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Abstract

Diffusion-weighted MRI makes it possible to quantify subvoxel brain microstructure and to

reconstruct white matter fiber trajectories with which structural connectomes can be cre-

ated. However, at the border between cerebrospinal fluid and white matter, or in the pres-

ence of edema, the obtained MRI signal originates from both the cerebrospinal fluid as well

as from the white matter partial volume. Diffusion tractography can be strongly influenced by

these free water partial volume effects. Thus, including a free water model can improve dif-

fusion tractography in glioma patients. Here, we analyze how including a free water model

influences structural connectivity estimates in healthy subjects as well as in brain tumor

patients. During a clinical study, we acquired diffusion MRI data of 35 glioma patients and

28 age- and sex-matched controls, on which we applied an open-source deep learning

based free water model. We performed deterministic as well as probabilistic tractography

before and after free water modeling, and utilized the tractograms to create structural con-

nectomes. Finally, we performed a quantitative analysis of the connectivity matrices. In our

experiments, the number of tracked diffusion streamlines increased by 13% for high grade

glioma patients, 9.25% for low grade glioma, and 7.65% for healthy controls. Intra-subject

similarity of hemispheres increased significantly for the patient as well as for the control

group, with larger effects observed in the patient group. Furthermore, inter-subject differ-

ences in connectivity between brain tumor patients and healthy subjects were reduced

when including free water modeling. Our results indicate that free water modeling increases

the similarity of connectivity matrices in brain tumor patients, while the observed effects are

less pronounced in healthy subjects. As the similarity between brain tumor patients and

healthy controls also increased, connectivity changes in brain tumor patients may have

been overestimated in studies that did not perform free water modeling.

1 Introduction

Structural connectomes are one of the cornerstones of quantifying the human brain and its

macro-scale connectivity in-vivo. These connectomes are based on a parcellation of the brain
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as well as on white matter (WM) diffusion tractography. As this fiber reconstruction is limited

due to macroscale imaging, the accuracy, interpretability, and generalizability of structural

connectomes created from diffusion MRI (dMRI) is still limited [1]. Recently, it has been

shown that WM tractography is also influenced by free water partial volume effects [2], which

might be especially relevant in surgical treatment planning of tumor patients with large

edema. Several methodological improvements have been proposed to address this issue [3–5].

Including a free water model (FWM) in diffusion tractography aims at correcting two dis-

tinct, yet closely related aspects: 1) partial volume effects due to a voxel size larger than brain

microstructures, e.g., at the border between the corpus callosum and ventricles, and 2) partial

volume effects due to a voxel-wide mixture of parenchyma with free water, which exists in

presence of peritumoral edema. Thus, these two artifacts occur at different scales. While an

increase in image resolution would reduce the number of type 1 artifacts (clear border between

distinct materials), there would be no effect on the number of type 2 artifacts (infiltration).

The majority of studies analyzing the effects of including a FWM focus on scalar-valued

maps such as fractional anisotropy (FA) derived from dMRI measurements. Measurable effects

were shown for associations with delusions in chronic schizophrenia [6], stress-related neural

pathology in depression [7], classification of Parkinson’s disease and atypical parkinsonism

[8], target definition in glioblastoma radiotherapy [9], as well as for the diagnosis of mild cog-

nitive impairment and Alzheimer’s disease [10].

However, structural connectomes for multivariate analysis of glioma patients [11, 12] are

often implemented without explicitly modeling the free water compartment. Especially in the

presence of peritumoral edema, future studies could enhance the accuracy and predictiveness

of these multivariate connectomes by including a FWM in diffusion tractography.

A variety of different free water modeling techniques have been published. Loosely, they

can be categorized into methods that are applicable to single-shell diffusion data, and methods

that can only be applied to multi-shell acquisitions. For multi-shell acquisitions, it is possible

to directly fit an appropriate mathematical model to the raw diffusion data in order to estimate

the water fraction [13]. Such a model can also be refined to include diffusion kurtosis effects

[14]. Different multi-compartment models can also include isotropic compartments, and thus

reconstruct fiber directions while taking account of vasogenic edema. Instead of assuming a

fixed diffusivity of compartments, in recent publications the isotropic compartments is fitted

using a spectrum of diffusivities. Modeling vasogenic edema with agarose gel, those multi-

compartment models can be verified in-vitro [15, 16].

However, state-of-the art mathematical models are often not applicable to clinical data.

First, they rely on multi-shell data, which is often not available in clinical settings. Second, they

require a lot of computing power and take more time than available when working with

patients.

For single-shell acquisitions, which are common in clinical settings, a direct model fit is not

possible. Instead, some sort of regularization needs to be introduced. This is possible via spatial

regularization [17], or via deep learning as in [18].

In our recent publication [19], we showed that a novel deep learning based method, where

the neural network is fitted individually for each subject, produces very good results on syn-

thetic data, healthy subjects and brain tumor patients. The method does not depend on a spe-

cific MRI protocol, and produces reliable results across a range of acquisition settings. Under

https://github.com/weningerleon/DLFreeWaterModel, an open source implementation in

python is available together with an exemplary application. With diffusion tractography-based

estimation of fiber-connectivity being applied for surgical planning with the aim of maximal

safe tumor resection, but preservation of functionally relevant white-matter tracts, we analyzed
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Pauwelsstraße 30, 52074 Aachen, Germany,

ekaachen@ukaachen.de.

Funding: This work was funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation) – grant 269953372/GRK2150, the

DFG grant ME 3737/19-1, and the START Program

(AZ141/16) of the Faculty of Medicine, RWTH-

Aachen University.

Competing interests: The authors declare that the

research was conducted in the absence of any

commercial or financial relationships that could be

construed as a potential conflict of interest.

https://github.com/weningerleon/DLFreeWaterModel
https://doi.org/10.1371/journal.pone.0239475
mailto:ekaachen@ukaachen.de


how this free water mapping and elimination technique influences tractography-based struc-

tural connectomes for brain tumor patients.

As it is not possible to obtain a groundtruth connectome for lesioned brains, the changes in

connectivity when including the FWM are compared to an age- and gender-matched healthy

control group, as well as to the individual contralateral hemisphere. As inter-hemispheric dif-

fusion MRI variance has been shown to be comparable to the inter-subject variance in healthy

subjects [20], we assumed that an increase in the inter-hemisphere as well in the inter-subject

similarity of the non-lesioned brains would be a first indicator of the plausibility of tractogra-

phy findings. Comparing tumor patients to the control group, the lesions should cause stron-

ger diversions from the mean connectome. However, the free-water effects in peritumoral

edema also cause diversion in the connectivity estimates. We hypothesised that including the

FWM should lead to reduced diversions due to free-water effects, while preserving true white-

matter alterations due to the lesion itself. Thus, even though different tumor characteristics

such as tumor volume, location or growth kinetics have varying impact on the structural con-

nectome, the FWM should lead to a relative increase in inter-subject and inter-hemisphere

similarity especially in those patients with marked perifocal edema, while preserving stronger

similarities in healthy subjects compared to tumor patients.

2 Materials and methods

2.1 Data

35 patients with cerebral gliomas (11 WHO IV, 15 WHO III, 9 WHO I/II), as well as 28 age-

and sex-matched controls were prospectively enrolled in a study at the University Hospital

Aachen.

All subjects underwent T1 and dMRI scans. For the T1 acquisition, the sequence was as fol-

lows: TE = 2.01 ms, TR = 2300 ms, 176 slices with a slice thickness of 1 mm, flip angle = 9˚,

field of view = 256 mm, voxel size = 1 mm isotropic, and a 256 × 256 matrix. The dMRI images

were single-shell with b-value = 1000 s/mm2, one b = 0 s/mm2, TE = 81 ms, TR = 6300 ms,

anterior-posterior phase encoded, 64 gradient directions, 55 axial slices, FoV = 216 mm and

an isotropic voxel size of 2.4 mm. In addition, one b = 0 s/mm2 image with reversed phase-

encoding blips (posterior-anterior) was acquired to correct susceptibility induced distortions.

All participants gave written informed consent prior to study enrollment. This study was

approved by the local ethics committee (EK 294/15), and conducted in accordance with the

standards of Good Clinical Practice and the Declaration of Helsinki. Only patients >18 and

<80 years of age and with a Karnofsky index of�70 were included. Three patients had previ-

ously been treated surgically and two of them had additionally received radiochemotherapy.

All other patients were naive to tumor-specific treatment prior to enrollment in the study.

2.2 Preprocessing

First, the dMRI acquisitions were corrected for susceptibility-induced correction with the FSL

TOPUP toolbox [21] as described in [22], and for eddy currents and motion artifacts with FSL

EDDY [23]. The reverse-phase encoded image was wrongly acquired or corrupted in five

cases. In these cases, only FSL EDDY was applied. Then, the brain was extracted using FSL

BET [24].

The anatomical T1 weighted images were segmented into WM, grey matter (GM), and

cerebrospinal fluid (CSF) using FSL FAST [25]. Furthermore, a cortical atlas segmentation was

extracted using the default FreeSurfer parcellation pipeline [26] and the Desikan-Killiany atlas.

However, for brain tumor patients, whole-brain parcellation pipelines often fail to produce

reasonable results, as the brain structure can be strongly deformed. To counteract this effect,
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enantiomorphic filling of the lesion, as proposed by [27], was performed prior to the FreeSur-

fer parcellation for unilateral gliomas, as visualized in Fig 1.

The obtained FreeSurfer labels were then re-mapped and reduced to lie between 0 and 88,

as proposed for connectivity analysis by DIPY [28], the toolbox utilized for tractography and

connectivity matrix creation. A list of the final labelled connectome nodes can be found in the

appendix (S2 Table).

Finally, the anatomical T1 weighted images were registered to the pre-processed dMRI b0

images using symmetric diffeomorphic image registration as implemented in ANTs [29], and

the tissue segmentations and parcellations were transformed into diffusion space.

2.3 Free water modeling

The free water modeling technique as presented in [19] was applied to all dMRI acquisitions.

It is based on a deep neural network that is trained independently for each subject, with train-

ing data extracted from the individual acquisition.

First, specific voxels with known tissue properties were located using the co-registered T1

image (Fig 2). Second, by superposition of several voxels with known microstructure, a syn-

thetic dataset that follows individual characteristics, and for which the free water compartment

is known, was obtained.

For this procedure, single-fiber WM voxels, GM voxels, as well as CSF voxels were neces-

sary. GM as well as CSF voxels were extracted using the eroded FAST mask. As the diffusivity

of these microstructures is isotropic, the mean diffusivity was determined.

Single-fiber WM voxels were extracted from voxels within the corpus callosum with an FA

greater than 0.7. This procedure is inspired by the single-fiber response function generation of

Constrained Spherical Deconvolution (CSD) [30]. However, contrary to CSD, no mean

response function was calculated. Instead, for all suitable WM voxels, the eigenvalues of the

Fig 1. An example of the enantiomorphic filling of the brain tumor. The enantiomorphically filled image was only

used for the freesurfer parcellation, as tumors can lead to problems during the fitting process.

https://doi.org/10.1371/journal.pone.0239475.g001
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diffusion tensors were saved. During creation of the synthetic data set, it was then possible to

create single-fiber WM diffusion data by sampling from these sets of eigenvalues.

Using the extracted tissue properties, synthetic diffusion data was created. Single voxels

were generated by random superposition of up to three sampled and randomly rotated single-

fiber WM voxels, and GM as well as CSF compartments. Finally, Rician noise with an SNR of

20 is used to distort the constructed signal.

The proportions of each sub-compartments—including the proportion of free water—of

these synthetic voxels were thus known. As the properties of the single compartments follow

the characteristics of the individual brain from which they are extracted, biases due to the

MRI-scanner or acquisition settings are circumvented. 250,000 synthetic voxels were created

in this fashion per subject, on which a neural network was individually trained to predict the

free water fraction. The number of synthetic voxels is thus much higher than the number of

nonzero voxels found in a typical diffusion- weighted brain scan in this study, which is about

100,000. Including more voxels also did not lead to a reduced error on the validation set.

For the neural network architecture, a fully connected half-hourglass shape with four fully

connected layers was chosen. The shape of single layers in the neural network was automati-

cally determined, based on the number of diffusion weighted acquisition. As input to the neu-

ral network, the diffusion signal attenuation was directly used, so the width of the initial layer

of the neural network was set to 64, as 64 gradient directions were acquired. The sizes of the

hidden layers were determined by halving the size of the previous layer; the last layer finally

had only one output, which was regressed against the free water volume fraction with an

L2-loss. Thus, the number of artificial neurons of the fully connected layers in this half-hour-

glass shape was 64-32-16-8-1. Between every two subsequent layers, tanh activation functions

were used as non-linearities.

For training, the 250,000 created voxels were split into 80% training and 20% validation set.

A batch size of 256 and an Adam optimizer with a learning rate of 0.005 was used. On a con-

sumer-grade CPU and an implementation in PyTorch, training of each individual neural net-

work converged after 100 epochs in less than five minutes.

Fig 2. Illustration of the generation of synthetic training data for the individual subject. Gray matter (GM), white

matter (WM) and cerebrospinal fluid (CSF) skeletons are extracted from an eroded FAST segmentation map, based on

the T1 image. For WM, the map is further reduced to areas where the FA value is higher than 0.7. These tissue maps

are then transformed to the diffusion space, where they are used to extract the mean CSF and GM diffusivity, and to

sample single-fiber WM voxels. Using the obtained diffusivity values and sample WM voxels, synthetic diffusion data

with a known water fraction as well as properties following the characteristics of the individual subject can be created.

https://doi.org/10.1371/journal.pone.0239475.g002
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The trained neural network was then used on the signal attenuation of the whole brain to

predict the water fraction in all voxels, and the attenuation attributed to the water fraction was

subtracted from the original signal. Free water contaminated voxels, i.e., voxels at the border

between WM and CSF, or voxels including a vasogenic edema in glioblastoma cases, were

corrected.

The hyperparamters employed here were the same as used for previous experiments, where

the accuracy of the free water modeling method was evaluated on synthetic data. Those results,

as well as a comparison to previously published free water modeling methods on voxel-derived

measures such as FA on real data can be found in [19].

2.4 Tractography

Two different classes of local tractography methods, deterministic as well as probabilistic trac-

tography, can be utilized for fiber reconstruction [1]. While deterministic methods follow the

direction of least hindrance, probabilistic methods estimate the uncertainty in the measure-

ments and create a distribution of possible pathways. At every tracking iteration, the next step

is determined by sampling from the fiber orientation distribution function (ODF), which rep-

resents the possible dispersion of fiber bundles for each voxel. For both schemes, a large variety

of different tractography methods exist, and it is disputed which is better suited for connec-

tome construction. Thus, representative methods of both, deterministic as well as probabilistic

tractography, were chosen in this work in order to analyze the effects of the FWM on structural

brain connectivity analysis.

For deterministic tractography, the EuDX [31] tracking algorithm was chosen in combina-

tion with the Constant Solid Angle diffusion reconstruction model [32]. Both are implemented

in DIPY [28]. From the Constant Solid Angle diffusion model, the peaks of the ODF were

extracted and served as an estimate for the possible orientations of tract segments. Based on

these peaks, EuDX is able to handle crossing fibers.

In the employed probabilistic tractography, the fiber reconstruction was based on CSD

[30]. CSD directly computes a fiber ODF, and is thus optimally suited for probabilistic track-

ing. From the ODF, the next tracking step was randomly sampled using a maximum angle of

30˚ between current and next step.

Tracking was terminated in both cases based on anatomical stopping criteria, as proposed

by [33]. Valid stopping regions were all extracted and parcellated GM regions as described in

Section 2.2. CSF and areas outside the brain were invalid stopping areas. Valid white matter

for tractography seeding and tracking was defined as areas with FA>0.15. Two different seed-

ing techniques were used, whole WM seeding and WM-GM boundary seeding. The WM-GM

boundary was created by taking the intersection of the WM region with the GM area dilated

by one voxel in every direction. For every valid seeding voxel, 27 streamline start points were

generated. The streamline step size was set to 0.5 mm. Streamlines of less than 1 mm were

discarded.

2.5 Connectivity matrix creation

A structural connectivity matrix was created by transforming the segmentation labels into dif-

fusion space using the registered T1 image. Streamlines that did not start and end in gray mat-

ter areas were disregarded. All other streamlines were grouped by their endpoints. For

exemplary connectivity matrices with and without the FWM, as well as corresponding stream-

lines, see Fig 3.
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2.6 Structural brain network analysis

For in-vivo data of the human brain, no groundtruth structural connectivity matrix (CM) was

available, neither for healthy subjects, nor for brain tumor patients. Therefore, we had to rely

on other, indirect measures to quantify changes to the CM. We used established metrics for

structural CMs, including raw fiber count between regions, inter-subject coefficient of varia-

tion, the clustering coefficient as well as intra- and inter-subject correlation. These metrics

were partly inspired by metrics used in [34] as well as in [35].

For all metrics, we tested the difference with and without the FWM independently for brain

tumor patients and healthy subjects using the paired sample t-test. Regarding difference

between patients and controls, the independent sample t-test was utilized.

Fiber count. As the most basic metric, the raw fiber count N was defined as the total num-

ber of fibers included in the connectome. Thus, it includes all fibers connecting distinct GM

regions. All fibers that did not end or start in WM, CSF or outside the brain were excluded.

Average tract length. The average tract length measures the mean length of all stream-

lines considered in the CM. It can be expressed as

L�¼
1

N

XN

Li;
ð1Þ

where Li denotes the length in mm of a single diffusion streamline, and N the fiber count.

Coefficient of Variation. The coefficient of variation (CoV) was proposed by [35] for

reproducibility analysis of structural connectomes. For a single entry in the CM, it measures

the variability over different acquisitions or different subjects, and can be expressed as

CoVE ¼
yE
mE
; ð2Þ

with μE the mean, and θE the standard variation of a specific entry in the CM.

Here, the inter-subject CoV of the total connection strength, i.e. the number of found fiber

connections between two regions, was used. Finally, the CoV was averaged over all entries

with at least one non-zero count in the whole dataset. In the original paper, CoVs of 0.58 to 0.7

were found for deterministic tractography, depending on the seeding mechanism used. A

lower CoV indicates that the CMs in the cohort are more similar, while a higher CoV points to

more dissimilar CMs.

Binary graph properties. In order to obtain a binarized graph, the connectivity of two

regions was set to one when the overall streamline count connecting these regions was higher

than a threshold, and set to zero otherwise. While all information about connection strength

Fig 3. Tractography result and fiber-count connectivity matrix with (right) and without (left) a free water model

for a brain tumor patient with a large edema. Here, gray matter interface seeding was used together with

deterministic tractography. For better visualization, only every 4th streamline is plotted. The tumor core is visualized

in red, and displayed together with three T1 slices in x,y, and z direction as well as streamlines generated from the

diffusion MRI data.

https://doi.org/10.1371/journal.pone.0239475.g003
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and distance are discarded in such a binary graph, valuable insights about the topology can be

gained.

Two different properties of the binarized graph were computed, the density as well as the

clustering coefficient. The density D is obtained by dividing the number of considered connec-

tions by the number of all possible connections,

D ¼
2
P

dij

nðn � 1Þ
; ð3Þ

where i,j = 1,. . .n, and dij denotes whether a connection between regions i and j was found. If

D is close to one, the matrix is called dense, while it is considered sparse for a small value of D.

The clustering coefficient C measures the “cliquishness”, i.e., the fraction of neighbors of a

node that are directly connected [36]. It is defined as the ratio of all closed triples—a set of

three completely connected nodes—to the number of all triples in the graph. Together with

the mean path length of the CM, it is often used to quantify “small-worldness” of network

architectures [34].

Inter-subject correlation. By calculating the Pearson correlation coefficient

rM1 ;M2
¼

covðM1;M2Þ

sM1
sM2

ð4Þ

between two matrices M1, M2, it is possible to calculate the mean correlation for a group of

subjects with

rm ¼
2

mðm � 1Þ

X

i

X

j>i

rij; ð5Þ

where i, j = 1, . . .m, m refering to the number of subjects in the cohort. With ρm = 1, all CMs

would be identical (with at least one non-zero entry), while completely random graphs would

result in ρm = 0.

Brain hemisphere correlation. While specific neural functions tend to be lateralized to

one side of the brain, the structure of WM in healthy subjects is similar in both hemispheres—

the two sides are enantiomorphically related. Morphometric variance between both hemi-

spheres have been shown to be smaller than the differences between subjects [37, 38], and

dMRI tractography inter-hemispheric variance seems to be about the same as inter-subject

variance [20] in healthy subjects.

We express the left-right similarity as the correlation of the left- and right cortical sub-con-

nectomes. These inter-hemisphere sub-connectomes can be extracted by considering the sub-

matrix from label 3 to 36, and from label 46 to 79. For labels and the respective regions, see S2

Table in the appendix.

Our hypothesis was that an increase in the inter-hemisphere correlation in non-lesioned

brains pinpoints a less noisy tractogram. Meanwhile, a stronger increase in this correlation for

brain tumor patients is an indicator that the novel fibers found have a corresponding fiber in

the other hemisphere, suggesting that the found fibers were indeed true positive connections.

3 Results

3.1 Total number of fibers

Fiber tracking including the FWM correction resulted in a significant increase in the total

number of streamlines that connect two regions, regardless of the cohort, the tracking algo-

rithm, and the seeding mechanism. The relative increase is displayed independently for high
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grade gliomas (WHO grades III and IV), low grades gliomas (WHO grades I and II) and the

control group in Table 1. Independent of the group and tracking methodology, the increase is

strongly significant (p<0.0001). However, when using probabilistic tracking, the increase is

more pronounced. Comparing glioma patients to healthy controls, the increase in number of

fiber tracks is significantly greater for high grade gliomas, but not significantly greater for low

grade gliomas.

In general, the increase in number of fibers was dependent on the individual anatomy. In

Fig 4, the effects on one patient with a large and on a patient with a smaller edema are visual-

ized. Stronger effects can be seen on the patient with the larger edema. For a visualization of

the tractography results on a patient with a very large edema, see also Fig 3.

3.2 Average tract length

Regarding the average tract length, i.e. the mean distance of all connections in the CM, there

was no significant change for all evaluated tracking variations. An overall slight tendency

towards longer streamlines could be observed, but single combinations of tracking, seeding,

Table 1. Median relative increase of the number of fibers tracked for patients with cerebral gliomas by WHO

grade as well as for the healthy controls. Det: deterministic tractography, Prob: probabilistic tractography, WM:

white matter seeding, BD: boundary seeding. Significantly (p<0.05) greater increases in patients than in controls are

marked in bold. All increases versus tracking without the free water model were strongly significant with p<0.0001.

Grade III/IV Grade I/II Controls

Det/BD 10.4% 7.2% 6.3%

Det/WM 10.9% 7.8% 5.8%

Prob/BD 15.0% 11.0% 9.4%

Prob/WM 16.2% 11.0% 9.1%

https://doi.org/10.1371/journal.pone.0239475.t001

Fig 4. Free-water maps (A1, B1) and boundary-seeded deterministic tractography results for two patients before

(A2, B2) and after including free-water effects (A3, B3). In the free-water maps, black indicates a water content of 0,

and white one of 100%. The yellow arrows on the free-water maps indicate the direction of view for the tractography

visualization, while the yellow ovals highlight changes in tractography. For the tractography visualizations, only one

seed point per voxel was utilized, and only the streamlines that pass through the tumormask including edema and

infiltrated parts of the brain are displayed. In the upper row (row A), the effects on patient data containing a large

edema are visualized, whereas the edema of the patient in the lower row (row B) is less pronounced.

https://doi.org/10.1371/journal.pone.0239475.g004
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and cohort also led to a slight, non-significant decrease in average length. For the complete

results, refer to the appendix (S1 Table).

3.3 Coefficient of variation

The inter-subject CoV of the mean total connection strength increased significantly in most

combinations. Only for probabilistic tractography with WM seeding in the healthy control

group, no significant changes could be observed (Table 2). However, for probabilistic tracto-

graphy in healthy subjects, the distribution of the values was altered, as can be seen in Fig 5.

These CoV distributions differed mostly above a certain threshold—the fiber tracks with a

CoV of several standard deviations away from the mean seemed to be suppressed when using

the FWM. For all other combinations of tracking, seeding, and cohort, the distributions with

and without the FWM looked similar, exhibiting approximately exponential decays and reach-

ing zero at about three.

3.4 Intra-subject similarity of hemispheres

Except for a single case, the deterministic tractography using WM seeding in the patient

cohort, including the FWM resulted in a significant increase in the correlation of the individ-

ual hemispheres. The correlation with and without the FWM is reported in Table 3. While the

similarity of hemispheres was generally more pronounced in the control group, the increase in

Table 2. Coefficient of variation for tumor patients and controls. Det: deterministic tractography, Prob: probabilistic

tractography, WM: white matter seeding, BD: boundary seeding, Pat: tumor patients, Ctrls: control group. All increases

that were statistically significant are marked in bold (p<0.05).

Pat FWM Pat Ctrls FWM Ctrls

Det/BD 0.463 0.479 0.524 0.543

Det/WM 0.423 0.437 0.503 0.520

Prob/BD 0.729 0.771 0.910 0.920

Prob/WM 0.751 0.788 0.950 0.956

https://doi.org/10.1371/journal.pone.0239475.t002

Fig 5. Normalized distribution of the inter-subject coefficient of variation (CoV) for probabilistic tractography in

healthy controls. Note the logarithmic scaling of the y-axis. The density of occurrence falls exponentially with the

value of the CoV. While the mean of the distribution with- and without the free water model for white matter seeding

did not significantly change, after free water modeling, the distribution fell more drastically for higher values of the

CoV.

https://doi.org/10.1371/journal.pone.0239475.g005
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similarity was stronger for the patients, where the mean increase was 19.8%, compared to the

healthy controls where the mean increase was 12.9%.

3.5 Inter-subject, similarity of cohort

The inter-subject similarity of the cohort, measured as the mean correlation of the CM of each

individual subject with all other subjects in that cohort, was significantly increased for most

combinations (see Table 4). Similar to the intra-subject similarity of hemispheres, it was more

pronounced in the patient cohort with a mean increase of 1.12% compared to the control

group (increase of 0.06%).

3.6 Binary graph metrics

The densities of the binarized graphs are plotted as a function of the binarization threshold in

Fig 6. The density of CM matrices with FWM was higher than without, and the density of CM

matrices in brain tumor patients was lower than in healthy subjects. The difference between

healthy subjects and tumor patients was smaller when using the FWM.

Clustering coefficients also increased when using the FWM. For probabilistic tractography,

this increase was statistically significant (p<0.05) for the brain tumor cohort as well as for the

control group. Including the FWM did not significantly alter clustering coefficients when

using the deterministic tracking algorithm in healthy subjects. For brain tumor patients,

changes in the clustering coefficient are less strong than when using probabilistic tractography,

but were still significant (see Table 5).

In general, brain tumor patients and healthy controls were more similar when using the

FWM. For deterministic tracking, the differences between the groups was not significant,

independent of the application of the FWM. However, for the probabilistic tracking, applica-

tion of the FWM resulted in lower significance or insignificant differences between patients

and healthy controls. For probabilistic tractography with WM seeding, the p-value changed

from 0.001 to 0.02, for probabilistic tractography with boundary seeding from 0.0006 to 0.05.

Table 3. Correlation of left- and right brain hemisphere with and without the free water model (FWM). Det: deter-

ministic tractography, Prob: probabilistic tractography, WM: white matter seeding, BD: boundary seeding, Pat: tumor

patients, Ctrls: control group. All statistically significant increases are marked in bold (p<0.05).

Pat FWM Pat Ctrls FWM Ctrls

Det/BD 0.604 0.615 0.664 0.672

Det/WM 0.569 0.575 0.638 0.645

Prob/BD 0.828 0.850 0.889 0.901

Prob/WM 0.809 0.830 0.880 0.893

https://doi.org/10.1371/journal.pone.0239475.t003

Table 4. Mean inter-subject correlation with and without the FWM of all subjects in the specific cohort. Det: deter-

ministic tractography, Prob: probabilistic tractography, WM: white matter seeding, BD: boundary seeding, Pat: tumor

patients, Ctrls: control group. All statistically significant changes are marked in bold (p<0.05).

Pat FWM Pat Ctrls FWM Ctrls

Det/BD 0.526 0.537 0.620 0.627

Det/WM 0.503 0.506 0.628 0.630

Prob/BD 0.742 0.754 0.840 0.839

Prob/WM 0.711 0.713 0.826 0.820

https://doi.org/10.1371/journal.pone.0239475.t004
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4 Discussion

We have analyzed how our FWM model influences structural connectivity estimates in brain

tumor patients as well as in healthy subjects. As different tractography and seeding techniques

Fig 6. Density of binarized connectivity matrix dependent on the binarization threshold on logarithmic scales.

Combinations of the different seeding techniques and tractography methods are displayed in distinct graphs. The

absolute density values were strongly dependent on the seeding and tracking algorithm. It can be seen that all functions

were heavy-tailed, i.e., while the majority of regions were only connected by a few streamlines, the number of

connected tracts with more connections than the threshold fell slower than an exponential function. The number of

found tracts was higher in healthy subjects, compared to the brain tumor patients, independent of the inclusion of the

free water model (FWM). When including the FWM, the number of tracts found was always higher compared to the

direct approach. However, the difference between brain tumor patients and healthy subjects was smaller with the

FWM.

https://doi.org/10.1371/journal.pone.0239475.g006

Table 5. Clustering coefficients of the different CMs. Det: deterministic tractography, Prob: probabilistic tractogra-

phy, WM: white matter seeding, BD: boundary seeding, Pat: tumor patients, Ctrls: control group. When the FWM clus-

tering coefficient significantly deviated (p<0.05) from the original coefficient, the FWM derived coefficients are

marked in bold.

Pat FWM Pat Ctrls FWM Ctrls

Det/BD 0.522 0.528 0.521 0.522

Det/WM 0.552 0.556 0.543 0.543

Prob/BD 0.649 0.665 0.669 0.676

Prob/WM 0.720 0.736 0.742 0.754

https://doi.org/10.1371/journal.pone.0239475.t005
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strongly influence the results of CMs, the results were analyzed for both deterministic as well

as probabilistic tractography, and both WM as well as WM-GM interface seeding approaches.

While the total number of tracked fibers significantly increased when using the FWM, the

average tract length did not change significantly. This effect was independent of the seeding

technique and whether tractography was performed probabilistically or deterministically.

First, this leads to the conclusion that the FWM does not contribute to an overrepresentation

of long or short fibers. Second, as the increase in tracked fibers was more pronounced for high

grade gliomas than for low grade gliomas or healthy controls, this shows that two different

effects, one due to biology, the other one due to limited MRI resolution, can be counteracted

with the FWM: For partial volume effects at the border of CSF and the white matter tract, a

clear boundary is physically existent, but cannot be exactly measured due to the limited voxel

size. Thus, the diffusion signal is averaged from the two juxtaposed volumes. In contrast, in

areas infiltrated by vasogenic edema, the edema and the WM tract are not spatially distinguish-

able on a macroscopic level; a higher resolution would not lead to an improvement. Thus, the

uncorrected MRI signal from these regions is not directly suitable for quantification of the

fiber tracts. FWM improved peritumoral tractography especially in tumors with substantial

perifocal edema, in which conventional tracking algorithms often fail.

With the inter-subject CoV and the correlation coefficients, effects on individual fiber tracts

were analyzed. The CoV as well as the inter- and intra-subject correlations increased. In other

words, subjects showed higher variance on the level of single fiber tracts but were more similar

on the macroscopic connectome level. The increase in connectome level similarity was more

pronounced in the patient cohort than in the control cohort. This observation corresponds to

our initial hypothesis: Part of the variations in estimated connectivity in tumor patients is not

due to true connectivity alterations, but instead a measurement artifact, as tractography based

on diffusion MRI is susceptible to free-water effects in presence of peritumoral edema.

The effects of the FWM on the CoV depended on the tractography method: For determin-

istic tractography, the change of the CoV, while statistically significant, was very small, and

effects were comparable between patient and control group. For probabilistic tractography in

healthy controls, strongly unusual tracts were suppressed (Fig 5),which can be explained by

the necessary fiber direction sampling: The fiber ODF of a voxel containing CSF as well as

WM is much wider than the ODF of a voxel containing the same fiber, but no CSF. As the

peak of the distribution does not change, deterministic tractography is not much affected, but

the probabilistic tractography will produce false positives with a higher frequency. Thus, the

reduction of tracts several standard deviations away from the mean is a sign of noise reduction.

Meanwhile, the observed increase of the single-tract CoV using probabilistic tractography in

patients further indicates the potential of the FWM to improve differentiation of white matter

microheterogeneity by demasking free water partial volume effects obscuring true white mat-

ter alterations in edema, which is further supported by recent findings [39].

With the metrics derived from the binarized graph, we further analyzed the group differ-

ences of brain tumor patients and healthy subjects. Both the difference in density of the matri-

ces as well as the clustering coefficients were less pronounced when including the FWM.

Depending on the metric, the difference even dropped from “significant” before including the

FWM to insignificant when free water diffusion effects were considered. This decrease of dif-

ferences is mirrored in the number of fibers and correlation coefficients. For these metrics, the

brain tumor patients generally showed lower values compared to healthy subjects, but stronger

increases when including the FWM. Thus, after FWM, differences between tumor patients

and controls were still persistent. While the differences caused by free-water effects were

removed, the differences due to local variations in anatomy were preserved. Hence, when
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naively comparing tractography results from brain tumor patients to healthy subjects, the

influence of the tumor on structural brain connectivity may be overestimated.

A recent study [3] already showed that adding a FWM to tractography improved tracking

of a single nerve tract, the arcuate fasciculus, in brain tumor patients. Our results now demon-

strate that a FWM also improves whole brain tractography, which we quantify with structural

connectivity estimates. Thus, future studies that analyze fiber tracts or structural connectivity

in presence of edema should consider the effect of free water on tractography.

Nevertheless, this study has several limitations: Human WM connectivity as measured with

diffusion connectomes is subject to variations due to the image acquisition protocol, the

employed atlas [34] as well as the utilized tractography method. It would be impossible to eval-

uate the effects of the FWM with respect to all possible combinations. For example, when

using dMRI scans with higher resolutions partial volume effects at the border between CSF

and WM decrease naturally. Also, in this study, patients were scanned with a single-shell diffu-

sion acquisition setting. With multi-shell settings, a more accurate determination of the free

water fraction would be possible, and thus a more reliable correction for tractography. How-

ever, due to time-constraints, multi-shell acquisitions are not always feasible in clinical

settings.

Furthermore, we modeled the diffusivity of edema to be equal to the diffusivity of CSF, and

the free water content of healthy single fiber WM voxels as zero. While this may be close to

reality, it is not 100% exact. Especially in multi-shell acquisitions, a possibility to overcome this

limitation would be to not assume fixed isotroptic diffusivities, but instead to model CSF, GM,

and edema with isotropic diffusivity spectra [40]. Still, in our previous publication [19], we

have shown that our current approach seems to be more or at least as accurate for determining

relative water content and resulting FA values as comparable approaches [13, 18, 41] on sin-

gle-shell and multi-shell data. Moreover, comparing our method to previously published

approaches, our approach provides more conservative results regarding the predicted water

compartment. While it predicts a water fraction between 0.01 and 0.02 for healthy white mat-

ter, findings of 0.1±0.13 in healthy brain tissue of tumor patients were reported using a spatial

regularization based free water correction [17]. In consequence, most other FWM approaches

will presumably show even stronger effects on whole brain tractography. Therefore, as it is still

unclear how large the absolute modeling error of our and comparable approaches is, a more

conservative approach is well suited to estimate free water effects on tractography.

Nevertheless, a quantitative evaluation of the modeling error of our FWM method as well

as other FWM methods will be necessary in the future. A quantification of the model error

would be possible using dedicated MRI acquisition protocols and diffusion phantoms, such as

presented by [42]. Such an acquisition is not possible in standard clinical settings, where the

acquisition time remains a crucial factor. However, it can be used to quantify the accuracy of

our FWM, as well as the accuracy of other FWM approaches that aim at solving this ill-posed

problem that arises in clinical settings.

5 Conclusion

We analyzed the effects of deep learning free water mapping and elimination based on individ-

ually extracted data on structural connectivity analysis of brain tumor patients and healthy

subjects. Independent of the tractography algorithm and seeding method, the FWM leads to

more, but not to longer tracked fibers. Differences in connectivity estimates between brain

tumor patients and healthy controls generally decreased when including the FWM. Thus, we

hypothesize that—especially in high grade glioma—the FWM improves peritumoral tractogra-

phy, which might be relevant for presurgical planning and postoperative outcome. Further,
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estimates of structural connectivity impairments in brain tumor patients appear to be exagger-

ated when effects of edematous regions on tractography are not considered. Future studies

should consider this effect when comparing diffusion MRI derived measurements from

lesioned and healthy control brains.
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18. Molina-Romero M, Wiestler B, Gómez P, Menzel MI, Menze BH. Deep Learning with Synthetic Diffusion

MRI Data for Free-Water Elimination in Glioblastoma Cases. In: Medical Image Computing and Com-

puter Assisted Intervention – MICCAI. Cham: Springer International Publishing; 2018. p. 98–106.

19. Weninger L, Koppers S, Na CH, Juetten K, Merhof D. Free-Water Correction in Diffusion MRI: A Reli-

able and Robust Learning Approach. In: MICCAI Workshop on Computational Diffusion MRI (CDMRI).

Cham: Springer International Publishing; 2019. Available from: https://www.lfb.rwth-aachen.de/

bibtexupload/pdf/WEN19b.pdf.

20. Siless V, Davidow JY, Nielsen J, Fan Q, Hedden T, Hollinshead M, et al. Registration-free analysis of

diffusion MRI tractography data across subjects through the human lifespan. NeuroImage. 2020;

214:116703. https://doi.org/10.1016/j.neuroimage.2020.116703 PMID: 32151759

21. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al.

Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage.

2004; 23 Suppl. 1:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051 PMID: 15501092

22. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar

images: Application to diffusion tensor imaging. NeuroImage. 2003; 20:870–888. https://doi.org/10.

1016/S1053-8119(03)00336-7 PMID: 14568458

23. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and

subject movement in diffusion MR imaging. NeuroImage. 2016; 125:1063–1078. https://doi.org/10.

1016/j.neuroimage.2015.10.019 PMID: 26481672

24. Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17(3):143–155.

https://doi.org/10.1002/hbm.10062 PMID: 12391568

PLOS ONE The effects of free water modeling on diffusion MRI structural connectivity estimates

PLOS ONE | https://doi.org/10.1371/journal.pone.0239475 September 25, 2020 16 / 17

https://doi.org/10.1016/j.nicl.2016.08.004
https://doi.org/10.1016/j.nicl.2016.08.004
http://www.ncbi.nlm.nih.gov/pubmed/27622137
https://doi.org/10.1016/j.nicl.2015.11.020
http://www.ncbi.nlm.nih.gov/pubmed/27006903
https://doi.org/10.1093/brain/awv361
https://doi.org/10.1093/brain/awv361
http://www.ncbi.nlm.nih.gov/pubmed/26705348
https://doi.org/10.1016/j.radonc.2019.06.031
http://www.ncbi.nlm.nih.gov/pubmed/31302391
https://doi.org/10.3389/fnagi.2019.00270
https://doi.org/10.3389/fnagi.2019.00270
http://www.ncbi.nlm.nih.gov/pubmed/31632265
https://doi.org/10.1523/ENEURO.0083-18.2018
https://doi.org/10.1523/ENEURO.0083-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/29911173
https://doi.org/10.1016/j.neuroimage.2014.09.053
https://doi.org/10.1016/j.neuroimage.2014.09.053
http://www.ncbi.nlm.nih.gov/pubmed/25271843
https://doi.org/10.1002/mrm.27075
http://www.ncbi.nlm.nih.gov/pubmed/29393531
https://doi.org/10.1093/brain/awr307
http://www.ncbi.nlm.nih.gov/pubmed/22171354
https://doi.org/10.1002/mrm.22055
http://www.ncbi.nlm.nih.gov/pubmed/19623619
https://www.lfb.rwth-aachen.de/bibtexupload/pdf/WEN19b.pdf
https://www.lfb.rwth-aachen.de/bibtexupload/pdf/WEN19b.pdf
https://doi.org/10.1016/j.neuroimage.2020.116703
http://www.ncbi.nlm.nih.gov/pubmed/32151759
https://doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7
http://www.ncbi.nlm.nih.gov/pubmed/14568458
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2015.10.019
http://www.ncbi.nlm.nih.gov/pubmed/26481672
https://doi.org/10.1002/hbm.10062
http://www.ncbi.nlm.nih.gov/pubmed/12391568
https://doi.org/10.1371/journal.pone.0239475


25. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field

model and the expectation-maximization algorithm. IEEE Trans Med Imag. 2001; 20:45–57. https://doi.

org/10.1109/42.906424 PMID: 11293691

26. Fischl B. FreeSurfer. Neuroimage. 2012; 62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.

01.021 PMID: 22248573
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