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Abstract: Knowledge of MHC II binding peptides is highly desired in immunological research,
particularly in the context of cancer, autoimmune diseases, or allergies. The most successful pre-
diction methods are based on machine learning methods trained on sequences of experimentally
characterized binding peptides. Here, we describe a complementary approach called MHCII3D,
which is based on structural scaffolds of MHC II-peptide complexes and statistical scoring functions
(SSFs). The MHC II alleles reported in the Immuno Polymorphism Database are processed in a
dedicated 3D-modeling pipeline providing a set of scaffold complexes for each distinct allotype
sequence. Antigen protein sequences are threaded through the scaffolds and evaluated by optimized
SSFs. We compared the predictive power of MHCII3D with different sequence-based machine
learning methods. The Pearson correlation to experimentally determine IC50 values for MHC II
Automated Server Benchmarks data sets from IEDB (Immune Epitope Database) is 0.42, which is
in the competitor methods range. We show that MHCII3D is quite robust in leaving one molecule
out tests and is therefore not prone to overfitting. Finally, we provide evidence that MHCII3D can
complement the current sequence-based methods and help to identify problematic entries in IEDB.
Scaffolds and MHCII3D executables can be freely downloaded from our web pages.

Keywords: bioinformatics; statistical scoring function; structure based binding prediction; MHC II
peptide binding

1. Introduction

The binding of antigen peptides to class II MHC molecules is mandatory for their
interaction with the T-cell receptor and the subsequent T-cell activation. The recognition of
MHC II with a bound peptide by a T-cell drives canonical immune response. In misrouted
immune responses, these interactions are associated with autoimmune diseases such as type
1 diabetes [1] or multiple sclerosis [2]. Moreover, MHC II presented peptides are considered
as key in the immunotherapy to treat allergies [3]. Finally, for cancer immunotherapy,
MHC II molecules and the MHC II pathway are of great importance [4]. Thus, identifying
binding peptides—also referred to as the T-cell epitopes of an antigen—is currently an
important target in basic research and clinical translation.

The mandatory step for any MHC II—T-cell interaction is the binding of a peptide.
Different types of physical interactions between a MHC II molecule and a bound peptide at
distinct positions along the binding pocket are responsible for specificity. Distinct pattern
of polar, charged and hydrophobic residues are found in the different HLA gene loci
of HLA-DP, HLA-DQ, HLA-DR (and the particular distinct HLA-DRB genes therein).
Patronov et al. [5], for example, discussed this in detail for the HLA-DP2 allele. Numerous
in vitro studies have been performed in order to determine properties of MHC II binders.
Subsequently, computational models and methods have been developed to predict the
binding of a certain peptide on a certain MHC II allotype.

The currently leading methods are based on the analysis of the sequence and the
corresponding binding affinity data from numerous binding assay experiments. The first
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generation prediction methods SYFPEITHI [6] and RANKPEP [7] used sequence pattern
and/or sequence profiles to represent binding (core) sequences in order to classify or
rank antigen fragments. An extension to profiles are the so called quantitative matrices
which include binding strength information [8,9]. Guan and coworkers [10] adopted a
quantitative structure activity relationship (QSAR) concept for the prediction of IC50 values.

Later on, machine learning approaches such as neuronal networks [11], support vector
machines [12] or decision trees [13], have been employed to infer the relationship between
peptide sequence and binding strength with respect to a certain MHC II allotype. The idea of
extrapolating binding specificity of experimentally uncharacterized MHC II allotypes from
characterized ones by MHC II sequence similarity was finally implemented in the methods
TEPITOPE [14], TEPTIOPEpan [15] and NetMHCIIpan [16].

With the increasing availability of structurally resolved MHC II molecules, a small
number of structure-based methods have been developed. These methods are generally
believed to be universal as they do not require specific experimental binding data for their
setup. They can actually employ structure modeling approaches such as docking [17–20],
threading [21,22] or molecular dynamics [22,23]. Zhang and coworkers assessed the princi-
pal limitations of structure-based methods [22] ending up with a moderate prognosis for
the success of such methods compared to their sequence-based counterparts. However,
the predictive power of the structure-based methods of Brodner [19] and Atanasova [20] is
comparable to sequence-based approaches.

So far, structure-based methods did not proceed beyond the proof of principle. Here
we present a new structure-based method, which allows for predicting of MHC II binding
peptides for any allotype in runtime sufficient for large scale application with an accuracy
comparable to the machine learning methods. For this purpose we employ template-
based modeling to obtain a set of scaffold MHC II-peptide complex structures for each
allotype. The scaffolds provide a simplified backbone representation of the MHC II-peptide
complex, enabling an efficient threading procedure employing optimized statistical scoring
functions (SSFs, a.k.a statistical energy function or knowledge-based potentials [24–26]).
Here we follow the concept described in Sippl [24], which uses the Boltzmann distribution
P(r) = 1/Ze−E(r)/kT as basis and expresses the energy E(r) as a function of the probability
distribution P(r)

E(r) = −kT ln P(r)− kT ln Z. (1)

Subsequently, the probability distribution P(r) is approximated by the observed
distribution of distances r. The part −kT ln Z in the above equation is constant and can be
omitted. The specific energy for a certain amino acid pair interaction then is

∆Eab(r) = −kT ln f ab(r)/ f (r) (2)

where f ab(r) is the distribution of the spatial distances r for a certain amino acid pair a, b
and f (r) is the reference state, in our case the distribution of distances regardless of the
involved amino acids pairs a, b. By summing up ∆Eab(r) for a given sequence S and a
given conformation C, the net energy ∆E(S, C) can be calculated. The prediction goal in
this work is to determine which peptide sequences fit better into the binding groove than
others. Thus we need to compare ∆E(S, C) values for different sequences S, which requires
a further level of normalization. Sippl used an artificial poly-protein for this purpose [27].
As this is time-consuming and not easy to adapt for different purposes, we use here the
statistic of the Wilcoxon-Mann-Whitney-Test as a discriminative score. Details are given in
our previous work on protein stability prediction [28].

Using the Automated Server Benchmarks obtained from the Immune Epitope Database
(IEDB) [29], we show that MHCII3D performs as well as the other methods reported therein.
We demonstrate that MHCII3D is complementing other methods, such that the combined
prediction performance of certain methods improves. We then compare MHCII3D with the
leading method, NetMHCIIpan [30] on a benchmark data set provided by the authors of
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NetMHCIIpan 3.1 [31]. While the prediction accuracy of NetMHCIIpan is better on this
test set, MHCII3D proves to be more robust in leave one molecule out tests.

2. Results and Discussion

In the following, first the prediction performance of our method in comparison and
combination with other methods is shown, either on correlation or binary classification.
We further briefly discuss the impact of binder/non-binder classifications regarding the
chosen IC50 cutoffs and qualitative assessments provided by authors and IEDB submitters,
respectively. The section closes with a discussion about the impact of peptide flacking
regions on the prediction performance.

2.1. Prediction Performance

MHCII3D provides three quantities, a raw binding score, a rank or an IC50 value,
which is denoted as MHCII3D-score, MHCII3D-rank and MHCII3D-IC50 in the figures
and tables below. For binary classification, a cutoff value for predicted and experimentally
determined IC50 needs to be applied in order to separate binders from non-binders. In the
past, different authors defined different thresholds. For example, Wang et al. [32] apply a
cutoff value of 1000 nM while Jensen et al. [31] use a value of 500 nM. For this work, we
followed the definition of Jensen et al. and use a cutoff of IC50< 500 nM for binders in all
classification experiments.

The performance of MHCII3D was tested on two data set: (i) the MHC II Weekly
Benchmarks provided at the IEDB database (http://tools.iedb.org/auto_bench/mhcii/
weekly/) and (ii) a set provided by Jensen et al. [31].

The IEDB database offers independent benchmark sets for MHC II binding data and
prediction results for currently six methods, including a consensus method [32]. The
methods are NetMHCIIpan-3.1 [16], NN-align [11], Comblib matrices [33], SMM-align [34],
and Tepitope [14]. At irregular intervals, new benchmark sets are added based on newly
added database entries. Table 1 summarizes the results of MHCII3D in comparison with the
other method. Corresponding ROC plots are provided in supplementary file S1. Included
are sets providing IC50 values and for which data are missing for at most one of the
methods. The results for the full sets are provided in supplementary files S2 and S3. For all
experiments on IEDB benchmarks, our IC50 estimation is based on a linear model derived
from the data set provided by Jensen et al.

Table 1. Classification performance (AUC) in comparison with other methods on the IEDB weekly
benchmarks. Numbers are shown for IEDB references providing IC50 values and predictions are
included for at least five of the pre-existing methods. a Result values are derived from the IEDB
database (download version, http://tools.iedb.org/auto_bench/mhcii/weekly/).
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2016-12-31—1028243

DRB1*04:04 861 468 0.861 0.798 0.784 − 0.827 0.803 0.800

2016-12-31—1028242

DRB1*03:01 863 492 0.855 0.777 0.776 − 0.747 0.788 0.727

2016-12-31—1028241

DRB1*01:01 885 642 0.890 0.876 0.849 0.789 0.815 0.864 0.819

http://tools.iedb.org/auto_bench/mhcii/weekly/
http://tools.iedb.org/auto_bench/mhcii/weekly/
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Table 1. Cont.
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2016-12-31—1028057

DRB1*01:01 29 22 0.890 0.851 0.753 0.851 0.740 0.851 0.773
DRB1*04:01 29 25 0.920 0.870 0.770 − 0.525 0.760 0.710
DRB1*07:01 29 27 0.889 0.907 0.796 0.778 0.722 0.963 0.722
DRB1*15:01 29 26 0.679 0.692 0.705 − 0.699 0.744 0.487

2016-12-31—1027578

DRB1*03:01 14 10 1.000 0.975 0.900 − 0.925 0.950 0.775
DRB1*07:01 19 12 0.929 0.952 0.976 0.964 0.899 1.000 0.845
DRB3*01:01 20 7 0.945 0.901 0.879 0.703 − 0.846 0.571
DRB4*01:01 14 4 0.800 0.600 0.725 0.725 − 0.650 0.725

2017-11-24—1032311

DRB1*01:01 16 14 1.000 0.964 1.000 0.589 1.000 0.964 1.000

2018-11-23—1029531

DRB1*01:01 11 4 1.000 0.857 0.661 0.429 0.500 0.929 0.714

2019-03-22—1034502

DRB1*03:01 21 3 0.907 0.759 0.870 − 0.611 0.796 0.463
DRB1*08:02 21 5 0.900 1.000 0.912 − 0.688 0.950 0.925
DRB1*11:01 21 5 0.912 0.825 0.863 − 0.787 0.863 0.700
DRB1*15:01 21 4 0.853 0.882 0.794 − 0.882 0.882 0.941

The results show that our method can provide predictions of similar quality to machine
learning-based approaches. In two cases MHCII3D is better or as good as the best perform-
ing competitor.

In addition to AUC values, IEDB also provides single prediction results for each
entry and method. At the date of this analysis, nine of such benchmark sets are provided,
containing predicted and measured IC50 values for 13,339 HLA-DR epitopes. Predictions
from all six predictors are available for a subset of 1078 epitopes. Figure 1 shows the
classification performance of our approach in comparison with the other methods listed
in the data set. The MHCII3D based prediction achieves an AUC of 0.811 on this subset,
which is in the range of the performance of the other six methods. Table 2 summarizes a
comparison in terms of accuracy and false/true positive rates based on optimal thresholds,
and Table 3 provides a statistical analysis of the ROC curves of Figure 1.
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NetMHCIIpan−3.1 AUC 0.88 (95%CI 0.85−0.90)
NN−align AUC 0.86 (95%CI 0.84−0.89)
Comblib matrices AUC 0.78 (95%CI 0.75−0.81)
SMM−align AUC 0.84 (95%CI 0.81−0.87)
Tepitope (Sturniolo) AUC 0.77 (95%CI 0.74−0.81)
Consensus IEDB AUC 0.85 (95%CI 0.82−0.87)
MHCII3D−score AUC 0.81 (95%CI 0.78−0.84)
MHCII3D−IC50 AUC 0.81 (95%CI 0.78−0.84)

Figure 1. Classification performance of six existing prediction methods and our approach on a set of
1078 entries provided by Immune Epitope Database (IEDB) weekly benchmarks (2016-12-31–2019-03-22).
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Table 2. Prediction accuracy (ACC) compared to other methods on a set of 1078 entries of the IEDB
weekly benchmarks. Numbers are computed based on an optimal threshold (OT) utilizing the
software tool StAR [35]. Besides the AUC and the accuracy, the false positive (fp), true positive (tp),
the number of non-binders (N), and the number of binders (P) are shown. * In the case of Tepitope,
the AUC value is inverted (1-AUC).

Classifier AUC ACC OT fp tp N P

NetMHCIIpan.3.1 0.875 0.833 1490.73 0.314 0.891 306 772
NN-align 0.862 0.823 1200.40 0.330 0.883 306 772
SMM-align 0.841 0.803 1672.00 0.415 0.890 306 772
Comblib matrices 0.782 0.771 25,138.90 0.513 0.883 306 772
Tepitope * 0.773 0.777 −3.32 0.546 0.905 306 772
Consensus IEDB 0.849 0.810 69.11 0.431 0.905 306 772
MHCII3D-IC50 0.811 0.794 2248.70 0.484 0.904 306 772

Table 3. Statistical analysis of the ROC curves presented in Figure 1. The prediction methods are
compared in terms of ∆AUC values (upper triangle) and p-values (lower triangle), computed by the
StAR [35] software tool.
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NetMHCII − 0.013 0.034 0.092 0.102 0.027 0.064
NN-align 0.015 − 0.021 0.079 0.088 0.013 0.051
SMM-align 3.358 × 10−08 0.003 − 0.059 0.067 0.008 0.030
Comblib 4.326 × 10−16 6.066 × 10−11 9.136 × 10−07 − 0.009 0.066 0.029
Tepitope 1.704 × 10−11 4.226 × 10−08 1.602 × 10−05 0.635 − 0.075 0.038
Cons. IEDB 1.114 × 10−05 0.032 0.236 5.020 × 10−11 1.728 × 10−07 − 0.037
MHCII3D 5.015 × 10−09 1.849 × 10−05 0.017 0.051 0.024 0.002 −

On this subset, MHCII3D achieves better results than the methods Comblib matri-
ces and Tepitope but cannot reach the performance of the machine learning approaches
(NetMHCIIpan.3.1, NN-align, and SMM-align).

The statistical analysis in Table 3 shows that our approach provides a significantly
different prediction performance than most other methods, except for Comblib matrices.

We were also interested in the correlations between prediction results and experimen-
tally determined IC50 values, respectively. Table 4 summarizes the correlations in terms
of Pearson correlation coefficients (PCC, upper triangle) and Spearman’s rank correlation
coefficients (SRCC, lower triangle).

Table 4. Correlations between prediction methods and experimentally determined IC50 values,
respectively. Based on 1078 of 13,339 entries provided by IEDB weekly benchmarks (31 December
2016–22 March 2019). Upper triangle: Pearson correlation coefficient; lower triangle: Spearman’s
rank correlation coefficient.
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Exp. IC50 − 0.486 0.395 0.306 0.278 −0.332 0.407 0.423
NetMHCII 0.755 − 0.858 0.773 0.600 −0.458 0.673 0.752
NN-align 0.723 0.931 − 0.807 0.583 −0.384 0.640 0.580
SMM-align 0.675 0.910 0.915 − 0.456 −0.382 0.510 0.461
Comblib 0.559 0.772 0.739 0.755 − −0.281 0.551 0.399
Tepitope −0.519 −0.616 −0.615 −0.637 −0.475 − −0.619 −0.417
Cons. IEDB 0.687 0.900 0.928 0.924 0.808 −0.719 − 0.534
MHCII3D 0.568 0.734 0.690 0.668 0.637 −0.558 0.704 −
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Our approach achieves the second-highest PCC to the experimentally determined
values; only NetMHCIIpan achieved a higher PCC. Further, MHCII3D predictions correlate
quite well with the predictions of NetMHCIIpan and the IEDB Consensus.

The second evaluation set was utilized by Jensen et al. [31] in a five-fold cross-
validation setup to show the classification performance of their method. We also evaluated
our approach based on this setup. In opposite to various machine-learning techniques,
the underlying statistical scoring functions (SSFs) of our method are not explicitly trained
on specific binding data but are derived from a set of multimeric 3D protein structures
omitting MHC II molecules. Thus, raw binding scores and rank values are not prone to
overfitting on training values and are not affected by fold definitions in cross-validation
setups. Estimated IC50 values, in contrast, depend on training data. Consequently, this
value can overfit to a specific set of data. An n-fold cross-validation experiment can be used
to reveal a tendency for overfitting. Jensen et al. also defined a leave-one-molecule-out
(LOMO) experiment, based on the cross-validation setup, to show the prediction ability on
uncharacterized alleles. Here all binding values for a certain allele are removed from the
training sets, and predictions are only performed on this specific allele. Table 5 summarizes
the results of these experiments for DRB alleles.

Table 5. Comparison of prediction performances between NetMHCIIpan-3.2 and MHCII3D. a Values derived from Jensen et al. [31].
Results for a five-fold cross-validation experiment (5-fold) and a leave-one-molecule-out (LOMO) experiment, as defined by Jensen
et al. are shown.

NetMHCIIpan-3.2 MHCII3D- MHCII3D- MHCII3D-IC50

Molecule #Peptides #Binders 5-Fold a LOMO a Score Rank 5-Fold LOMO

DRB1*01:01 10, 412 6376 0.832 0.783 0.693 0.695 0.693 0.693
DRB1*01:03 42 4 0.678 0.711 0.592 0.566 0.572 0.566
DRB1*03:01 5352 1457 0.816 0.699 0.596 0.596 0.594 0.594
DRB1*04:01 6317 3022 0.809 0.766 0.602 0.603 0.597 0.597
DRB1*04:02 53 19 0.701 0.789 0.625 0.630 0.625 0.625
DRB1*04:03 59 14 0.841 0.862 0.630 0.635 0.629 0.629
DRB1*04:04 3657 1852 0.812 0.791 0.682 0.684 0.679 0.679
DRB1*04:05 3962 1654 0.827 0.799 0.677 0.679 0.672 0.672
DRB1*07:01 6325 3456 0.875 0.830 0.712 0.716 0.710 0.710
DRB1*08:01 937 390 0.844 0.804 0.714 0.715 0.718 0.718
DRB1*08:02 4465 2036 0.834 0.765 0.646 0.650 0.635 0.637
DRB1*09:01 4318 2164 0.833 0.791 0.699 0.700 0.697 0.697
DRB1*10:01 2066 1521 0.923 0.905 0.744 0.745 0.735 0.736
DRB1*11:01 6045 2667 0.864 0.767 0.692 0.693 0.691 0.691
DRB1*12:01 2384 759 0.868 0.800 0.728 0.729 0.730 0.730
DRB1*13:01 1034 520 0.857 0.731 0.720 0.720 0.722 0.722
DRB1*13:02 4477 2249 0.885 0.701 0.647 0.649 0.648 0.648
DRB1*15:01 4850 2107 0.834 0.780 0.725 0.726 0.725 0.725
DRB1*16:02 1699 989 0.883 0.866 0.696 0.697 0.688 0.688
DRB3*01:01 4633 1415 0.888 0.801 0.614 0.615 0.609 0.609
DRB3*02:02 3334 1055 0.869 0.756 0.648 0.648 0.640 0.641
DRB3*03:01 884 510 0.840 0.734 0.737 0.737 0.738 0.738
DRB4*01:01 3961 1540 0.822 0.726 0.662 0.662 0.663 0.663
DRB4*01:03 846 525 0.841 0.794 0.733 0.734 0.736 0.736
DRB5*01:01 5125 2430 0.849 0.765 0.654 0.655 0.654 0.654

Average 0.837 0.781 0.675 0.675 0.672 0.672

Median 0.841 0.785 0.679 0.681 0.676 0.676
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While the prediction performance is below those of NetMHCIIpan, the results also
show the robustness of our approach. As mentioned above, the score and rank values
are independent of the fold definitions and are therefore not reported separately for the
LOMO experiment. It was shown in several studies related to the prediction of protein
properties [28,31,36], that machine learning methods are prone to a reduced performance
in such tests, so does NetMHCIIpan in this case. In contrast, the MHCII3D IC50 estimation
results are stable, and results differ only marginally between the 5-fold and the LOMO
experiments.

2.2. Qualitative versus Quantitative Measurement

During this work we noticed that repeatedly the qualitative assessment of an IEDB
entry contradicts the presented quantitative measurement. For entries annotated as binders
(positive), IC50 values as high as 500,000 nM are provided. On the other hand, negative
entries with very low IC50 can be found. Figure 2 shows the distribution of IC50 for entries
of the data set provided by Jensen et al. [31], which can be mapped to the IEDB and all
currently provided HLA-DR entries in the IEDB data set.

A B
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Figure 2. Qualitative vs. quantitative measurement. Distribution of log-transformed IC50 values grouped by qualitative
measurement. Data are shown for (A) those entries of the data set provided by Jensen et al. [31], which can be mapped to
the IEDB, and (B) the complete IEDB data set (HLA-DRB entries). IC50 values were transformed as described by Jensen et
al. (1 − log(IC50)/ log(50,000)); therefore IC50 values >50,000 nM were set to 50,000 nM beforehand. Entries defined as
binders (Positive, Positive-Low, Positive-Intermediate, Positive-High) are shown in blue, non-binder (Negative) are shown
in red. Mean values are indicated as dotted lines; the black dashed lines indicate IC50 = 500.

We were able to map 35,529 entries between these two data sets. Based on this subset,
we performed three additional five-fold cross-validation experiments to investigate the
impact of different definitions for the classification. First, we evaluated the effect of the
alternative binder/non-binder cutoff of IC50 = 1000 nM. In a second experiment, we
validated our method based on the mapped qualitative IEDB assessment. In the final
analysis, we only include those 21,724 entries where the qualitative assessment matches
the classification based on an IC50 value of 500. Fold definitions were adopted from the
experiments before. Table 6 summarizes the results of these experiments in comparison to
a cross-validation based on the default IC50 threshold of 500 nM.

As shown in Table 6, the classification performance (AUC) increases with the per-
centage of peptides defined as binders. This effect can be partly explained by the higher
portion of binders in the data set. Filtering for non-contradicting entries in the set leads
to a clear separation of binder and non-binder as more than two-thirds of contradictions
between IC50 value and qualitative measurements occur in a range between IC50 of 500 nM
and 5000 nM (see supplementary file S4). This is also reflected in the achieved AUC values.
Unfortunately, detailed per peptide/allele prediction data for other methods are not pub-
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licly available for this data set. Thus we were not able to analyze and compare these three
experiments with competitor methods.

Table 6. Effect of various classification definitions. In literature, no consistent IC50 cutoff is used to
define a peptide as a binder. Further, the qualitative label assigned by authors often contradicts the
quantitative value. This table shows the prediction performance on 35,529 IEDB entries on various
binder definitions: a IC50 cutoff 500 nM, b IC50 cutoff 1000 nM, c quality assessment from IEDB.
d Performance on non-contradicting database entries (IC50 threshold = 500 nM). The number of
available entries is reduced to 21,724 in this case.

IC50 = 500 a IC50 = 1000 b IEDB Qual. c Non-Contradicting d

Molecule #Pep. #Bind. AUC #Bind. AUC #Bind. AUC #Pep. #Bind. AUC

DRB1*01:01 7493 4553 0.697 5201 0.699 6783 0.740 5270 4553 0.785
DRB1*01:03 40 3 0.586 4 0.542 40 − 3 3 −
DRB1*03:01 2246 589 0.622 786 0.629 1503 0.662 1323 583 0.699
DRB1*04:01 2652 1186 0.616 1488 0.621 2346 0.690 1494 1184 0.728
DRB1*04:02 38 19 0.693 22 0.653 35 0.733 22 19 0.842
DRB1*04:03 59 14 0.635 23 0.591 53 0.726 20 14 0.810
DRB1*04:04 1185 584 0.695 703 0.723 1038 0.771 729 583 0.828
DRB1*04:05 1790 759 0.707 959 0.718 1542 0.787 1009 759 0.847
DRB1*07:01 2298 1116 0.731 1334 0.732 1962 0.781 1454 1116 0.836
DRB1*08:01 35 4 0.726 4 0.726 27 0.630 12 4 0.750
DRB1*08:02 1849 691 0.674 865 0.682 1445 0.690 1097 691 0.746
DRB1*09:01 1703 723 0.673 906 0.662 1468 0.659 961 723 0.723
DRB1*10:01 187 149 0.740 162 0.802 171 0.843 165 149 0.871
DRB1*11:01 2157 919 0.718 1116 0.728 1773 0.776 1306 919 0.836
DRB1*12:01 897 166 0.774 265 0.782 589 0.776 476 166 0.874
DRB1*13:01 144 40 0.732 44 0.743 76 0.732 108 40 0.788
DRB1*13:02 1940 749 0.656 925 0.663 1528 0.677 1162 749 0.725
DRB1*15:01 2361 980 0.733 1233 0.747 1934 0.757 1405 978 0.829
DRB1*16:02 129 74 0.531 97 0.623 127 0.819 76 74 0.845
DRB3*01:01 1641 276 0.575 422 0.569 1090 0.624 827 276 0.646
DRB3*02:02 858 119 0.699 168 0.707 438 0.726 539 119 0.776
DRB3*03:01 15 0 − 0 − 12 0.472 3 0 −
DRB4*01:01 1826 670 0.712 885 0.715 1465 0.759 1031 669 0.825
DRB4*01:03 3 3 − 3 − 3 − 3 3 −
DRB5*01:01 1983 907 0.697 1102 0.704 1662 0.760 1229 907 0.818

Sum 35,529 15,293 18,717 29,110 21,724 15,281

Average 0.679 0.685 0.721 0.792

Median 0.696 0.705 0.733 0.818

2.3. Consensus Prediction

As shown in Table 4, the predictions of our approach highly correlate with some
existing methods and reach the second-highest PCC regarding the experimentally deter-
mined values. Consequently, it can be assumed that it complements those methods well.
Wang et al. suggest a rank-based consensus prediction that utilizes the predictions of
the three top-scoring methods. This allows to combine predictions of methods providing
IC50 estimations and approaches with an alternative scoring on different scales. Thereby,
the predictions of these methods are ranked for a specific set of peptides. Then the median
rank for each peptide is computed, representing the consensus prediction [32].

At the time of this writing, the three top-scoring methods in the benchmark were
NetMHCIIpan-3.1, NN-align, and SMM-align. Since we could not numerically reproduce
the rank-based IEDB consensus prediction and the fact that IC50 values are provided for all
of these methods, we adapted the consensus method by computing the median predicted
IC50 value instead of a median rank. In the following, we show results based on this
adaptation based on the three methods (Top3) and with our approach in replacement of
SMM-align (Top2 + M), in comparison with the Consensus IEDB prediction (IEDB). This
analysis is performed on the same subset of 1078 entries of the IEDB weekly benchmarks
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as described above. Table 7 summarizes the results for this experiment. The results for all
IEDB benchmark sets providing prediction values for the top methods are presented in
supplementary files S5 and S6.

Table 7. Performance of consensus predictions. Shown are the results reported by the IEDB bench-
mark service for the IEDB consensus method (IEDB), a consensus-based on the predictions of
NetMHCIIpan-3.1, NN-align, and SMM-align (Top3) and consensus-based on the predictions of
NetMHCIIpan-3.1, NN-align, and MHCII3D (Top2 + M).
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DRB1*01:01 941 682 0.842 0.863 0.865 0.388 0.447 0.478 0.698 0.734 0.746
DRB1*07:01 137 90 0.924 0.931 0.932 0.576 0.492 0.556 0.749 0.787 0.794
all 1078 772 0.849 0.872 0.874 0.407 0.432 0.481 0.687 0.741 0.753

The combination of our method with the two top-scoring tools shows the best perfor-
mance in terms of classification (AUC) and regression (PCC, SRCC). Especially the PCC
could be strongly improved (0.407 vs. 0.481) compared to the other consensus predictions.

A consensus method can improve the prediction performance by mitigating outliers
of the underlying methods. Thereby, a key advantage of a median-based method is the
higher robustness against those outliers. Consequently, such a consensus method only can
improve the prediction performance if outliers are not common among methods. Figure 3
summarizes the results of an outlier analysis. For this, outliers were defined as follows:
(i) The classification of an entry is wrong, meaning a peptide experimentally shown as a
binder was predicted as a non-binder, and vice versa, (ii) and the prediction error (IC50)
must be higher than 500 nM. By this, definition NetMHCIIpan-3.1 shows 198 outliers on
the IEDB subset of 1078 entries, NN-align 190, SMM-align 252, and MHCII3D 310. Most of
these outliers are common among the methods, where the outliers of our approach overlap
slightly less with the machine learning methods than those of SMM-align.

A B

Figure 3. Outlier analysis based on a set of 1078 entries provided on the IEDB database. (A) Outliers among the top three
performing prediction methods. (B) Outliers among the top two performing methods and MHCII3D.



Int. J. Mol. Sci. 2021, 22, 12 10 of 14

2.4. Effect of Core Peptide Flanking Regions

In contrast to MHC I molecules, MHC II molecules have an open binding groove. Thus,
peptides of variable lengths, mostly between 13 and 25 residues long [37], can bind to MHC II.
Thereby, the binding affinity of a peptide to the MHC II complex is primarily determined by
a nine-residues long binding-core but is also affected by the flanking residues [38,39].

Consequently, we investigated the effects of various peptide lengths (9, 11, 13, and 15
residues long). Therefore, we placed peptide conformations of corresponding lengths in
the binding groove of the MHC II models. The conformations were derived from known
structures from the PDB, and superimposing was used to determine their positions within
the binding grooves. Figure 4 summarizes the results of this analysis. The results show
an improved prediction performance with longer peptide conformations. The Pearson’s
correlation coefficient shows a maximum at peptide length 13. We finally use 15-mer
peptides, as this had slightly better performance in the other tests.
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Figure 4. Prediction performance in terms of (A) classification (AUC), (B) Pearson’s correlation coefficient and (C) Spear-
man’s rank correlation coefficient for various binding peptide lengths in the MHC II models, grouped by MHC II alleles.

2.5. Availability

MHCII3D is provided as a standalone version, available for Windows and Linux.
can be freely downloaded from our web pages https://pbwww.che.sbg.ac.at/MHCII3D.
Further, we provide a REST web service for the analysis of small data sets. An example
script for Python for the access of the service is provided in Supplement S7.

3. Materials and Methods
3.1. Statistical Scoring Functions

Our approach is based on statistical scoring functions (SSFs) as implemented by
MAESTRO [28]. Thereby, the prediction utilizes distance-dependent residue pair SSFs
(pSSFs), scoring Cα-Cα interactions and Cβ-Cβ interactions, respectively. MAESTRO SSFs
were initially designed to predict stability changes upon mutations, but have shown useful
for other tasks. Here, interactions within the binding peptide and between the peptide
and the MHC II complexes are scored. Special pSSFs were compiled to put a focus on
interactions between distinct polypeptide chains. For this, we used a precompiled list from
the PISCES database [40] (percentage identity: 50%, maximum resolution: 3.0, maximum
R-value: 1.0). This set was then filtered for multimeric structures containing at least one
polypeptide with a length between 5 and 20 residues, resulting in a list of 1227 PDB entries.

3.2. HLA-DR Models

3D models of MHC II complexes are required for our approach. In order to over-
come the limitation to alleles with known, experimentally determined models, at least

https://pbwww.che.sbg.ac.at/MHCII3D
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100 models for each HLA-DR allele were generated utilizing the homology modeling tool
MODELLER [41]. In the case of the availability of multiple, equally suitable template
structures, models were generated based on each of them. All models include an alanine
nonamer binding peptide as a placeholder, representing the peptide binding core.

Subsequently, the resulting models were scored with multiple scoring tools (DOPE [42],
Rosetta [43], ProSa2003 [27], and MAESTRO [28]). The scores are then summarized to a
model meta score. The top-scoring models were then utilized for predictions. All resulting
models, including template structures, and scores are provided at our M23D database
(https://pbwww.che.sbg.ac.at/m23d).

Template structures, required for homology modeling, were derived from PDB per-
forming a BLAST search with the sequence of HLA-DRA*01:01. Subsequently, the resulting
168 PDB entries were checked by hand for structural errors, and any linkers between
the MHC II complexes and binding peptides were removed according to the definitions
provided by the corresponding publications. Finally, the chains in all template structures
were renamed to the same scheme (chain A for the α-chain, chain B for the β-chain, and
chain P for the binding peptide). During predictions, multiple peptide conformations are
used. In order to enable an easy and fast substitution of placeholder with these alternative
conformations, the binding pockets of the models are superimposed to reference PDB entry
4MDJ, which is the top-ranking template model in terms of resolution and R-factor.

3.3. Binding Score

The binding score is computed in four steps: (i) first, from the M23D database of HLA
3D models, the two models with the best meta score are selected for a certain HLA allele.
Then, for each of these models, a set of five alternative peptide backbone conformations is
derived from the modeling template structures. These alternative conformations replace
the peptide placeholder in the models. Thus, small conformational varieties were obtained,
which increase the prediction performance compared to a static model approach (see Sup-
plementary File S8). This approach allows utilizing various sizes of peptide conformations
without requiring new models of the main complex. (ii) The potential peptide sequence is
then applied to each model and peptide conformation, respectively, and a pSSF score is
computed. Thereby, the target sequence is slid through the peptide conformations, and
scores are computed for each position covering at least the 9-mer core. (iii) Subsequently,
the best fitting position of the sequence is determined based on these scores. (iv) Finally, a
consensus is calculated by averaging the scores of each selected combination of model and
peptide conformation.

3.4. Binding Rank

In addition to the raw binding score, an easy to interpret binding rank is implemented,
similar to the rank value provided by NetMHCII. The rank ranges between 0.00 and 1.00,
where low values indicate a binder. The binding rank compares a peptide score to back-
ground scores based on a set of 11,353 peptide sequences sampled from a non-redundant
data set derived from PISCES database [40] (percentage identity: 20%, maximum resolution:
3.0, maximum R-value: 1.0).

3.5. IC50 Estimation

A linear model is used to convert the above described binding rank into an IC50
estimation. Thereby, a linear regression between log-transformed IC50 values listed in the
data set provided by Jensen et al. [31] and the corresponding binding ranks (r) was used,
resulting in the following equation for the MHCII3D-IC50 estimation:

IC50pred. = 500001−(−0.4265748 r+0.51225) (3)

https://pbwww.che.sbg.ac.at/m23d
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3.6. Validation Data Sets

Performance tests were performed on two data sets. For the first test set we use the
weekly benchmark sets provided by the Immune Epitope Database (IEDB) [44]. At the time
of this writing the sets contain binding values for in sum 13,927 epitopes and 21 alleles,
respectively.

The second set published by Jensen et al. [31] includes 87,364 experimental determined
IC50 binding values for 36 HLA-DR alleles. All IC50 values in this set are presented log-
transformed, as described by Nielsen et al. [45]. The set was also used to compute a linear
model for the estimation of IC50 values (see above). For binary classification testing, an
IC50 threshold of 500 nM was used.

We also derived a subset of 35,529 entries from this data set, which can be mapped to
the IEDB database, based on the given allele, peptide, and IC50 value. On this subset we
performed various experiments regarding the binder/non-binder definition. We further
removed cases where the quantitive value contradicts the qualitative label assigned by
the authors. Thereby an IC50 threshold of 500 nM was used, and we did not distinguish
between the different levels of positive labels (positive, positive-low, positive/intermediate,
and positive-high). This "non-contradicting" set includes 21,724 entries.

3.7. Statistical Analysis

For statistical analyses, we utilized multiple software tools: R [46], and its package
pROC [47], was used for the computations of AUC values and correlation coefficients.
Plots were generated using the R package ggplot2 [48]. For a more detailed analysis, we
used the StAR [35] web service (http://melolab.org/star/), which in addition to a general
analysis of the prediction performance, provides an implementation of a nonparametric
test by De Long et al. [49] for comparing ROC curves.

4. Conclusions

With MHCII3D we can show that the structure-based prediction of MHCII binding
peptides is competitive to comparable sequence-based methods. On average, the predictive
power of MHCII3D is lower than that of the leading machine learning methods, but still
higher than that of other competitors. There is considerable room for improvement of our
method regarding the prediction of binding affinities. On the other hand, MHCII3D is
able to improve a consensus-based prediction method and thus complements the existing
approaches.

In order to improve the prediction of binding affinities we aim to add more structural
variability to the scaffolds by introducing local structural movements, smaller ones within
and larger ones outside the 9-mere core region. We also plan to investigate if the utilization
of (predicted) properties of the binding peptide itself is beneficial.

So far, MHCII3D and other methods concentrate on affinity prediction. Recently,
several attempts have be made to include mass spectrometry data from MHC eluted
ligands [30,50] in order to improve machine learning models for binary classification
of binding peptides. Thereby, information about in vivo processed antigens is incorpo-
rated in the models which shifts the prediction from potential binders to biologically
relevant binders.

Taking these different aspects into account, i.e., complementarity of MCHII3D, the
performance of machine learning approaches and availability of novel experimental data,
we will next focus on the integration of these components in order to further improve the
predictive power of our method.

Supplementary Materials: The supplementary materials are available online at https://www.mdpi.
com/1422-0067/22/1/12/s1.
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