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Abstract: In this work, the effect of microfibrillated cellulose (MFC) and cellulose nanocrystals
(CNCs) on the biodegradation, under composting conditions, of hierarchical PLA biocomposites
(HBCs) was studied using a full 22 factorial experimental design. The HBCs were prepared by
extrusion processing and were composted for 180 days. At certain time intervals, the specimens were
removed from the compost for their chemical, thermal and morphological characterizations. An
ANOVA analysis was carried out at different composting times to study MFC and CNCs’ effects on
biodegradation. The specimen’s mass loss and molecular weight loss were selected as independent
variables. The results show that the presence of MFC enhances the PLA biodegradation, while with
CNCs it decreases. However, when both cellulosic fibers are present, a synergistic effect was evident—
i.e., in the presence of the MFC, the inclusion of the CNCs accelerates the HBCs biodegradation.
Analysis of the ANOVA results confirms the relevance of the synergistic role between both cellulosic
fibers over the HBC biodegradation under composting conditions. The results also suggest that
during the first 90 days of incubation, the hydrolytic PLA degradation prevails, whereas, beyond that,
the enzymatic microbial biodegradation dominates. The SEM results show MFC’s presence enhances
the surface biodeterioration to a greater extent than the CNCs and that their simultaneous presence
enhances PLA biodegradation. The SEM results also indicate that the biodegradation process begins
from hydrophilic cellulosic fibers and promotes PLA biodegradation.

Keywords: hierarchical biocomposites; factorial design; microfibrillated cellulose; cellulose nanocrystals;
composting; biodegradation

1. Introduction

Two of the main disadvantages of synthetic plastics today are that they are produced
from petrochemical compounds and that their waste remains in the environment for long
periods. Increasing pressure on manufacturers by new environmental and waste manage-
ment policies, consumer demand, and the escalating oil prices drive trends in composite
technology away from traditional materials. The tendency is to use green composite ma-
terials to replace common plastics in consumer products to improve performance while
reducing weight and cost [1,2].

Polylactic acid (PLA) is linear aliphatic polyester that meets ASTM biodegradability
requirements and can fully biodegrade in soils and under composting conditions without
any problem [3–6]. However, its brittleness, low heat distortion temperature, and low-
impact resistance restrict its use in high-performance applications. To improve its perfor-
mance under high demands while maintaining its biodegradability, various researchers
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have incorporated cellulose fibers [7–11] or cellulose nanofibers [12–17] to increment its
HDT and improve its impact properties, among other mechanical and thermal properties.

As a result of these research efforts, PLA is used today in a wide variety of appli-
cations [18–20]. In order to increase the competitiveness of biodegradable composite
materials in such a way that they can displace conventional non-biodegradable materials
in very dynamic and demanding sectors such as packaging, construction, textiles, and
the automotive industry, a new generation of hierarchical or multiscale biodegradable
composite materials (HBC) containing micro- and nanosized mechanical reinforcements
are currently being developed [21–27].

The biodegradability of PLA [28–32] and its composites containing microsized cel-
lulose [33–37] or nanocellulose [38–42] are well documented. These studies have shown
that PLA is capable of biodegradation under both aerobic and anaerobic conditions and
that it is more recalcitrant to biodegradation than polycaprolactone (PCL) and polyhy-
droxybutyrate (PHB). Regarding the biodegradability of PLA, the results of these studies
show, in general terms, that microsized cellulose increases the susceptibility of PLA to
biodegrade [24,33,43,44]. On the other hand, regarding the nanosized cellulosic fibers, the
results are contradictory; some studies show that it tends to increase the biodegradation of
PLA [41,42,45], while others indicate that it decreases it [13,39].

In addition to this, and as far as we know, studies aimed at studying the biodegra-
dation, under composting conditions, of hierarchical PLA composites have not yet been
carried out. In other words, the role that the type of cellulosic fibers and their quantity
plays in the biodegradability of PLA during composting is unknown. This knowledge
will undoubtedly be of great use to subsequently carry out a correct disposal of these new
materials at the end of their useful lives.

Based on the above, this work aims to study, using a Design of Experiments (DOE)
approach, the effect of the type of cellulosic fibers (microsized and nanosized) and their
contents on the biodegradation of hierarchical PLA composites (HBCs). A Factorial Ex-
perimental Design (FED) is a DOE class that allows us to study the effects of two or more
factors and their interactions on a response of interest [46]. The use of a FED to understand
the relevance and possible interaction of the factors under study was used to contribute to
the understanding of the biodegradation of HBCs when composting. As shown in previous
studies [9,47–50], a FED involves the study of the influence of multiple factors (independent
variables) on an experimental response or responses (dependent variables) [46]. In this
work, a full 22 factorial design with a central point was chosen, since this kind of FED is a
rotatable orthogonal design that allows us to inspect the possible presence of curvature
in the experimental region studied. Two responses were chosen for the analysis: the drop
in the molecular weight of PLA, representative of the chemical structure, and the weight
loss of the sample, as an indicator of composite bioassimilation. The HBC composites were
prepared by extrusion and composted for 180 days. At certain time intervals, the specimens
were removed from the compost for their chemical, thermal and morphological characteri-
zations and later an ANOVA analysis was performed using the percentage of mass loss of
the samples and the percentage of molecular weight loss as dependent variables.

2. Materials

PLA was purchased from NatureWorks®® 3251D, with an average molecular weight
(Mn) of 47.4 kg/mol, a glass transition temperature (Tg) of 59 ◦C, and a melting point (Tm)
of 170 ◦C. The microfibrillated cellulose (MFC) used was obtained from henequen fibers
(agave fourcroydes) using a procedure detailed in [9] and was 500 ± 35 µm in length, on
average, and 12 ± 2 µm in diameter, on average. The cellulose nanocrystals (CNCs) were
purchased from The University of MAINE Process Development Center, having an average
of 296 ± 10 nm in length and 21.4 ± 2 nm in diameter. Three-month-old mature food waste
compost was used for the composting process.
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3. Experimental Procedure
3.1. Statistical Experimental Design

A full 22 factorial design with three central points was used to assess the effect of
cellulose (MFC) and cellulose nanocrystal (CNC) contents on the biocomposites during the
composting time. The response variables chosen were biocomposites weight loss and the
PLA molecular weight loss. Analyses of variance (ANOVAs) with p = 0.05 were performed
using the software Design-Expert 7.0 (Stat-Ease, Inc., Minneapolis, MN, USA). Pareto plots
were used to visualize the effects of the factors or their interactions and the surface response
and contour plots to analyze the effect of cellulose and CNC contents during the incubation
time. The factor levels studied and experimental matrix obtained according to factorial
design are shown in Table 1.

Table 1. Factor levels and experimental design matrix.

Levels Factors

MFC
(wt.%)

CNC
(wt.%)

−1 (lower) 0 0
1 (higher) 20 5

Experimental matrix design
PLA

(wt.%)
MFC

(wt.%)
CNC

(wt.%)
HBC1 100 0 0
HBC2 80 20 0
HBC3 95 0 5
HBC4 75 20 5

HBC5 (central point) 87.5 10 2.5

3.2. Composite Preparation

The hierarchical biocomposite materials (HBCs) were made using a BRABENDER
mixing chamber PLE-330 plasticorder (C.W Brabender Instruments Inc., South Hackensack,
NJ, USA) with three heating zones. The temperature profile used was 170 ◦C in the 3 zones,
the speed of the blades was 50 rpm, and the mixing time was 20 min. Composites were
molded by compression molding press in a Carver MH 4389-4021 semiautomatic press
(Carver Inc., Wabash, IN, USA) equipped with heating plates and a forced water circulation
cooling system. To shape the samples, stainless steel molds were used to generate square
biocomposite plates with widths and thicknesses of 120 and 1 mm, respectively. The press
temperature was 170 ◦C, and the pressure was 5500 lb. From the laminates, specimens
of dimensions 18 × 5 × 1 mm were obtained. The specimens were dried at 50 ◦C under
vacuum until a constant weight was reached, and then the specimens were stored in glass
desiccators at a constant temperature of 25 ± 1 ◦C and humidity 25 ± 2%.

3.3. Biodegradation—Composting Setup

The HBC specimens were placed in an IM4000 rotary drum composter of 140 L
capacity (Forest City Models and Patterns Ltd., Thorndale, ON, Canada). The main unit
of the composter, i.e., the drum, is made of polypropylene 0.71 m in length and 0.91 m
wide. The drum was rotated manually once every 24 h for proper mixing, and aerobic
conditions were maintained by opening up both half side doors of the drum after rotation.
Three-month-old mature food waste compost was used [51]. The C/N ratio used was 25:1,
pH = 7, and the temperature was controlled at around 40–50 ◦C during the composting.
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3.4. Analytical Characterization
3.4.1. Scanning Electronic Microscopy (SEM)

The morphological evolution of the sample surfaces during composting was
characterized using a scanning electron microscope JEOL SEM model LV5400 (JEOL,
Mexico City, Mexico) operated at 20 kV. The samples were previously covered with gold.

3.4.2. Weight Loss Monitoring

The weight loss (wL) of the hierarchical composite materials during composting
was determined as follows: before the composting process, the samples were dried at
50 ◦C/24 h/with vacuum until constant weight (w1) was reached. Then, they were buried
in the compost for 6 months. A group of samples was taken every 30 days. They were
carefully cleaned with distilled water and vacuum-dried at 50 ◦C/24 h until they reached
constant weight (w2). The percentage of weight loss was calculated with the following
equation [11]:

wL =

(
w1 − w2

w1

)
× 100 (1)

where:
w1 = is the initial dry sample weight;
w2 = is the dry weight of a sample after composting biodegradation.

3.4.3. Gel Permeation Chromatography (GPC)

The molecular weight determination of the HBCs was carried out using a
Gel Permeation Agilent Chromatograph 1100 series, (Agilent Technologies, Inc.,
Santa Clara, CA, USA). Samples were prepared for analysis by dissolving 5 mg in
5 mL of HPLC grade chloroform.

3.4.4. Infrared Fourier Transformed Spectroscopy (FTIR)

Infrared analysis was performed using a Thermo Scientific Nicolet 8700 spectropho-
tometer (Thermo Electron Scientific Instruments LLCD, Madison, WI, USA). The samples
were analyzed using the photo-acoustic mode.

3.4.5. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry analysis was carried out on a Perkin Elmer DSC7
differential scanning calorimeter (Perkin Elmer, Inc., Waltham, MA, USA). The samples were
analyzed using a heating ramp of 10 ◦C/min, in a range of 45–200 ◦C in an N2 atmosphere.
The sample crystallinity content, XC, was computed according to Equation (2):

Xc(%) =
∆Hm − ∆Hcc

∆H0
mwPLA

(2)

where: ∆Hm is the composite’s fusion enthalpy, ∆H0
m is the 100% crystalline PLA’s fusion

enthalpy taken as 93 J/gr [42], ∆HCC is the cold crystallization enthalpy, and WPLA is the
weight fraction of the PLA phase in the composite.

4. Results
4.1. Morphological Analysis

The change in the surface morphological characteristics of the HBCs studied due to be-
ing subjected to different incubation days in a rotary composter can be seen
in Figures 1 and 2. While all the samples have essentially smooth surfaces before be-
ing composted (0 days), after 30 days of incubation, evident signs of surface deterioration
can be seen mainly in HBC2 (Figure 1) and HBC4 (Figure 2), samples that include MFC
and MFC/CNCs in their compositions, respectively. Although HBC5 also contains MFC
and NCC, the changes are very slight. This may be due to the fact that the contents of
said cellulosic fibers are half with respect to HBC4. On the other hand, neither HBC1 nor
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HBC3 show appreciable surface damage, although HBC3 contains 5% NCC. This apparent
lack of surface damage during the first 30 days of incubation could be attributed to the
hydrophobic nature of PLA [3,5]. These findings suggest the addition of the cellulosic fibers
decreases the PLA hydrophobicity due to cellulosic fibers’ hydrophilic natures [13,14,42],
enhancing their biodegradability.
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Figure 2. HBC4 and HBC5 SEM micrographs at different composting days (0, 30, 90, 150, and
180 days).

When examining the samples with 90 days of composting, one can see that the
deterioration of the samples is much more evident in the samples that contain cellulosic
fibers (HBC2, HBC3, HBC4, and HBC5) compared to the one that does not have any
(HBC1). Likewise, it can be seen that the higher the fiber content, the greater the evidence
of surface damage, e.g., HBC4 > HBC2 > HBC5 > HBC3. This behavior agrees with literature
reports that the presence of cellulosic fibers promotes PLA biodegradation [24,33,38,45].
At 150 days of incubation, all the HBCs show evidence of surface deterioration, including
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HBC1. Furthermore, roughness, the presence of small holes or cracks, and even signs
of erosion are evident in HBC2, HBC4 and HBC5, with these changes being much more
noticeable in HBC4 and HBC2 than in HBC5. The micrographs of the samples incubated
for 180 days continue to show the trend described above for 150 days; the samples show
clear signs of biodeterioration in the order HBC4 > HBC2 > HBC5 >> HBC3 > HBC1.

It should be noted that the HBC4 samples show the greatest surface erosion, suggest-
ing that they are the ones that underwent the greatest biodegradation. These findings
suggest that although the addition of cellulosic fibers separately (MFC or CNC) promotes
the biodegradation of PLA, their simultaneous presence enhances biodeterioration. In
Figure 3a,b, SEM micrographs of HBC2 and HBC4 with 150 days of composting are shown,
respectively. In both micrographs, the presence of microorganisms was observed on both
the surface of the sample and surrounding the cellulosic fibers. These findings indicate
that the biodegradation process began from hydrophilic fillers and then promotes PLA
biodegradation [14,33]. In Figure S1 (Supplementary Data), the fracture surface SEM mi-
crographs of HBC2 and HBC4 before composting are shown, where it can be seen that the
NCC tends to adhere to the MFC surface S1 (d) and S1 (e). Additionally, in Figure S2, the
degree of deterioration of the HBCs can be observed at three different resolutions, ×100,
×1000 and ×2000 for HBC1 (a–c), HBC2 (d–f), HBC3 (g–i) and HBC4 (j–l) after 180 days
of composting.
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4.2. Weight Loss

The HBC weight loss curves for different incubation times are shown in Figure 4,
where it can be seen that, as expected, the weight loss rises as the incubation time increases,
although not at the same rate for all biocomposites. During the first 30 days, all HBCs show
similar weight loss, and it is up to 90 days of incubation that differences can be perceived
between them. It is even noticeable that weight loss increases significantly after 90 days
of incubation at different rates as the incubation time increases. It is interesting to note
that cellulose microfibers (HBC2) addition results in a much more significant weight loss
than the PLA matrix (HBC1), while the inclusion of cellulose nanocrystals reduces the
biocomposite weight loss.



Polymers 2021, 13, 1855 8 of 22
Polymers 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 4. HBCs weight loss changes during composting. 

This difference in the behavior of MFC and CNC in the biodegradation of PLA can 
be attributed to the fact that, as cellulose fibers’ contents are much higher, they give the 
composite material a greater hydrophilic character, which facilitates the attack of micro-
organisms [52,53]. On the other hand, the low content of CNCs does not modify the hy-
drophobic character of PLA appreciably. Likewise, CNC’s nucleating power increases the 
crystalline phase of PLA, which is difficult for the microorganisms to attack [13,39]. As 
can be seen in Figure 4, the simultaneous presence of MFC and CNC increases the weight 
loss of the biocomposites after 90 days of incubation and practically doubles the weight 
loss of PLA after 180 days of composting. Considering the weight loss as a measure of the 
bioassimilation of the material by the microorganisms present in the compost and the 
weight loss of HBC1 after 180 days as a reference (100%), we see that the presence of MFC 
(HBC2) increases biodegradation by 46%, the inclusion of CNC (HBC3) decreases it by 
21%, while the simultaneous presence of MFC and CNC (HBC4 and HBC5) increases 
biodegradation by 60% and 21%, respectively. This behavior suggests that there is a 
synergistic effect between MFC and CNC. 

4.3. Molecular Weight Analysis 
Figure 5 shows the loss in average molecular weight (Mn) of HBCs with composting 

time. As can be seen, the drop in Mn is similar for all biocomposites during the first 30 
days, and, thereafter, differences in Mn loss are observed between them. Furthermore, 
during all the composting, the drop in Mn is greater for all compounds, except HBC3, 
compared to HBC1, suggesting that the inclusion of CNCs (HBC3) inhibits the abiotic 
and biotic degradation of PLA. This loss in molecular weight is due to the combined ef-
fect of the abiotic (hydrolysis) and biotic (biodegradation) factors that affect the PLA 
matrix. Hydrolysis induces the cleavage of the chemical bond in the main chain by the 
reaction with water, initiated by protonation, followed by the addition of water and ester 
bond cleavage [13]. The degradation usually begins with the hydrolysis of the PLA 
chains induced by the diffusion of water within the materials. 

Figure 4. HBCs weight loss changes during composting.

This difference in the behavior of MFC and CNC in the biodegradation of PLA can
be attributed to the fact that, as cellulose fibers’ contents are much higher, they give
the composite material a greater hydrophilic character, which facilitates the attack of
microorganisms [52,53]. On the other hand, the low content of CNCs does not modify the
hydrophobic character of PLA appreciably. Likewise, CNC’s nucleating power increases
the crystalline phase of PLA, which is difficult for the microorganisms to attack [13,39].
As can be seen in Figure 4, the simultaneous presence of MFC and CNC increases the
weight loss of the biocomposites after 90 days of incubation and practically doubles the
weight loss of PLA after 180 days of composting. Considering the weight loss as a measure
of the bioassimilation of the material by the microorganisms present in the compost and
the weight loss of HBC1 after 180 days as a reference (100%), we see that the presence of
MFC (HBC2) increases biodegradation by 46%, the inclusion of CNC (HBC3) decreases it
by 21%, while the simultaneous presence of MFC and CNC (HBC4 and HBC5) increases
biodegradation by 60% and 21%, respectively. This behavior suggests that there is a
synergistic effect between MFC and CNC.

4.3. Molecular Weight Analysis

Figure 5 shows the loss in average molecular weight (Mn) of HBCs with composting
time. As can be seen, the drop in Mn is similar for all biocomposites during the first
30 days, and, thereafter, differences in Mn loss are observed between them. Furthermore,
during all the composting, the drop in Mn is greater for all compounds, except HBC3,
compared to HBC1, suggesting that the inclusion of CNCs (HBC3) inhibits the abiotic and
biotic degradation of PLA. This loss in molecular weight is due to the combined effect
of the abiotic (hydrolysis) and biotic (biodegradation) factors that affect the PLA matrix.
Hydrolysis induces the cleavage of the chemical bond in the main chain by the reaction
with water, initiated by protonation, followed by the addition of water and ester bond
cleavage [13]. The degradation usually begins with the hydrolysis of the PLA chains
induced by the diffusion of water within the materials.
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The reduction in the molecular weight of PLA caused by the non-enzymatic random
cleavages of the ester groups leads to the formation of oligomers and lactic acid. When the
molecular weight reaches about 10,000–20,000 g.mol−1, microorganisms such as fungi and
bacteria can metabolize macromolecules by converting them to carbon dioxide, water and
humus; this step occurs on the surface of the material. The biodegradation in compost of
PLA composites reinforced with microcrystalline cellulose was described as a slower disin-
tegration rate and was observed for the composites and attributed to a higher resistance to
water uptake and diffusion through the composites compared to pure PLA [38,54].

It should be noted that the inclusion of the CNCs alone delays the Mn loss [39], while
the presence of MFC promotes it [43]. Likewise, when both cellulosic materials are present,
the drop in molecular weight practically doubles the weight loss with respect to PLA at
180 days of composting. Considering the Mn loss of HBC1 after 180 days of incubation
as a reference (100%), we see that the presence of MFC (HBC2) increases the Mn loss
by 8%, while the inclusion of CNC (HBC3) decreases it by 21%. On the other hand, the
simultaneous presence of MFC and CNC (HBC4 and HBC5) increases the Mn loss by 31%
and 6%, respectively. These findings suggest that there is a synergistic effect between MFC
and CNC during the PLA biodegradation under composting conditions.

4.4. Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of the HBCs studied at different incubation times are presented in
Figure 6. Those corresponding to HBC1 are shown in Figure 6a, where the characteristic
bands of PLA can be observed, located around 2997, 2940, 1760, 1457, 1045, 870, and
760 cm−1 in the uncomposted sample (0D). Likewise, it can be seen that there is a great sim-
ilarity between the HBC1 spectra for all the different incubation times, which suggests that
the by-products of PLA degradation were solubilized in water or were bioassimilated [55].
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Figure 6. HBC infrared spectra for different composting days in samples: (a) HBC1; (b) HBC2; (c) HBC3; (d) HBC4;
(e) HBC5.
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The infrared spectra of the HBC2 biocomposites as a function of the incubation
time are presented in Figure 6b, where, in addition to the PLA peaks, the characteristic
absorption bands of cellulose at 2890, 1370, 1160, 1110, and 900 cm−1 can be seen in the
uncomposted material (0D) [56]. During the first 90 days of composting, there are no
substantial changes in the spectra; however, at 150 and 180 days, the presence of new
absorption bands can be observed at 3500, 1620, 1540 cm−1, which can be attributed to
the presence of microorganisms on the surface of the samples [57]. It can also be observed
that the intensity of the characteristic bands of cellulose at 2890 cm−1 increases concerning
those of PLA, indicating a more significant presence of cellulose on the surface of HBC2.

Regarding HBC3, the characteristic bands of the CNCs, which are essentially the
same as those of microfibrillated cellulose, are observed in the spectrum corresponding
to 0D shown in Figure 6c. Likewise, it can be observed that the spectra corresponding to
the first 150 days of incubation are similar, and it is the samples that were incubated for
180 days that the presence of new absorption bands at 3500, 3300, 1620, 1540 cm−1 is
evident. However, there is not observed an increase in the intensity of the CNC bands that
could suggest a greater presence of them on the surface of HBC3, as occurs in HBC2. This
may be because the low content of CNCs in the composite makes it difficult to identify
using FTIR.

As far as HBC4 is concerned, in Figure 6d, it can be seen that the spectrum corre-
sponding to 0D is very similar to those described above for uncomposted HBC2 and HBC3.
This is expected since both types of cellulosic fibers, MFC and CNC, are found in HBC4.
However, the behavior observed in the HBC4 spectra with the incubation time is more
similar to those described for HBC2 than for HBC3 but is much more intense. The intensity
of the bands at 3500, 3300, 1620, and 1540 cm−1 are much higher, indicating that there is a
greater degree of biodegradation in HBC4 compared to HBC2 and HB3, which contain only
MFC or CNC, respectively [57,58]. This suggests that there may be some synergy between
cellulosic fibers during the biodegradation process.

Finally, in Figure 6e, it can be seen that HBC5 shows an intermediate behavior between
HBC4 and HBC1. This could be attributed to the low contents of MFC and NCCs.

4.5. Differential Scanning Calorimetry (DSC) Analysis

The HBCs first heating thermograms for different composting days are shown in
Figure 7, where it can be seen, as expected, that the characteristic thermogram of a semicrys-
talline PLA are clearly distinguished in all the HBCs without composting (0D), e.g., the
Tg peak around 60 ◦C, the cold crystallization temperature (Tcc) at 100 ◦C and the melting
temperature (Tm) at 160 ◦C. Additionally, it can be observed that as the incubation duration
increases, these transition peaks suffer specific positional changes that are summarized in
Table 2, along with the sample crystallinity content, computed with Equation (2).

An analysis of the data in Table 2 shows that in the case of HBC1, which only contains
PLA, it has a glass transition temperature (Tg) of 60 ◦C at 0D. It remains constant the first
90 days of incubation and then drops to 58 ◦C with 180D. A similar trend can be observed
for the cold crystallization temperature (Tcc), first melting temperature (Tm1), and the
second one (Tm2), e.g., they remain constant the first 90 days of incubation and then drop.

This behavior indicates that a loss of 25–30% in molecular weight is not reflected in
Tg, Tcc, and Tm changes, while a decrease of 50% or more in Mn causes Tg, Tcc, and Tm
to shift to lower temperatures. Similar behavior has been reported in [59,60]. The sample
crystallinity content Xc (%) after processing, in the case of 0D, and just as it is removed
from the compost bin in the different incubation days, is also shown in Table 2. It can be
seen that Xc (%) shows a different behavior; it increases during the first 90 days and then
gradually drops as the incubation time increases. This behavior can be attributed to the fact
that during the first 90 days of incubation, PLA undergoes a hydrolytic degradation that
mainly affects the amorphous fraction capable of crystallizing. After 90 days of incubation,
PLA undergoes hydrolytic degradation and enzymatic degradation due to microorganisms
that affect both the amorphous and crystalline phases [3,30]. Likewise, it has been reported
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that in the final stages of biodegradation, PLA loses the ability to crystallize due to the
presence of by-products of biodegradation [30].
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Figure 7. HBC thermograms for different composting days in samples: (a) HBC1; (b) HBC2; (c) HBC3; (d) HBC4; (e) HBC5.
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Table 2. Tg, Tcc, Tm1 and Tm2 and Xc of HBCs with 0, 30, 60, 90, 120 and 150 days of composting.

HBC1 0 Days 30 Days 90 Days 150 Days 180 Days

Tg (◦C) 60 60 60 59 58
Tcc (◦C) 97 97 95 94 93
Tm1 (◦C) 151 150 150 149 149
Tm2 (◦C) 166 163 162 160 159
Xc (%) 4 38 41 35 32
HBC2 0 days 30 days 90 days 150 days 180 days
Tg (◦C) 59 59 59 58 58
Tcc (◦C) 97 96 95 110 99
Tm1 (◦C) 151 151 151 147 140
Tm2 (◦C) 165 163 161 156 151
Xc (%) 9 43 32 27 21
HBC3 0 days 30 days 90 days 150 days 180 days
Tg (◦C) 58 59 57 58 57
Tcc (◦C) 102 104 104 101 100
Tm1 (◦C) 154 154 153 151 140
Tm2 (◦C) 162 161 160 158 151
Xc (%) 7 42 37 23 24
HBC4 0 days 30 days 90 days 150 days 180 days
Tg (◦C) 59 58 57 56 55
Tcc (◦C) 97 96 95 96 95
Tm1 (◦C) 151 150 150 150 145
Tm2 (◦C) 162 162 161 160 155
Xc (%) 12 45 31 22 11
HBC5 0 days 30 days 90 days 150 days 180 days
Tg (◦C) 58 58 57 56 55
Tcc (◦C) 98 96 95 96 96
Tm1 (◦C) 152 151 151 151 141
Tm2 (◦C) 161 161 160 159 152
Xc (%) 8 40 32 25 16

In the case of HBC2, the Tg at 0D is similar to that of HBC1 and shows a similar trend
with the incubation time. During the first 90 days, the Tcc of HBC2 is similar to HBC1;
however, after that, the Tcc of HBC2 is higher than HBC1. The Tm1 and Tm2 of HBC2
differ from that of HBC1 after 150 days of incubation and they are lower. On the other
hand, the Xc (%) contents for HBC2 are higher than HBC1 at 0D, increasing during the
first 30 incubation days, and decreasing steadily afterwards. These differences in behavior
between HBC1 and HBC2 can be attributed to the presence of MFCs, which promote,
on the one hand, more significant crystallization of PLA at short biodegradation times
and a higher biodegradation rate due to its greater hydrophilicity on the other. During
hydrolytic degradation, they promote the growth of PLA crystals, whereas the presence of
microorganisms accelerates the biodegradation [24,33,43–45]. For HBC3, the Tg values are
slightly lower than HBC1 and HBC2, whereas their behavior is related to the incubation
time being similar to these two. A similar behavior can be observed regarding Tcc, i.e., the
starting value is higher than HBC1 and HBC2, while its behavior with the incubation time
is similar to both of them, i.e., it remains constant for the first 90 days and then decreases.
The crystallinity content Xc (%) at 0D is greater than HBC1 but less than HBC2. Its behavior
concerning incubation time is more similar to HBC2 than to HBC1—that is, it increases
during the first 30 days of incubation and gradually decreases.

Due to the erosion of the composite material, the high hydrophilicity of CNCs pro-
motes the biodegradation of PLA. These results confirm that CNCs have a great capacity to
promote crystallization at short times, whereas at long times they enhance biocomposite
biodegradation [36,41,42].

With respect to HBC4, although the value of Tg at 0D is similar to the other three HBCs,
its behavior with the incubation time is different. Tg steadily decreases as time increases.
The Tg value at 180 days of composting is the lowest of the four studied biocomposites. The
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value of Tcc is similar to those of HBC1 and HBC2 but less than HBC3, and its evolution
with the incubation time is similar to the other ones. Regarding Tm1 and Tm2, the observed
behavior is much more similar to HBC1 than to HBC2 and HBC3. Regarding Xc (%), at 0D,
the value is higher than all other materials, and its change concerning the incubation time
is similar to HBC2 and HBC3—that is, it increases in the first thirty days and subsequently
decreases. However, it is important to note that the drop is a bit more pronounced in
this case. The crystallinities of the HBC4 samples, after 150 days of composting, are the
lowest considering all the materials studied. Finally, HBC5 samples show an intermediate
behavior between HBC4 and HBC1 during the composting, similar to the one pointed out
in the FTIR results.

These results suggest two-stage degradation for PLA, a hydrolytic degradation at a
duration of less than 90 days for incubation and an enzymatic degradation induced by the
proliferation of microorganisms at a duration of greater than 90 days for composting. There
are also indications of a possible synergistic effect between MFC and NCC, especially in
the second stage of PLA degradation.

4.6. Statistical Experimental Design

With the aim to study the role that both MFC and CNC have in HBC biodegradation
under composting conditions, an analysis of variance (ANOVA) was carried out at 30,
90, 150, and 180 days of incubation. The HBC weight loss and the Mn loss were selected
as the dependent variables. The results of the ANOVA analysis for the HBC weight loss
for the different incubation times can be seen in the Pareto graphs shown in Figure 8. As
can be seen, for any composting time, the MFC contents is the variable that has the most
influence on weight loss, followed by the MFC–CNC interaction and at last by the CNC
contents. The relevance of the MFC–CNC interaction can be observed in the interaction
graphs presented in Figure 8, where a dramatic change in the behavior of the CNC contents
during the composting process can be seen. In absence of MFC (black line), as the CNC
content increases, the HBCs weight loss decreases, i.e., the presence of CNCs only delays
the composites biodegradation, whereas, in the presence of the MFC (red line), the behavior
is the opposite—the composites weight loss increases with CNC content. Additionally, it
can be noted that the slope of the black lines drops with the incubation times, suggesting
the CNC’s delaying effect diminishes over long composting times.

Figure 9 shows the response surfaces and contour graphs for weight loss at different
composting times. The characteristic warping can be seen in all the response surface graphs
because the MFC–CNC interaction was statistically significant, while in the case of the
contour graphs, it can be seen that the contour curves present curvature. In the absence
of interaction, the contour lines would be straight lines. Likewise, the areas of greatest
(red) and least (blue) biodegradation can be distinguished. It can also be observed that
the effect of the incorporation of the CNCs in the HBCs is greater during the first 90 days
of composting, while at extended times (greater than 90 days), its effect decreases. For
example, 30 days after composting, the effect of incorporating 5% CNCs increases weight
loss by 68% in the presence of 20% MFC and decreases biodegradation by 48% in the
absence of MFC. At 180 days of composting, the increase is 40% and the decrease is of the
order of 30% with and without MFC in the composite material.
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Figure 10 shows the ANOVA results for the loss of molecular weight (Mn). In this
figure, it can be seen that the trends in terms of the role played by both independent
variables, MFC and CNC, in the drop in molecular weight are very similar to those
described for weight loss—that is, there is a significant similarity in the way that the
presence of both MFC and CNC affects biodeterioration and loss of molecular weight
during composting.
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Figure 11 shows the response surfaces and contour graphs for Mn loss at different
composting times. The response surface graphs show that the characteristic twist due to
the MFC–CNC interaction is present, whereas, in the case of the contour graphs, it can be
seen how the contour curves present curvature. In the case of the 30D incubation days,
the interaction is so strong that the contour lines resemble a hyperbolic plot. Likewise, the
areas of greatest (red) and least (blue) biodegradation can be distinguished. It can also be
observed that the effect of the incorporation of the CNCs in the HBCs is greater during
the first 90 days of composting, while, at extended times (greater than 90 days), its effect
decreases without MFC; in the presence of MFC, it does not depend on the composting
time, i.e., it is almost constant. For example, after 90 days of composting, the effect of
incorporating 5% CNCs increases the Mn loss by 20%, with MFC, and decreases it by 20%
in the absence of MFC. At 180 days of composting, the increase is 24% and the decrease is
of the order of 10% with and without MFC in the composite material.
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5. Conclusions

The effect of the incorporation of microsized cellulose (MFC) and cellulose nanocrys-
tals (CNCs) during the composting of hierarchical PLA biocomposites (HBCs) was studied
in this work using a factorial experimental design.

The statistical analysis shows that MFC contents and the MFC–NCC interaction were
statistically significant during all the composting processes for weight loss and Mn loss.
The CNC contents show to be significant only during the last stage of composting.

Regarding the weight loss results, it was found that after 180 days of incubation, the
presence of MFC increases the PLA biodegradation by 46%, while the CNCs decrease it
by 21%. However, their simultaneous presence increases PLA biodegradation by 60%.
Considering the Mn loss results, it was found that MFCs increase the PLA molecular weight
drop by 8%, CNCs decrease it by 10%, and the simultaneous presence of MFCs and CNCs
increases the Mn loss by 31%. This behavior suggests that the MFC–NCC interaction is a
synergistic one.

The SEM results show that MFC’s presence enhances the surface biodeterioration
over longer times when compared with the CNCs and that the HBCs containing both
cellulosic fibers show the greatest surface biodeterioration, suggesting that their simulta-
neous presence enhances the PLA biodegradation. The SEM results also indicate that the
biodegradation process begins from hydrophilic cellulosic fibers and promotes
PLA biodegradation.

The FTIR and DSC results suggest two-stage degradation for PLA, a hydrolytic degra-
dation during the first 90 days of incubation, and enzymatic degradation, induced by
the proliferation of microorganisms, at times greater than 90 days. In addition, indi-
cations of a possible synergistic effect between MFC and NCC during the composting
process, especially in the second stage of PLA degradation when the enzymatic microbial
biodegradation dominates, were also found.
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