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Abstract: Protective SiO2 coating deposited to iron microparticles is highly demanded both for the
chemical and magnetic performance of the latter. Hydrolysis of tetraethoxysilane is the crucial method
for SiO2 deposition from a solution. The capabilities of this technique have not been thoroughly
studied yet. Here, two factors were tested to affect the chemical composition and the thickness of the
SiO2 shell. It was found that an increase in the hydrolysis reaction time thickened the SiO2 shell from
100 to 200 nm. Moreover, a decrease in the acidity of the reaction mixture not only thickened the
shell but also varied the chemical composition from SiO3.0 to SiO8.6. The thickness and composition
of the dielectric layer were studied by scanning electron microscopy and energy-dispersive X-ray
analysis. Microwave permeability and permittivity of the SiO2-coated iron particles mixed with a
paraffin wax matrix were measured by the coaxial line technique. An increase in thickness of the
silica layer decreased the real quasi-static permittivity. The changes observed were shown to agree
with the Maxwell Garnett effective medium theory. The new method developed to fine-tune the
chemical properties of the protective SiO2 shell may be helpful for new magnetic biosensor designs
as it allows for biocompatibility adjustment.

Keywords: protective coating; soft magnetic powder; microwave permittivity; core–shell particles

1. Introduction

Iron powders are widely applied in power transformers, inductors, sensors [1], elec-
tromagnetic compatibility solutions [2,3], and materials designed to decrease electromag-
netic pollution [4,5]. Commonly used is the carbonyl iron with spherical particles of
2 [5,6]–10 [4] micron in the mean diameter. Carbonyl iron possesses remarkable magnetic
properties, although chemical stability and electromagnetic performance are still to be
improved when embedded into composite materials. Surface modification of iron particles
with a chemically inert non-conductive coating may solve these tasks. Inorganic and
polymer coatings suit well: MnO2, BaTiO3, carbon, PMMA, polyaniline [4], parylene C [7],
ZnO, Fe3O4 [8], etc. In addition, the SiO2 is the most commonly used among others. Silica
shell provides iron with oxidation resistance in the air [4,9] and corrosion resistance [6].
Modifying iron with these non-conductive shells prevents electric contact between particles
and combines magnetic and dielectric losses in one material [8]. This may be used to
fine-tune the electromagnetic properties of the latter [6,9,10].

Liquid-phase hydrolysis of silica precursors is frequently used due to its simplicity
and effectiveness, although other techniques, even mechanical milling [11], also work.
Recently publications on synthesizing iron powders coated with silica shells show the high
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importance of these studies. The primary requirement for the silica shell is uniformity.
While simple tetraethyl orthosilicate (TEOS) hydrolysis in ammonia solution deposits uni-
formly coating to nano- and micro-particles of iron, modification of large, 200-µm-particles
requires additional surface activation. Surface active agents were shown to successfully
increase the uniformity of the SiO2 coating (see references within [12]). Mechanical milling
also improves the adhesion of the silica coating to coarse iron powders [12]. Another
technique to increase the uniformity of the SiO2 is the use of L-lysine instead of ammonia
solution [4].

Despite all these studies, it is notable that the inherent properties of the silica shell,
including chemical composition and dielectric constant, are rarely examined. However,
it is known that the hydrolysis of organosilanes gives significantly different products
depending on the acidity of the reaction mixture, which, in turn, is governed by ammonia
concentration [13–16]. For example, two different final-stage thermal treatments may be
applied for the Fe@SiO2 drying. One is simply to keep the powder at 50–60 ◦C for a certain
period [5,6,17]. The other is to anneal in an inert (N2, [8]) or reducing atmosphere (H2, [1])
at 500–800 ◦C for several hours. The latter decreases the oxygen content of the silica down
to SiO1.5 [8]. This is due to the volatilization of water that occurs at 100 ◦C and further
thermal aging of the SiO2 [8].

From pure silica gel studies, it is known that the real chemical composition affects
the dielectric constant of the “SiO2”. Hydroxyl groups are those elements in the structure
of the silica that are dealt with by polarization. There are at least two types of hydroxyls
within the silica structure: intraglobular and surface hydroxyls (although the former may
be further divided into subclasses, and some “free” hydroxyls are also distinguishable).
The surface or “perturbed” hydroxyls are deemed to cause polarization via a constrained
rotation; that is, a rotation from one hydrogen-bonded position to another [18]. It was also
shown that annealing at a temperature up to 1000 ◦C gradually decreases the concentration
of hydroxyl groups, increases density, decreases surface area, and decreases the dielectric
constant of the silica. The maximum decrease is from 2.2 to 1.8, almost 20% of the initial
value (see Table 2 from ref. [18]). The density of the silica was shown to influence the
permittivity of the silica even in the GHz range [19].

These changes may not only be used to tune electromagnetic performance but to
develop a desired biocompatibility of the Fe@SiO2-based media. Particle size and surface
charge of the silica are the key parameters in biocompatibility studies [20]. A method to
optimize the surface charge of the carbonyl iron particles coated with the silica shell makes
the powder a promising material for biomedical applications. The powder may be applied
both in pure form or incorporated into some silicone matrix to form a magnetorheological
elastomer [21]. The latter serves as a magnetic-field magnetostriction sensor (more precisely,
a dual-mode magnetism/pressure sensor), which sensing performance is closely related to
the matrix–polymer interactions that, in turn, are governed by surface modification of iron
particles [21,22].

Here, the SiO2 shell was deposited onto carbonyl iron of 3 µm mean diameter through
hydrolysis of TEOS in water–ethanol solution. Duration of the hydrolysis reaction and
ammonia concentration was studied to affect the thickness and chemical composition of
the shell. The products were dried in the air under 60 ◦C for 6 h. Chemical composition
was measured by EDX using scanning electron microscopy. Microwave measurements in
the 0.5–15 GHz range were used to evaluate the permeability of the composite material
comprised of the Fe@SiO2 particles and paraffin wax matrix. The measured real permeabil-
ity of the composite was shown to be in accordance with what was calculated following
the Maxwell Garnett formula [23–25].

2. Materials and Methods

The deposition of the SiO2 shell onto particles of carbonyl iron (CI) was carried out
in a one-stage modified Stöber process. Pure carbonyl iron powder (≥97.0 mass.% Fe),
tetraethyl orthosilicate (CAS 78-10-4, Aldrich №86578), and ammonia solution (25%, reagent
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grade) were used. First, 2 g of the metal powder was immersed in ethanol in a round-
bottom 100-mL flask with a reflux condenser. The tetraethyl orthosilicate was added and
ultrasonicated for 40 min with a power of 250 W and a frequency of 40 kHz. Then, ammonia
was added to the mixture, and this was assigned as the start of the reaction.

Two different experiments were conducted. The first experiment studied the influence
of the duration of the hydrolysis reaction on the properties of the product. The duration
was 0.5, 1, 2, and 4 h. The ratio of volumes of TEOS and ammonia solution added to
the reaction mixture, here and after [TEOS]/[NH3·H2O], was constant at 1. Another
experiment studied the influence of concentrations of reagents on the properties of the
product. The [TEOS]/[NH3·H2O] ratio was 0.75, 1, 1.5, and 4.5. The duration of the
synthesis was 2 h in this experiment.

Whatever the process was, the product was separated by magnet-assisted decantation,
rinsed multiple times in ethanol until the transparency of the liquid, and dried in air for
6 h at 60 ◦C.

Particle size and SiO2 thickness were measured by scanning electron microscopy
using the Zeiss Evo 50 VP microscope (Zeiss AG, Germany). Fifteen individual particles
were studied and averaged to evaluate the thickness of the shell. Energy-dispersive X-ray
(EDX) analysis (Si:O) was examined using the “Oxford instruments” platform (Oxford
instruments, UK). A sample area of 15 × 15 µm was studied.

The composites for microwave measurements were made of Fe@SiO2 particles mixed
with molten paraffin wax with constant stirring during cooling [6]. The volume fraction
of the Fe@SiO2 powder was estimated at 35 vol.%. The volume fraction was calculated as
follows. Initially, 30 mg of the filler was mixed with 100 mg of the wax. The shell thickness
was set at 150 nm, since the real size distribution of iron particles and the presence of pure
silica particles interferes with more precise calculations. The tabular density of iron was
7.8 g/cm3, and the density for amorphous silica was 2.2 g/cm3. The samples were formed
in the torus and placed inside a standard 7/3 mm coaxial transmission line (Figure 1).
Additionally, the sample inside the line was pressed slightly from both ends to force the
composite material to fill the cross-section of the line and reduce possible air gaps between
the sample and the metallic surface of the line.
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S-parameters of the composite samples placed in the airline were measured in the
frequency range of 0.5 to 15 GHz with a vector network analyzer (VNA). Ports at the end
of feeding coaxial cables were calibrated with standard TRL calibration procedure [26]
with planes of phase reference at the ends of the measurement transmission line. The
complex microwave permeability and permittivity were determined with the standard
Nicolson–Ross–Weir (NRW) [27,28] method.

The quasi-static permittivity of the composites was determined at a frequency of
500 MHz. The frequency dependence of complex permittivity was fitted with the Havriliak–
Negami empirical formula [29] to minimize possible errors. The measured data were
fitted in the frequency range of 0.5 to 10 GHz to minimize low-frequency errors due to
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poor sensitivity of the microwave measurements at frequencies lower than 0.5 GHz. At
frequencies higher than 10 GHz, the half-wavelength resonance on the sample thickness
starts to affect, and NRW solution becomes inherently unstable.

Higher-order modes can also emerge on the sample boundary with typical resonance-
like behavior of the calculated microwave permittivity and permeability [30,31]. Such
resonance behavior cannot be attributed to the material properties and should be carefully
considered. In our case, the sample length was chosen to force the possible emergence of
higher-order modes beyond the frequency range of interest. However, for some samples,
the effect of higher-order modes resonance on the sample length can be seen at frequencies
higher than 10 GHz. The manifestation of this effect depends on the sample homogeneity
and quality of the geometric shape and cannot be easily controlled.

The lower bound of the frequency region under study was chosen due to the follow-
ing considerations. In the frequency range from 10 MHz to 500 MHz, TRL calibration
performance starts to degrade due to the small phase difference in the transmission line
calibration standard and direct-thru connection of the measurement ports. In addition,
samples with small electric length, i.e., small permittivity, permeability, and geometric
length, have low reflection coefficient in this frequency region (i.e., low contrast); thus, the
NRW method performance also degrades.

3. Results and Discussion
3.1. Structure and Morphology

The increase in the duration of the deposition process from 0.5 to 4 h increased the
thickness of the silica layer (Figures 2–4, Table 1). The minimum thickness obtained was
90 nm, and the maximum was 190 nm (Figure 5). Further prolongation of the process did
not increase thickness. The distribution of the shell thickness in a sample narrowed with
the reaction time (Table 1). Uniformity and final particle size of the silica are known to be
dealt with by colloid interaction potentials. The reaction rate here is size-dependent and is
governed by the competition between nucleation and aggregation [32]. Growth of the shell
thicker than 200 nm was probably inhibited by the colloidal surface state of the product.
The shell thickness evaluated from one-hour-deposited samples differed slightly from the
monotonous trend from other data. This was probably a random error caused by a wide
distribution of the shell thicknesses that were deposited with a duration of 1–1.5 h. No
evidence was observed that the thickness of the shell might decrease with the reaction time
in this synthesis.
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Table 1. The mean thickness with the confidence interval (p = 0.9) of the silica shell, measured from
the hydrolysis duration experiment.

Hydrolysis duration, h 0.5 1 1.5 2 3 4

Shell thickness, nm 95 ± 11 148 ± 22 125 ± 23 144 ± 13 172 ± 12 189 ± 14

According to EDX analysis, the changes in the duration of the reaction did not affect
the stoichiometry of the “SiOx”. The atomic ratio Si:O remained at SiO3.3. Excess of
oxygen is in the form of hydrate water and surface hydroxyls, the real composition being
SiO2·nH2O. An increase in atomic Si:Fe ratio was also observed, and it also showed an
increase in the silica content within the samples subjected to the longer deposition process.
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Ammonia concentration was found to influence both the thickness and chemical
composition of the shell (Figures 6–8, Table 2). Minimal thickness was estimated at ~60 nm,
and it was deposited under low ammonia concentration. The thickest shell was deposited
in an excess of ammonia, and it was ~220 nm (Figure 9). An increase in the [NH3·H2O]
concentration resulted in a shell significantly enriched with oxygen, as much as SiO8.6. An
excess of ammonia also resulted in an enlarged fraction of individual SiO2 nanoparticles
with a mean size that was twice as high as the estimated thickness of the shell. The surface of
particles obtained under the excess of ammonia was smooth, while those deposited under
[TEOS]/[NH3·H2O] = 4.5 showed surface roughness of approximately 80 nm (Figure 6).
These results are in agreement with the data on how ammonia influences the growth of the
silica gel [33].
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Table 2. The mean thickness with the confidence interval (p = 0.9) of the silica shell, measured from
the ammonia concentration experiment.

[TEOS]/[NH3·H2O] ratio 4.5 1.5 1 0.75

Shell thickness, nm 62 ± 9 90 ± 8 146 ± 12 218 ± 10

Si:O atomic ratio SiO3.0 SiO3.3 SiO3.8 SiO8.6

It is interesting to note that the distribution of the thickness of the silica shell was
narrower in those cases when the duration of hydrolysis was longer than 2 h (compare
the confidence interval given in Table 1 when the duration time was 0.5, 1, and 1.5 h, and
the rest of the confidence intervals provided in Tables 1 and 2). It may be assumed that
during the first 1.5 h, the growth rate of the silica shell differs for iron particles of different
sizes and the resulting thickness levels during the time interval between 1.5 and 2 h of the
hydrolysis reaction. The deviation of the mean shell thickness coincides sufficiently with
the deviations calculated in [32], where the monodisperse silica was grown and studied.
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3.2. Dielectric Permittivity: Theoretical Approach

In order to evaluate the dependence of the real part of the static relative permittivity
of the core–shell particles on the thickness of the shell, the Maxwell Garnett effective
medium theory was used. The theory allows calculating effective permittivity of the media
comprised of two materials, one of which is a matrix and another one is inclusion. The
Maxwell Garnett theory is valid in the case of a small concentration of the inclusion [34].
However, in a quasi-static regime, it is applicable for any inclusion concentration [35].
Effective permittivity of the composites in the quasi-static field was calculated as:

εe f f = εh + 3 f εh
εi−εh

εi+2εh− f (εi−εh)
(1)

where εh and εi were the relative permittivity of the matrix and inclusion, respectively, and f was
a volume fraction of the inclusion. For the present Fe@SiO2 composite εh = εSiO2 = 3, 9 [36],

εi = εFe = ∞ and f =
R3

Fe
(RFe+t)3 , where RFe = 1500 nm was iron particle radius [6] and t was

the thickness of the dielectric shell. The thickness varied from 30 to 210 nm. Taking εi as ∞
in (1) results in the following formula for εe f f

εe f f = εh + 3 f εh
1

1− f (2)

The theoretical model showed a decrease in permittivity by 86%, with an increase in
the thickness of the shell from 30 to 210 nm (Figure 10). The particle size distribution of
the initial iron powder can be found in Figure 3 from [6]. Another calculation technique
may be applied, which is first calculating the effective permeability of the paraffin and
silicon shell, and then using that result as the environmental permittivity for the iron [37].
However, if the model applied in the manuscript may be derived rigorously with account
for inclusion and shell shapes, another model is semi-empirical.

Measurements of the permittivity demanded blending of the Fe@SiO2 particles into
paraffin matrix. Consequently, it was necessary to evaluate the effective permittivity of the
system composed of core–shell particles and paraffin in order to compare experimental
and theoretical results. The permittivity was calculated using the Maxwell Garnett theory
as well [38]. For the Fe@SiO2 + Paraffin medium εh = εPara f f in = 2.25 [38], εi = εFe@SiO2 ,
which was calculated previously, and f = 0.35. In the presence of the paraffin matrix
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dramatic decrease in the permittivity was smoothed, allowing fine tuning of the ε′. The
permittivity dropped by 11%: at shell thickness of 30 nm, εFe@SiO2+Para f f in = 5.69, while at
150 nm εFe@SiO2+Para f f in = 5.09 (Figure 11).
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The permittivity of the pure CI in the paraffin medium (shell thickness of 0 nm at
Figure 11) was estimated according to (2) with εm = εPara f f in = 2.25 and f = 0.35.

3.3. Frequency Dispersions of Complex Permittivity and Permeability

Analysis of the reaction time variation allows assessing the impact of thickening of the
dielectric shell on electromagnetic properties (ε and µ) of the composite. Samples acquired
in more prolonged reactions tended to have a lower real part of permittivity (ε′), consistent
with a thicker shell (Figure 12A). Values of the ε′ in the quasi-static regime demonstrated a
good agreement with the theoretical estimation based on the Maxwell Garnett effective
medium theory (Figure 13). Frequency dispersions of the ε′ of pure CI and the composite
obtained in the half-hour reaction were indistinguishable, demonstrating that the shell was
not uniform yet in a half-hour experiment. The shell can be considered uniform, starting
with 90–100 nm thickness.
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Figure 13. Quasi-static permittivity vs. thickness of the dielectric shell deposited at different durations
of hydrolysis.

An increase in the shell thickness did not influence the imaginary part of the per-
mittivity (ε′′). The ε′′ accounts for a loss in the medium. In the analyzed composites,
conductive loss in the CI was a primary source of loss since SiO2 and paraffin wax are
low-loss materials (their dielectric loss tangents are ~0.002 [39] and ~0.007 [40]). Therefore,
the absence of the changes in the ε′′ dispersion demonstrated that the shell growth process
does not affect the conductivity of the CI.
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Both parts of the complex permeability (µ′ and µ′′) of the composite were lower than
in the pure CI that indicates a larger volume fraction of magnetic material in the composite
samples. The behavior of the frequency response curves of µ′ and µ′′ was the same for the
pure CI and composites that implies that magnetic properties of the CI were unaffected by
the shell.

The measured permittivity showed that a thin coating of 60 nm was not uniform: the ε′

value was almost identical to that of pure iron powder-based composite (Figures 14 and 15).
The amplitude of permeability also supported this proposition: thin SiO2 shells did not
significantly decrease this parameter. Further increase in thickness dropped quasi-static ε′

value from 5.8 to 5.3, by 9%. This was also according to the Maxwell Garnett calculations,
just as in the duration of the hydrolysis experiment. However, the increase in oxygen
content within the SiOx composition resulted in a slight increase in the ε′. This, in turn, was
probably due to an increase in the ε′ value of the dielectric shell itself, according to [18].
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For the rest of the observations, the ε′′, µ′ and µ′′ demonstrated the same dependencies
on thickness as in the hydrolysis duration experiment (Figure 14). Changes in the chemical
composition of the SiOx did not vary the magnetic properties of the composite since SiOx
possesses no magnetic order. The ε′′ did not depend on the shell thickness and composition,
showing that SiOx is a low-loss dielectric.
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4. Conclusions

Hydrolysis of TEOS in the presence of ammonia of different concentrations gave
uniform SiOx coating on a surface of carbonyl iron micro-particles when the thickness of
the coating was higher than 100 nm. Two techniques were found to increase the thickness
of the shell up to approximately 200 nm. One was simply to prolong the duration of the
deposition reaction to 4 h. Further prolongation was found to be ineffective for increasing
the thickness. After deposition and drying at 60 ◦C, the shell composition was estimated
at SiO3.3. The other technique was to change the ammonia concentration in the reaction
mixture: an increase in [NH3·H2O] concentration increased the thickness of the shell when
the duration of the deposition was constant. Simultaneously, [NH3·H2O] was found to
influence the composition of the shell. In relative terms, a decrease in [TEOS]/[NH3·H2O]
ratio from 4.5 to 0.75 enriched the silica with oxygen from SiO3.0 to SiO8.6. Although it can
be expected that the difference in chemical composition may vary the dielectric properties
of the silica, the difference in the electromagnetic performance of the Fe@SiO2 core–shell
powders was found to be governed primarily by the thickness of the shell. This was
estimated comparing the measured real permittivity values of the Fe@SiO2–paraffin wax
composites and theoretical values calculated following the Maxwell Garnett formula. The
new method to easily fine-tune the chemical composition and thickness of the uniform silica
shell deposited to carbonyl iron particles may be instructive for microwave performance
and biocompatibility adjustment in a wide range of applications, including magnetic
field sensors.

It can be expected, both from experience and the literature data given in the introduc-
tion section, that the dependencies reported here will remain the same when the size of
the iron core is higher than 3 micrometers, up to at least 200–500 micrometers. With the
decrease in the size of iron particles, an effective fraction of the SiO2 shell will increase,
which will undoubtedly affect the magnetic properties of the product. This effect may be
expected to be the most obvious when protecting iron nanoparticles instead of microparti-
cles. However, in general, the size of iron particles is deemed not to affect the mechanisms
of the SiO2 formation.
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