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Alternative splicing is involved in the pathogenesis of human diseases, including cancer.
Here, we investigated the potential application of alternative splicing events (ASEs) and
splicing factors (SFs) in the prognosis of adrenocortical carcinoma (ACC). Transcriptome
data from 79 ACC cases were downloaded from The Cancer Genome Atlas database,
and percent spliced-in values of seven splicing types were downloaded from The
Cancer Genome Atlas SpliceSeq database. By the univariate Cox regression analysis,
1,839 survival-related ASEs were identified. Prognostic indices based on seven types of
survival-related ASEs were calculated by multivariate Cox regression analysis. Survival
curves and receiver operating characteristic curves were used to assess the diagnostic
value of the prognostic model. Independent prognosis analysis identified several ASEs
(e.g., THNSL2| 54469| ME) that could be used as biomarkers to predict the prognosis
of patients with ACC accurately. By analyzing the co-expression correlation between
SFs and ASEs, 188 highly correlated interactions were established. From the protein
interaction network, we finally screened six hub SFs, including YBX1, SART1, PRCC,
SNRPG, SNRPE, and SF3B4, whose expression levels were significantly related to the
overall survival and prognosis of ACC. Our findings provide a reliable model for predicting
the prognosis of ACC patients based on aberrant alternative splicing patterns.

Keywords: alternative splicing, Adrenocortical carcinoma, splicing factor, prognosis, hub gene

INTRODUCTION

Alternative splicing of pre-messenger RNA (mRNA) produces transcript isoforms for 95% of
human genes, increases protein diversity, and provides functional diversity at various regulation
level (Pan et al., 2008). There are seven types of splicing patterns, including alternate acceptor
site (AA), alternate donor site (AD), alternate promoter (AP), alternate terminator (AT), exon
skip (ES), mutually exclusive exons (ME), and retained intron (RI), as listed in The Cancer
Genome Atlas (TCGA) SpliceSeq database (Ryan et al., 2016). Splicing factors (SFs) are involved
in the removal of introns to create mature mRNAs, a process catalyzed by a large complex
termed spliceosome (Yan et al., 2019). Alterations in SF expression lead to missplicing of key
cancer-associated genes (Anczukow and Krainer, 2016; Lee and Abdel-Wahab, 2016). Aberrant
alternative splicing events (ASEs) have been frequently observed in cancers and is recognized as an
important signature for tumorigenesis and related pathologies, such as initiation and development
of cancer (Oltean and Bates, 2014; Chen and Weiss, 2015; Lee and Abdel-Wahab, 2016),
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cancer metabolism (Kozlovski et al., 2017), cancer
immunotherapy (Frankiw et al., 2019), cancer drug resistance
(Siegfried and Karni, 2018), and so on.

Adrenocortical carcinoma (ACC) is a rare aggressive tumor
with poor prognosis and less than 40% survival rate in 5 years
(Jouinot and Bertherat, 2018; Crona and Beuschlein, 2019).
Recent studies highlighted that specific molecular signatures
could predict the survival and prognosis of ACC patients,
which came from genomic approaches, including transcriptome,
exome or whole-genome sequencing, chromosome alterations,
methylome, and miRnome (Barreau et al., 2013; Patel et al., 2013;
Assie et al., 2014; Szabo et al., 2014; Jouinot and Bertherat, 2018).
However, only limited studies have focused on the potential roles
of alternative splicing patterns in the pathogenesis of ACC. The
present study aims to investigate the relationship between seven
types of ASEs and SFs with the prognosis of ACC. Our findings

provide a new path to identify potential targets for the diagnosis
and treatment of ACC.

RESULTS

Overview of Alternative Splicing Events
in Adrenocortical Carcinoma
Transcriptome data from the TCGA database provide identity
information for up to 56,754 transcripts, which represents a key
resource for exploring ASEs in tumors concurrently deposited in
the database. Individual ASE is assigned a unique annotation in
the TCGA SpliceSeq database; for instance, in the term CIRBP|
46443| ES, CIRBP is the official gene symbol, 46443 is the unique
ID number of a specific ASE, and ES represents the type of the
alternative splicing pattern. Full datasets of splicing events of
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FIGURE 1 | Overview of ASEs and SR-ASEs profiling in ACC. (A) UpSet plot of top 50 ASEs with frequency in ACC. (B) Volcano plot of 22,521 ASEs. Red points
represent the 1,839 SR-ASEs under P < 0.01. Transverse axis is the Z score of univariate Cox regression analysis. (C) UpSet plot of top 50 SR-ASEs with frequency.
(D) Bubble plot of the top 20 most significant SR-ASEs. Size of point represents -log10(P-value), and the color of points represents P-value. Terms of ASEs contain
three parts: the gene name, a unique splicing event ID number, and alternative splicing type. AA, alternate acceptor site; AD, alternate donor site; AP, alternate
promoter; AT, alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron.
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79 ACC cases have been deposited in TCGA SpliceSeq, which
contains 34,419 ASEs corresponding to 8,994 parent genes. The
splicing event data are presented as the percent-spliced-in (PSI),
a score to evaluate the level of specific ASEs. The data were firstly
filtered by deleting the unreliable ASEs with mean PSI of less
than 0.05 and a standard deviation of PSI of less than 0.01. This
generated a total of 22,521 ASEs from 8,040 parent genes. As
summarized in the UpSet plot (Figure 1A), ES and AT were the
top splicing types with high frequency in most genes, whereas ME
was the least frequent splicing type.

Identification of Survival-Related
Alternative Splicing Events
To explore the relationship between the alternative splicing
pattern and the prognosis of ACC, we performed a univariate
Cox regression analysis by comparing ASEs with the overall
survival of ACC patients. A total of 1,839 ASEs were significantly
associated with overall survival in ACC patients (P < 0.01),
termed survival-related ASEs (SR-ASEs; Figure 1B). The upSet
plot showed that ES, AT, and AP were the most frequent SR-ASEs,
whereas only a small number of genes displayed a combination
of multiple splicing forms (Figure 1C). Supplementary Figure 1
listed the top 20 most significant SR-ASEs in each splicing
pattern according to their Z score and P-value. Taking all
types together, splicing events within the parent genes CIRBP,
BLOC1S1, TRAFD1, UNG, EIF6, METTL15, CMC2, HM13,
KLHL7, TECPR2, DNAJC12, DUT, and MPND were highly
related to the overall survival of ACC patients (Figure 1D).
Survival curves with a cutoff at the median PSI value of the top
four ASEs showed a remarkable difference (Figures 2A–D).

Independent Prognostic Predictors of
Survival-Related Alternative Splicing
Events in Adrenocortical Carcinoma
To identify independent prognostic indices and to explore
the relationship between aberrant types of ASEs and ACC
survival outcomes, we performed the multivariate Cox regression
analysis for each splicing type to build a prognostic model.
Lasso regression analysis was done to select the most significant
SR-ASEs by avoiding overfitting. The median value of risk scores
was then used to stratify the 79 ACC patients into low- and
high-risk groups. Kaplan–Meier method was used to analyze the
efficacy of the prognostic indices to predict the overall survival.
The plotted survival curves and receiver operating characteristic
(ROC) curves were shown in Figure 3. Significant differences
in survival curves were observed in individual splicing type as
well as all together (ALL), indicating that each alternative splicing
type could be recognized as an independent prognostic indicator
(Figure 3). The greatest difference in overall survival curves was
observed in ES type (P = 6.684e-11), which is the most frequent
splicing type among ASEs and SR-ASEs (Figures 1A,C). The area
under the curve (AUC) of each ROC curve was more than 0.7,
indicating the predictive efficiency of the eight models. We found
that the AUC for AA type is 0.978, which is higher than all others
(Figure 3), indicating that the prognostic indices based on AA
type demonstrated the greatest efficacy in stratifying patients.

FIGURE 2 | Kaplan–Meier survival curves and ROC curves for five alternative
splicing type: CIRBP| 46443| ES (A), BLOC1S1| 22229| AP (B), TRAFD1|
24580| AD (C), CIRBP| 46445| ES (D), and THNSL2| 54469| ME (E).
Seventy-nine ACC patients were divided into high- and low-risk groups based
on the median of PSI. Red line indicates the high PSI score group, and the
blue line indicates the low PSI score group.

We also performed multivariate Cox regression analysis to
evaluate the effect of other clinical parameters, including sex,
tumor stage, T and N stages in the tumor–node–metastasis
(TNM) classification in Table 1. The significant hazard
ratios (HRs) for T stage and tumor stage were 3.349 (95%
confidence interval [CI]: 2.075–5.403) and 2.886 (CI: 1.819–
4.579), respectively (Table 1). HRs of AA, AD, AP, AT, ES, RI, and
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FIGURE 3 | Kaplan–Meier survival curves and ROC curves for each alternative splicing type: AA (A), AD (B), AP (C), AT (D), ES (E), ME (F), RI (G), and ALL (H)
model. Seventy-nine ACC patients were divided into high- and low-risk groups based on the median of prognostic indices. Red line indicates the high-risk group,
and blue line indicates the low-risk group. Prediction time of ROC curve is 1 year. AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT,
alternate terminator; ES, exon skip; ME, mutually exclusive exons; RI, retained intron.

ALL models are also shown in Table 1. Among the seven types,
the HR for ME type was 1.270 (CI: 1.093–1.476), the highest HR
value (Table 1).

Hazard ratios in each of AA, AD, AP, AT, ES, RI, and
ALL models with clinical parameters are shown in Figure 4.
The HRs for all the AS type were under a significant level
(P-value < 0.05), and ME type has the highest HR value
of 1.681 (CI: 1.344–2.103) (Figure 4F). Moreover, THNSL2|
54469| ME ranks that most significant event in the ME type
(Supplementary Figure 1F). THNSL2| 54469| ME was the top

significant SR-ASE in ME model to predict the prognostic
status of ACC cases. Therefore, the most significant SR-ASEs
in ME pattern is THNSL2| 54469| ME (Figure 2E). To test
the accuracy of ME model of THNSL2| 54469| ME, the
survival state of ACC patients could be significantly classified
into high- and low-PSI groups according to the median
value of PSI scores of THNSL2| 54469| ME (Figure 2E).
These results indicate that THNSL2| 54469| ME could be
the best independent prognostic indicator to predict the
prognosis of ACC cases.
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TABLE 1 | Univariate Cox regression analysis of AA, AD, AP, AT, ES, ME,
RI, and ALL models.

Term Hazard ratio HR.95L# HR.95H# P-value

Sex 0.963 0.425 2.181 0.928

Tumor stage 2.886 1.819 4.579 6.75E-06

T 3.349 2.075 5.403 7.36E-07

N 2.088 0.781 5.578 0.142

AA 1.003 1.001 1.004 0.001

AD 1.007 1.003 1.011 6.17E-04

AP 1.018 1.010 1.026 3.29E-06

AT 1.095 1.060 1.130 2.29E-08

ES 1.009 1.005 1.012 8.51E-07

ME 1.270 1.093 1.476 0.002

RI 1.009 1.005 1.012 3.18E-06

ALL 1.014 1.007 1.021 4.89E-05

#HR.95L and HR.95H: 95% confidence interval.

Also, the AUCs for 1, 3, and 5 years of ME model are predicted
to be 0.767 (Figure 3F), 0.792 (Figure 5A), and 0.829 (Figure 5B),
respectively. The number of deaths increased in the high-risk
group, with short survival time (Figures 5C,D). In summary,
those results indicated that the constructed ME model had great
efficacy in predicting the prognosis of ACC patients.

Enrichment Analysis of Survival-Related
Alternative Splicing Events
To explore the biological processes and signal pathways related
to alternative splicing in the progression of ACC, enrichment
analysis of the SR-ASEs parent genes was performed by
gene ontology and pathway analysis in Metascape. The most
significantly enriched terms were regulation of mitotic cell cycle,
cofactor metabolic process, covalent chromatin modification, cell
cycle G2/M phase transition, and mitochondrion organization
(Figure 6), pathways that are all involved in tumorigenesis.

Correlation Network of Survival-Related
Alternative Splicing Events and Splicing
Factors Expression
Alteration of ASEs is largely attributable to changes in SF
expression. We then extracted the expression data of 404 SFs,
summarized by a previous study (Seiler et al., 2018), from the
transcriptome data of the 79 ACC patients. Principal component
analysis (PCA) plots could discriminate the distribution pattern
of SF expression levels according to survival state, tumor stage,
and TNM classification (Supplementary Figure 2), suggesting an
impact of altered SF expression on the ACC outcome.

As our current knowledge is incapable of dissecting the
sequence specificity for each SF, we could not establish a
direct network for SF-regulated ASEs. Thus, we analyzed
the relationship between SFs and SR-ASEs based on their
co-expression patterns using the Spearman method, which has
been widely used in alternative splicing studies (He et al., 2018;
Xiong et al., 2018; Zhang et al., 2020). A total of 188 highly
correlated interactions between SFs and SR-ASEs were detected
with a correlation coefficient larger than 0.65 (Figure 7A and

Table 2). Hub SFs with no less than five SR-ASE connections
were HSPA1B, YBX1, SRPK1, SART1, PRCC, ILF2, SNRPG,
SNRPE, SF3B4, BUD13, INTS4, and CLK2 (Table 3). Among
these SFs, interestingly, SNRPE was exclusively correlated with
AT-type ASEs, suggesting a specific role in regulating terminal
exon selection (Figure 7A). Moreover, HSPA1B was exclusively
correlated with detrimental ASEs showing negative correlations
with overall survival, indicating a potential causal role of HSPA1B
in the progression of ACC (Figure 7A).

The expression data showed that SF YBX1 was positively
correlated with the PSI values of C16orf13| 32916| ES, COX4I1|
37906| RI, FHAD1| 747| AT, MYL6| 22381| AA, PI4K2A| 12728|
AP, ASH2L| 83369| AP, PTAR1| 86546| AT, and IRF3| 51012| ES
and was negatively correlated with the PSI values of FHAD1| 749|
AT, AIG1| 77970| AT, PI4K2A| 12729| AP, STARD3NL| 79286|
ES, and ASH2L| 83368| AP; SF SNRFE was positively correlated
with the PSI values of VWA8| 25742| AT, MSI2| 42617| AT,
and PELI3| 17034| AT and was negatively correlated with the
PSI values of VWA8| 25741| AT, MSI2| 42616| AT, and PELI3|
17033| AT (Figure 7A). We then constructed the Kaplan–Meier
survival curves for each ASEs related with YBX1 and SNRFE
and found that high levels of PSI values for all the negatively
correlated ASEs have a better prognostic except FHAD1| 747|
AT, whereas the low levels of PSI values for all the positively
correlated ASEs have a better prognostic (Figure 8). Interestingly,
six pairs of ASEs from three parent genes were observed for
these two SFs in the network. For example, ASH2L| 83368|
AP and ASH2L| 83369| AP are two alternative splicing sites
for ASH2L exon 1 selection. PI4K2A| 12728| AP and PI4K2A|
12729| AP are two alternative splicing sites for ASH2L exon
1 selection (Figures 8A,B). Our results indicate that promoter
selections of ASH2L and PI4K2A are important for tumorigenesis
of ACC. Similar results were also observed for the SF SNRFE
(Figures 8C,D). These results suggest that terminator selections
of MSI2 and PELI3 and VWA8 are important for the progression
of ACC development (Figures 8C,D).

Considering that SFs would influence each other when
regulating the work mode of the spliceosome, we constructed the
protein–protein internecion network to illustrate the interactions
among SFs using the Search Tool for the Retrieval of Interacting
Genes database (Figure 7B). A total of 66 nodes and 485 edges
were revealed, with the interaction score of 0.900 (Figure 7B).
Module analysis was done to identify hub genes. Two modules
were further identified by the app MCODE in Cytoscape. Module
1 has 30 genes with a score of 27, and module 2 has four genes
with a score of 8 (Table 3). By combining the ASE correlation
results and protein interaction networks, we finally identified six
hub SFs, including YBX1, SART1, PRCC, SNRPG, SNRPE, and
SF3B4 (Table 4). Overall, these results indicate that these six hub
genes may play an important role in the progression of ACC by
regulating the pattern of SR-ASEs.

Analysis of Hub Splicing Factors
To confirm whether these six genes, YBX1, SART1, PRCC,
SNRPG, SNRPE, and SF3B4, are high-risk factors, the overall
survival and expression level of these genes were further
investigated. The results showed that the survival rate of patients
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FIGURE 4 | Multivariate Cox regression analysis for AA (A), AD (B), AP (C), AT (D), ES (E), ME (F), RI (G), and ALL (H) model. Hazard ratio is shown as hazard ratio
(95% confidence interval). AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME, mutually
exclusive exons; RI, retained intron.
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FIGURE 5 | Overview of ME model. ROC curves of ME type with prediction time of 3 years (A) and 5 years (B). (C) Risk factors of ME model of 79 ACC cases.
Patients were divided into low- and high-risk groups based on the median of prognostic indices. Red indicates high-risk group, and green indicates low-risk group.
(D) Survival time and survival status of ME model of 79 ACC cases. Red indicates the deaths of the cases. Green indicates cases who are alive.

with high expression of hub SFs was significantly lower than
that in the low expression group (P < 0.001) (Figure 9),
and the results were consistent with those from the Gene
Expression Profiling Interactive Analysis (GEPIA) database
(Supplementary Figure 3).

The correlation between the expression levels of six SFs and
clinical information, including clinical stages, tumor stage, and
lymph nodes stage, was further analyzed. We found that the
expression levels of SFs increased along with the clinical stages.
The expression level of six hub SFs in tumor patients has an
increasing trend with the tumor progress stage. Among six
SFs, the level of SF3B4 in ACC cases with the tumor stage III
and the level of PRCC and SF3B4 in ACC cases with stage
IV were statistically different from those in stage I (Figure 9),
which is consistent with the results from the GEPIA database
(Supplementary Figure 3). The levels of the SFs in ACC cases
with lymph node stage also increased, and the expression of YBX1
was statistically changed. The results indicate that the expression

levels of these SFs are closely related to the survival time and
prognosis of patients with ACC (Figure 9).

Considering the lack of normal control tissue for ACC in the
TCGA database, two microarray datasets from Gene Expression
Omnibus (GEO) database were used to compare the expression
of SFs between tumor tissues and normal controls (Figure 10).
The mRNA levels of YBX1 and SNRPE were increased in tumor
samples in the two microarrays, although the expression levels
only showed statistically significant differences in GSE19750
(Figure 10). Combining the mRNA level of YBX1 and SNRPE
in different tissues and the effects of YBX1 and SNRPE on
the survival curve of ACC cases (Figure 7), we could conclude
that YBX1 and SNRPE could exert positive regulation in the
progression of ACC.

We next performed a Cox regression analysis to evaluate
the prognostic value of these six hub SFs and other clinical
parameters. Results showed that the HRs of these six genes ranged
from 1.003 to 1.156; although the HR is lower than the T and N
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FIGURE 6 | Bar graph of enriched terms across parent genes of SR-ASEs by Metascape, colored by P-values.

FIGURE 7 | Correlation network of SR-ASEs and SFs. (A) Co-expression networks between parent genes of SR-ASEs and SFs. Yellow square indicates SFs, red
circle indicates the poor prognostic SR-ASEs, and blue circle indicates the better prognostic SR-ASEs. Red line indicates that SFs were positively correlated with the
SR-ASE, and blue line indicates SFs were negatively correlated with the SR-ASE. (B) Protein–protein interaction network of SFs.

stages, it statistically significant for all the six SFs (Supplementary
Figure 4). The AUC of each ROC curve is higher than 70%
(Supplementary Figure 4), indicating that all of these six SFs
could be used to classify the stages of ACC.

DISCUSSION

Adrenocortical carcinoma is a rare malignancy tumor with
a poor prognosis. Currently, surgery is the only available
curative treatment option (Crona and Beuschlein, 2019).
Recent studies (Barreau et al., 2013; Patel et al., 2013;

Assie et al., 2014; Szabo et al., 2014; Jouinot and Bertherat,
2018) highlighted that genomic approaches derived from
TCGA database and GEO datasets could provide specific
molecular signatures for the diagnosis and prognosis of
ACC. At present, few studies focused on the different
isoforms of alternative splicing in ACC (Bie et al., 2019).
The present study is to explore the aberrant of ASEs
and hub SFs to develop novel diagnostic and prognostic
markers for ACC.

Seven types of ASEs were investigated in this study. ES type
was the top splicing type with high-frequency ASEs and SR-ASEs

Frontiers in Genetics | www.frontiersin.org 8 September 2020 | Volume 11 | Article 918

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00918 September 1, 2020 Time: 19:38 # 9

Lv et al. ASEs and SFs in ACC

TABLE 2 | Top 20 significant associations between SR-ASEs and SFs.

Splicing factor ASEs# Correlation P-value Regulation

HSPA1B KCNJ5-19431-AP −0.84181986 8.92E-22 Negative

HSPA1B UBE3A-29716-AP −0.82743598 1.77E-20 Negative

MAGOH ZNF131-71936-ES −0.81209442 3.20E-19 Negative

HSPA1B IKBKB-83691-ES −0.80904662 5.51E-19 Negative

HSPA1B CYTH1-43892-ES −0.80356862 1.43E-18 Negative

HSPA1B EYS-76614-AT −0.79837952 3.43E-18 Negative

PRPF38A ZNF131-71936-ES −0.78822643 1.77E-17 Negative

SF3B4 ZNF131-71936-ES −0.788164 1.79E-17 Negative

HSPA1B GNG7-46614-AP −0.77278859 1.83E-16 Negative

PRPF38A ZNF131-71932-ES −0.77084258 2.42E-16 Negative

BUD13 TNFRSF12A-33348-ES −0.77031719 2.61E-16 Negative

PRPF38A F6-23309-ES −0.75603278 1.88E-15 Negative

PRPF38A HDDC3-32524-AA 0.751788406 3.30E-15 Positive

SNRPA1 ZNF131-71936-ES −0.74748153 5.77E-15 Negative

HSPA1B DAGLB-78732-ES −0.74496838 7.96E-15 Negative

SRPK1 NDUFA12-23740-ES −0.74060614 1.38E-14 Negative

SNRPG KIF20B-12497-AT −0.73362818 3.23E-14 Negative

SNRPG KIF20B-12498-AT 0.733628184 3.23E-14 Positive

PRCC ARHGEF28-72492-AT −0.73325406 3.38E-14 Negative

PRCC ARHGEF28-72493-AT 0.733254055 3.38E-14 Positive

# In terms of KCNJ5-19431-AP, KCNJ5 is an official gene symbol, 19431 is the number of alternative splicing events, and AP is the type of AS pattern.

TABLE 3 | Two MCODE modules of protein–protein interaction network of parent
genes of SR-ASEs and SFs.

Module Score Gene symbol

Module 1 27 SART1, SNRPA1, SNRPG, SF3B1, SF3B6, SNRPD1,
RBM8A, MAGOH, SNRPE, SRSF3, LSM7, SF3B4, SF3A3,
SRSF2, HNRNPM, SNRPC, SNRNP40, HNRNPH1, SRRT,
ALYREF, PRPF38A, PRPF40A, DHX9, YBX1, SNRNP27,
RBM5, DNAJC8, CCAR1, PRCC, SUGP1

Module 2 8 THOC5, THOC3, DDX39A, ZC3H11A

(Figures 1A,C), indicating the ES is the dominant alternative
splicing type in ACC.

In this study, we identified 1,839 SR-ASEs by univariate
Cox regression analysis. Interestingly, different ASEs in the
same gene could exert opposite functions in the overall
survival of ACC, indicating that the parent genes of these
ASEs may play an important role in ACC development
(Figures 1D, 8). Because ME type has the highest HR value
(Figure 4F) THNSL2| 54469| ME ranks the most significant
event in the ME type (Supplementary Figure 1F). Therefore,
THNSL2| 54469| ME could be used as an independent
prognostic indicator to predict the prognosis of ACC cases
(Figure 2E). THNSL2 encodes a threonine synthase-like
protein and has multiple transcript variants. The function
of THNSL2 and the alternative splicing of THNSL2| 54469|
ME could be further investigated. Enrichment analysis
revealed several important pathways, including regulation
of the mitotic cell cycle and cell cycle G2/M phase transition,

which could impact the occurrence and development of
ACC (Figure 6).

Genes involved in the same biological process or signaling
pathway are usually co-regulated in the disease context.
Co-expression network analysis has been widely used to dissect
the functional gene panels in large datasets, including alternative
splicing studies (He et al., 2018; Xiong et al., 2018; Zhang et al.,
2020). One hundred eighty-eight highly correlated interactions
between SFs and SR-ASEs were identified (Figure 7). SR-ASEs
that were positively correlated with SFs have a poor prognostic
value, whereas SR-ASEs that were positively correlated with
SFs have a poor prognostic value (Figures 7, 8). It provided
a new insight for the molecular mechanism of alternative
splicing in ACC.

The number of pairs of ASEs from one parent gene was
observed for SFs in the network (Figure 7), and six pairs of
ASEs related with YBX1 and SNRFE were illustrated in detail
(Figure 8). We observed that the pairs of ASEs conferred
the opposite function for the ACC progress shown in the
overall survival curve (Figure 8), indicating that specific exons
were important, such as the alternative promoters’ selection
of ASH2L, and alternative terminator selection of MSI2.
Moreover, among these six pairs of ASEs, only alternative
promoters of ASH2L have been reported in embryonal carcinoma
(Alagaratnam et al., 2013).

A previous study on ASEs in endometrial cancer also
identified YBX1 as the hub SF. One pair of ASEs that correlated
with YBX1 was identified in that study: DNAH9-AT-39292 and
DNAH9-AT-39293 (Wang et al., 2019). We could conclude
that, firstly, it seems YBX1 more specifically regulates the
first exon, as the splicing type is AT type in both studies;
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FIGURE 8 | Kaplan–Meier survival curves for ASEs that correlated with splicing factors YBX1 and SNRFE. (A) ASEs that negatively correlated with YBX1. (B) ASEs
that positively correlated with YBX1. (C) ASEs that negatively correlated with SNRFE. (D) ASEs that positively correlated with SNRFE. Seventy-nine ACC patients
were divided into high- and low-risk groups based on the median of PSI. Red line indicates the high PSI score group, and blue line indicates the low PSI score group.
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TABLE 4 | Counts of SFs correlated with SR-ASEs in correlation network.

Splicing factor Count

HSPA1B 14

YBX1 13

SRPK1 7

SART1 7

PRCC 7

ILF2 7

SNRPG 6

SNRPE 6

SF3B4 6

BUD13 6

INTS4 5

CLK2 5

secondly, YBX1, as the hub SF, might regulate specific genes in
different cancer types.

Six hub SFs, including YBX1, SART1, PRCC, SNRPG, SNRPE,
and SF3B4, were identified in this study. We found that the
expression level of hub SFs was negatively correlated with the
survival time and survival state of ACC patients (Figure 9).
There was still some evidence that the expression level of hub
SFs in tumor tissues was higher than that in normal tissues
(Figure 10). The altered expression level of hub SFs has been
reported in multiple types of cancer, such as YBX1 (Rossner
et al., 2016; Chen et al., 2019), SART1 (Ishida et al., 2000;
Sasatomi et al., 2000; Yutani et al., 2001), SNRPE (Tamura
et al., 2007; Jia et al., 2011), and SF3B4 (Liu et al., 2018). Other
studies have shown that SNRPE (Quidville et al., 2013) and
SF3B4 (Shen and Nam, 2018) could develop a new therapeutic
agent in cancer. Further study found that the inactivation
of SF3B4 inhibited liver tumorigenesis in vitro and in vivo
(Shen et al., 2018). In terms of molecular mechanism, SF3B4
triggers SF3b complex to splice tumor suppressor KLF4 transcript
to non-functional skipped exon transcripts, downregulates
the transcriptional activity of p27Kip1, and upregulates the
transcriptional activation of Slug genes (Shen et al., 2018).
However, the functions of hub SFs in ACC development need to
be further studied.

Our present study performed a bioinformatic analysis of
SR-ASEs and hub SFs and provided insight into the function of
aberrant ASEs in ACC development and progression. SR-ASEs
and hub SFs identified in this study could be potential targets for
the diagnosis of ACC patients.

MATERIALS AND METHODS

Data Collection
The transcriptome data of 79 ACC cases and the corresponding
clinical information, including survival time, survival status,
sex, tumor stage, T stage, and lymph node metastasis, were
downloaded from TCGA1. Seven types of ASEs of 79 ACC cases

1https://tcga-data.nci.nih.gov/tcga/

were downloaded from the TCGA SpliceSeq database2 (Ryan
et al., 2016). ASEs were quantified using the PSI, rating from 0
to 1. Splicing event data of 79 ACC cases included 34,419 ASEs,
corresponding to 8,994 genes. To better track the AS events, the
name of the ASEs contains three parts: the official gene symbol, a
unique splicing event ID number, and splicing type. The number
of ASEs for different types of ASEs are shown in the UpSet
plot (Figure 1A).

Screening of Survival-Related Alternative
Splicing Events
The missing value of PSI in seven AS event types was
supplemented by impute.knn function using nearest neighbor
averaging method with k = 10, rowmax = 0.5, colmax = 0.8, and
other default setting in R. Then, the PSI data of 79 ACC cases
were filtered by deleting the ASEs with mean PSI of less than 0.05
and standard deviation of PSI of less than 0.01. The filtered PSI
data, including 22,521 ASEs from 8,040 genes in 79 ACC cases,
were used for visualization and subsequent analysis. The survival
time and survival status of 79 ACC cases were integrated with the
filtered PSI data. Then, SR-ASEs were selected using univariate
Cox regression analysis with a threshold set to a P-value < 0.01
and were visualized by volcano plot and bubble plot.

Construction of Prognosis Model of
Survival-Related Alternative Splicing
Events
Multivariate Cox regression analysis was performed to calculate
the prognostic indices of each for each type of splicing
pattern. To prevent over-fitting of the model, seven different
types of SR-ASEs and ALL SR-ASEs were analyzed by lasso
regression analysis, making the Lambda values at smaller level.
The SR-ASEs with high correlation have been removed to
guarantee the accuracy of the model. Risk factors were calculated
using the following formula βSR-ASE1 × PSISR-ASE1 + βSR-
ASE2 × PSISR-ASE2 + . . .. . . + βSR-ASEn × PSISR-ASEn,
where β corresponded to the regression coefficient. The samples
were stratified to high- and low-risk groups based on the
median of risk scores. The survival curve and ROC curve of
the 79 ACC cases were used to evaluate the accuracy of the
model. Univariate and multivariate Cox regression analyses were
used to determine whether the prognostic indices could be
used as an independent prognostic factor for predicting the
prognosis of ACC cases.

Enrichment Analysis of Survival-Related
Alternative Splicing Events
To illustrate the biological functions and pathway associated with
SR-ASEs of ACC cases, gene enrichment analysis for parent genes
of SR-ASEs was performed in the online database Metascape3

(Zhou et al., 2019) with the default setting. Metascape is an online
analytical tool for pooled gene annotation, enrichment analysis,
and protein interaction analysis.

2https://bioinformatics.mdanderson.org/TCGASpliceSeq/
3http://metascape.org
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FIGURE 9 | Relationship between hub SFs and survival curve, tumor stage, T stage and lymph node state. (A) YBX1. (B) SART1. (C) PRCC. (D) SNRPG.
(E) SNRPE. (F) SF3B4. *P < 0.05; **P < 0.01; ***P < 0.001 and n.s. indicates no significance.
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FIGURE 10 | Expression level of hub SFs of ACC or normal samples in the microarray: (A) GSE19750 and (B) GSE33371. *P < 0.05; ***P < 0.001 and n.s.
indicates no significance.

Construction of Splicing Correlation
Network
Four hundred four SFs summarized from the previous study
were used in this study for SF analysis (Seiler et al., 2018).
They collected and prioritized the final list of 404 SF genes by
compiling and filtering spliceosome and splicing related genes
from three sources, which were all experimentally validated in the
previous study (Barbosa-Morais et al., 2006; Hegele et al., 2012;
Cvitkovic and Jurica, 2013). Source 1 (Hegele et al., 2012) was
from a comprehensive yeast two-hybrid study using spliceosome
components as bait. Source 2 (Barbosa-Morais et al., 2006)
included 254 SFs and splicing related proteins. Source 3 was from
SpliceosomeDB (Cvitkovic and Jurica, 2013). Of 404 SFs, 390
were extracted from the transcriptome data of 79 ACC cases.
Co-expression network analysis calculated by spearman method
was used in the construction of alternative splicing regulation
networks to screen the important SFs. Cytoscape visualized
a highly correlated interaction network with the threshold of
correlation coefficient of 0.65.

Also, protein–protein interaction network of SFs was
established to find the important SFs in the progression
of ACC, using the online database Search Tool for the
Retrieval of Interacting Genes4 (version 11.0). Then, the
hub SFs were selected by the MCODE app of Cytoscape.
Six prognostic-related hub SFs for patients with ACC were

4http://string-db.org

identified by combining the co-expression networks analysis and
protein–protein internecion networks.

Analysis of Hub Splicing Factors
Correlations of the mRNA expression level of hub SFs with
clinical data (survival curve, tumor stage, T stage, and lymph
node state) of 79 ACC cases were analyzed. The online database
GEPIA (Tang et al., 2017)5, which contains the TCGA database
with the GTEx database, was further used to evaluate the SFs
on clinical features. Also, three gene expression microarray data
were downloaded from GEO6 for illustrating the expression
levels of hub SFs between normal tissue and tumor tissues.
GSE19750 (Demeure et al., 2013) includes 44 ACC samples and 4
control samples. GSE33371 (Heaton et al., 2012) includes 33 ACC
samples and 10 control samples.
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