C8	120.95 (12)
C3—C2—C1	118.08 (12)	C10—C9—C8	117.49 (11)
C3—C2—H2A	121.0	C11—C10—C15	119.22 (13)
C1—C2—H2A	121.0	C11—C10—C9	118 78 (12)
$C_2 - C_3 - C_4$	121.17 (13)	C15-C10-C9	121.99 (12)
C^2 — C^3 — H^3A	119.4	C12 - C11 - C10	120.20(12)
C4 - C3 - H3A	119.1	C12 $C11$ $H11A$	119.9
$C_{2}^{-} = C_{2}^{-} = C_{2}^{-}$	119.4 120.77(12)		119.9
$C_5 C_4 H_{4A}$	110.6	C_{11} C_{12} C_{13}	120 13 (13)
$C_3 = C_4 = H_4 A$	119.0	$C_{11} = C_{12} = C_{13}$	120.13 (13)
C_{3}	119.0	C12 - C12 - H12A	119.9
C4 = C5 = C6	110.95 (12)	C13 - C12 - H12A	119.9
C4—C5—H5A	120.5	C14 - C13 - C12	120.25 (13)
C6-C5-H5A	120.5	C14—C13—H13A	119.9
NI-C6-C5	124.71 (11)	С12—С13—Н13А	119.9
	115.57 (10)	C13-C14-C15	119.76 (14)
C5-C6-C1	119.71 (12)	С13—С14—Н14А	120.1
N1—C7—S2	125.63 (10)	C15—C14—H14A	120.1
N1—C7—S1	116.71 (10)	C14—C15—C10	120.42 (13)
S2—C7—S1	117.63 (7)	C14—C15—H15A	119.8
C9—C8—S2	109.28 (9)	C10—C15—H15A	119.8
С9—С8—Н8А	109.8		
C7—S1—C1—C2	179.53 (13)	C8—S2—C7—S1	-172.57 (8)
C7—S1—C1—C6	0.04 (9)	C1—S1—C7—N1	0.00 (11)
C6—C1—C2—C3	0.86 (19)	C1—S1—C7—S2	177.93 (8)
S1—C1—C2—C3	-178.59 (11)	C7—S2—C8—C9	175.74 (9)
C1—C2—C3—C4	-1.0(2)	S2—C8—C9—O1	-0.42 (16)
C2—C3—C4—C5	0.2 (2)	S2—C8—C9—C10	179.05 (10)
C3—C4—C5—C6	0.7 (2)	O1-C9-C10-C11	-0.4 (2)
C7—N1—C6—C5	-179.59 (12)	C8—C9—C10—C11	-179.87 (12)
C7—N1—C6—C1	0.07 (15)	O1—C9—C10—C15	178.67 (13)
C4—C5—C6—N1	178.80 (12)	C8—C9—C10—C15	-0.79 (18)
C4-C5-C6-C1	-0.84(19)	$C_{15} - C_{10} - C_{11} - C_{12}$	-0.7(2)
C_{2} C_{1} C_{6} N_{1}	-17962(11)	C9-C10-C11-C12	178 35 (13)
S1-C1-C6-N1	-0.07(13)	C10-C11-C12-C13	-0.6.(2)
$C^2 - C^1 - C^6 - C^5$	0.06 (19)	$C_{11} - C_{12} - C_{13} - C_{14}$	15(2)
S1-C1-C6-C5	179 61 (10)	C_{12} C_{13} C_{14} C_{15} C_{14}	-10(2)
C6N1C7\$2	-177 78 (0)	$C_{12} = C_{13} = C_{14} = C_{15} = C_{10}$	-0.3(2)
$C_0 - 1 \sqrt{1 - C_1 - 32}$	1//./0(9)	013-014-013-010	0.5(2)

supplementary materials

C6—N1—C7—S1 C8—S2—C7—N1	-0.04 (14) 5.15 (13)	C11—C10—C15—C14 C9—C10—C15—C14		1.2 (2) -177.84 (13)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2A···O1 ⁱ	0.93	2.51	3.2299 (17)	135
Symmetry codes: (i) $-x$, $y+1/2$, $-z+3/2$.				

Fig. 1

Fig. 2

