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Abstract. This report describes the microinjection of 
a purified peroxisomal protein, alcohol oxidase, from 
Pichia pastoris into mammalian tissue culture cells 
and the subsequent transport of this protein into vesic- 
ular structures. Transport was into membrane-enclosed 
vesicles as judged by digitonin-permeabilization exper- 
iments. The transport was time and temperature de- 
pendent. Vesicles containing alcohol oxidase could be 
detected as long as 6 d after injection. Coinjection 
of synthetic peptides containing a consensus carboxy- 
terminal tripeptide peroxisomal targeting signal re- 
suited in abolition of alcohol oxidase transport into 
vesicles in all cell lines examined. Double-label exper- 
iments indicated that, although some of the alcohol 
oxidase was transported into vesicles that contained 
other peroxisomal proteins, the bulk of the alcohol 

oxidase did not appear to be transported to preexisting 
peroxisomes. While the inhibition of transport of alco- 
hol oxidase by peptides containing the peroxisomal 
targeting signal suggests a competition for some limit- 
ing component of the machinery involved in the sort- 
ing of proteins into peroxisomes, the organelles into 
which the majority of the protein is targeted appear to 
be unusual and distinct from endogenous peroxisomes 
by several criteria. Microinjected alcohol oxidase was 
transported into vesicles in normal fibroblasts and also 
in cell lines derived from patients with Zellweger syn- 
drome, which are unable to transport proteins contain- 
ing the ser-lys-leu-COOH peroxisomal targeting signal 
into peroxisomes (Walton et al., 1992). The implica- 
tions of this result for the mechanism of peroxisomal 
protein transport are discussed. 

COrIOL oxidase is a 630-kD octameric flavoprotein 
(Kato et al., 1976) that exists in a crystalloid form 
within the peroxisome (Sahm et al., 1975; Veenhuis 

et al., 1983). Made in methylotrophic yeasts (Candida sp., 
Hansenula sp., Pichia sp., Torulopsis sp.) in response to 
growth on methanol, this protein may account for up to 30% 
of the total cellular protein (Veenhuis et al., 1983; van der 
Klei et al., 1991). Cells from these organisms contain a large 
number of peroxisomes which may constitute 80% of the to- 
tal cytoplasmic volume (Cregg et al., 1990). The peroxi- 
somes principally contain alcohol oxidase, catalase, and di- 
hydroxyacetone synthase (Rogenkamp et al., 1975; Douma 
et al., 1985; Goodman, 1985), with a core composed exclu- 
sively of crystalline alcohol oxidase (Veenhuis et al., 1978, 
1981). Alcohol oxidase may account for approximately two- 
thirds of the total cellular protein in mutant cells overex- 
pressing the protein from a vector (Roggenkamp et al., 1989). 
Synthesized on free polysomes in the cytoplasm (Lazarow 
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and Fujiki, 1985; Roa and Blobel, 1983; Roggenkarnp et al., 
1984), the monomeric form of the enzyme is imported into 
the peroxisomes before octamerization and acquisition of 
catalytic activity (Goodman et al., 1984; Distel et al., 1987). 
Pulse-chase experiments indicate that the newly synthesized 
monomer has a half-life of about 20 min before its conversion 
to octamers (Goodman et al., 1984). However, peroxisomal 
transport is not a prerequisite for catalytic activity as recent 
experiments have demonstrated the presence of active alco- 
hol oxidase in the cytoplasm of mutants of Hansenula poly- 
morpha that lack peroxisomes (Cregg et al., 1990). 

Alcohol oxidase from H. polymorpha is transported into 
peroxisomes when expressed in Saccharomyces cerevisiae 
(Distel et al., 1987), although it does not form octamers and 
is enzymatically inactive. However, when these cells were 
fused with [-1. polymorpha cells that did not express alcohol 
oxidase, active octameric enzyme was detected (van der Klei 
et al., 1989). These results imply the presence of additional 
components in H. polymorpha that are involved in the oc- 
tamerization and activation of this enzyme. Alcohol oxidase 
introduced into protoplasts of H. polymorpha by liposome 
fusion failed to be transported into peroxisomes and was 
slowly degraded (Douma et al., 1990). 
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Figure 1. Transport of microinjected alcohol oxidase into vesicles in BALB/c 3T3 cells. Ceils were injected with '~4.8 • 104 octamers 
of alcohol oxidase and 2 x 103 molecules of non-specific mouse IgG and subsequently incubated at 37~ for 18 h. This was followed 
by processing for double-label indirect immunofluorescence which used rabbit anti-alcohol oxidase and biotinylated anti-mouse IgG 
antibodies in the first step and rhodamine-conjugated anti-rabbit IgG antibodies and FITC-conjugated streptavidin in the second step. The 
injected cells were identified by the cytoplasmic FITC staining. (Left) Shows the punctate pattern of the rhodamine-stained alcohol oxidase 
following an 18-h incubation at 370C. (Right) Shows an SDS-polyacrylamide gel containing 10 #g of alcohol oxidase, stained with Coomas- 
sic blue. Numbers at left represent the position of molecular weight markers (in kD). Bar, 10 #m. 

The signal in alcohol oxidase that targets the protein to 
peroxisomes is unknown. Although a consensus carboxy- 
terminal tfipeptide peroxisomal targeting signal (PTS) ~ has 
recently been discovered in many peroxisomal proteins 
(Gould et al., 1989) such a sequence is absent from the car- 
boxy terminus of alcohol oxidase from P. pastoris (Koutz et 
al., 1989) and H. polymorpha (Ledeboer et al., 1985). It is 
not known whether the three carboxy-terminal amino acids 
in alcohol oxidase (-ala-arg-phe-COOH) can act as a perox- 
isomal targeting signal. 

The growth of methylotrophic yeasts on methanol induces 
the synthesis of alcohol oxidase as well as peroxisomal 
growth and proliferation. Peroxisomal proliferation in H. poly- 
morpha occurs by pinching off small vesicles from mature 
peroxisomes which are filled with the required complement 
of enzymes (Veenhuis et al., 1978). While the precise signals 
for organelle growth and proliferation have not been identi- 
fied, the overproduction of alcohol oxidase in S. cerevisiae 
(Distel et al., 1987) or in H. polymorpha (Distel et al., 1988; 
Roggenkamp et al., 1989) is sufficient for the induction of 
the growth of single-membrane-bound organelles that en- 
velop a crystalline core of alcohol oxidase. Overproduction 
of alcohol oxidase alone in H. polymorpha induced growth 
of the peroxisomes, but did not trigger the proliferation of 
peroxisomes, nor did it result in the coordinate expression 
of the other enzymes of methanol assimilation. 

The experiments described in this report were undertaken 
to determine whether this yeast protein could be recognized 
and transported into appropriate organelles in mammalian 
cells and whether alcohol oxidase could induce growth 
and/or proliferation of organelles. 

1. Abbreviation used in this paper: PTS, peroxisomal targeting signal. 

Materials and Methods 

Reagents 
Alcohol oxidase was kindly provided by the Philips Petroleum Company 
(Bartlesville, OK). Rabbit polyclonai antibodies directed against alcohol ox- 
idase were a generous gift from Ben Distel and Henk Tabak (University of 
Amsterdam). Rabbit polyclonal antibodies directed against peroxisomal in- 
tegral membrane proteins have been described earlier (Bodnar and Rachu- 
binski, 1991). Other reagents were as described previously (Walton et al., 
1992). 

Cell Culture 
BALB/c 3"1"3 and HS68 cells were obtained from American Type Culture 
Collection (Rockville, MD). GM00228 and GM04340; Zellweger patient 
fibroblasts belonging to two different complementation groups, were ob- 
tained from the Human Mutant Cell Culture Repository (Camden, NJ). 
BALB/c 3"1"3 cells transfected with the pSV2CAT-PMP-20 plasmid and ex- 
pressing the peroxisonud CAT-PMP-20 fusion protein in a stable fashion 
were prepared as previously described (Gould et al., 1989, 1990a). Cells 
were grown in DME supplemented with 10% FCS. For microinjection, 
cells were plated on acid-washed glass coverslips. 

Microinjection and Iramunofluorescence Microscopy 
Cells were microinjected using glass capillary needles as previously de- 
scribed (Walton et al., 1992). Alcohol oxidase was microinjected at a con- 
centration of 1 mg/ml in a buffer of 20 mM KPO4 (pH 7.4), 100 mM KC1, 
and 1.2 % sucrose. To facilitate identification of microinjected ceils, mouse 
IgG (non-specific) was co-injected at a concentration of 1 mg/ml. With an 
average injection volume of 5 • 10 -t4 liters, a molecular weight of 630 kD 
(octamer), and a concentration of 1 mg/ml, '~4.8 • 104 octamers of alco- 
hol exidase were injected per ceil. In addition, injections included '~2 • 
105 molecules of mouse IgG. 

Analysis of the subcellular distribution of microinjected alcohol oxidase 
was performed as described previously (Walton et al., 1992). 

Digitonin-permeabilization experiments were performed as previously 
described except that the reagents for immunofluorescence were diluted in 
PBS. After fixation in 3.7 % formaldehyde the cells were permeabilized with 
25 t~g/ml digitonin for 10 rain at room temperature. Digitonin, at this con- 
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Figure 2. Transport of alcohol oxidase is into membrane-enclosed vesicles. BALB/c 3T3 cells were microinjected with alcohol oxidase 
and incubated 18 h at 37"C. Cells were fixed and permeabilized with either digitonin (25/~g/ml) (A and C) or digitonin plus Triton X-100 
(0.05%) (B and D). Cells were then processed for double indirect immunofhorescence. The upper row (A and B) indicates injected ceils 
as visualized by staining for coinjected mouse IgG. The lower row (C and D) shows the distribution of alcohol oxidase in these injected 
cells. Bar, 10 #m. 

centration, has been shown to permeabilize the cholesterol-containing 
plasma membrane while maintaining pemxisomal membrane integrity 
(Wolvetang et al., 1990). To show that the digitonin did not attenuate the 
immunofluorescence signal, permeabilizations were performed with 25 
t~g/rnl digitonin plus 0.05% Triton X-100. 

Results 

Transport of Mlcroinjected Alcohol Oxidase 
Alcohol oxidase, purified from Pichia pastoris, migrated as 
a single band on SDS-polyacrylamide gels (Fig. 1, right). 
The subeellular localization of the injected protein was 
monitored by indirect immunofluorescence of the injected 
cells. Alcohol oxidase was localized to vesicular structures 
within the mammalian cells. Uninjeeted cells did not contain 
such structures. Overnight (18 h) incubations at 37~ 
resulted in the induction of numerous alcohol oxidase con- 
taining vesicles of approximately the same size (Fig. 1, left). 
The number of vesicles, but not their final size, appeared to 

depend upon the amount of alcohol oxidase microinjected. 
This pattern persisted for at least 6-d postinjection. 

Micrainjected Alcohol Oxidase Is Transported to 
Membrane-bounded Vesicles 
To ascertain whether the alcohol oxidase was transported 
into membrane-enclosed vesicles, cells microinjected with 
alcohol oxidase, and incubated 18 h at 37~ were permeabi- 
lized with either 25 gg/ml digitonin or digitonin plus 0.05 % 
Triton X-100 (Fig. 2). Digitonin permeabilized the plasma 
membrane and allowed the visualization of the cytoplasmic 
mouse IgG and alcohol oxidase immediately following 
microinjection (not shown). When cells injected with alco- 
hol oxidase and mouse IgG were incubated for 18 h at 37~ 
permeabilized with digitonin and monitored by immunofluo- 
rescence, staining of the cytoplasmic mouse IgG was ob- 
served (Fig. 2 a) but the punctate staining for alcohol oxidase 
was no longer visible (Fig. 2 c). Permeabilization of iden- 
tically injected and incubated cells with digitonin plus Triton 
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Figure 3. Time course and temperature dependence of transport of alcohol oxidase in BALB/c 31"3 cells. Cells were injected as described 
in Materials and Methods and incubated at 37~ for 20 rain (A and B), 40 rain (C and D), 60 min (E and F) ,  or at 20~ for 60 rain 
(G and H) followed by processing for double indirect immunofluorescence. The left column (A, C, E, and G) indicates the injected cells 
as visualized by staining for coinjected mouse IgG. The right column (B, D, F, and H) shows the distribution of alcohol oxidase in these 
microinjected cells. Bar, 10 #m. 



Figure 4. Effects of coinjection of synthetic peptides bearing the PTS on the transport of microinjected alcohol oxidase. BALB/c 3T3 cells 
were injected with alcohol oxidase and a 50-fold molar excess of control peptide (NH2-CRYHLKPLQ-COOH) (A and B), or peptides 
bearing the PTS (NHe-CRYHLKPLQAKL-COOH) (C and D), (NH~-CRYSRLSHLSKL-COOH) (E and F), (NH2-CRYHLKPLQ,.~- 
COOH) (G and H). After injection, cells were incubated for 60 rain at 37~ and then processed for double indirect immunotiuorescence. 
(,4, (7, E, and G) Indicates injected cells as visualized by staining for coinjected mouse IgG~ (B, D, F, and H) Shows the distr:ibution of 
alcohol oxidase in these injected cells. Bar, 10 #m. 



Figure 5. Localization of alcohol oxi- 
dase and other endogenous peroxiso- 
real proteins. Microinjeeted alcohol 
oxidase (A and C) and peroxisomally 
located CAT-PMP-20 (B) and peroxi- 
somal integral membrane proteins (D) 
in BALB/c 3T3 ceils, and BALB/c 
3"1"3 ceils transfected with plasmid 
pSV2CAT-PMP-20. After injection, 
cells were incubated for 16 h at 37~ 
(A and B), or 3 h at 37~ (C and D), 
and then processed for double indirect 
immunofluorescence. Arrows indicate 
vesicles that costained for both alcohol 
oxidase and endogenous peroxisomal 
proteins. Determination of costaining 
vesicles involved the printing of large- 
format photographs of each micrograph 
at identical magnification. Coalign- 
ment was deduced by triangulation from 
fixed reference points on each photo- 
graph. Bar, 10 #m. 

X-100, followed by indirect immunofluorescence, revealed 
punctate structures containing alcohol oxidase (Fig. 2 d) in 
injected cells (Fig. 2 b). In control experiments, BALB/c 3T3 
cells permeabilized with digitonin alone failed to reveal the 
peroxisomally located catalase, but showed the normally ob- 
served punctate pattern when permeabilized with digitonin 
plus Triton X-100 before immunocytochemical staining 
(Walton et al., 1992). 

Time and Temperature Dependence of Transport 
The transport of alcohol oxidase was time and temperature 
dependent (Fig. 3, a-h). No vesicles were observed imme- 
diately following microinjection of alcohol oxidase (not 
shown). A few vesicles appeared after incubations of 20 min 
at 370C (Fig. 3, a and b) and the size and number grew 
through 40 min (Fig. 3, c and d) and 60 rain (Fig. 3, e and 
f ) .  Transport was inhibited by incubation at 20~ (Fig. 3, 
g and h). No punctate staining was observed in 60-min incu- 
bations at 4~ (not shown). 

Peptides Containing the Tripeptide PTS Inhibit 
Transport of Alcohol Oxidase 
To determine if the transport of alcohol oxidase used compo- 
nents of the mammalian peroxisomal transport system, the 
effect of synthetic peptides shown to be inhibitory to the 
transport of microinjected luciferase (Walton et al., 1992) 
was studied. These peptides mimic the carboxy-terminal 
tripeptide peroxisomal targeting signal described by Gould 
et al. (1990b) and were not identical to the carboxy terminus 
of alcohol oxidase from P. pastoris. Three synthetic peptides 
bearing the peroxisomal targeting signals NH3-CRYHLK- 

PLQAKL-COOH (Fig. 4, c and d), NH3-CRYSRLSHL- 
SKL-COOH (Fig. 4, e and f ) ,  and NH3-CRYHLKPLQ- 
SRL-COOH (Fig. 4, g and h) were injected at a 50-fold 
molar excess with the alcohol oxidase. As can be seen in Fig. 
4, these coinjected peptides abolished transport of alcohol 
oxidase in 60-rain incubations. In long-term incubations 
(18 h), coinjection of these inhibitory peptides blocked al- 
cohol oxidase transport in BALB/c 3T3 cells (not shown). A 
control peptide bearing the first nine amino acids of the AKL 
and SRL inhibitory peptides (NH3-CRYHLKPLQ-COOH) 
had no effect on transport either at a 50-fold (Fig. 4, a and 
b) or at a 100-fold molar excess (not shown). 

Some, but not all, of the 
Microinjected Alcohol Oxidase Is Transported to 
Preexisting Peroxisomes 
To determine if the microinjected alcohol oxidase was trans- 
ported into the matrix of peroxisomes, further injections into 
BALB/c 3T3 cells expressing the CAT-PMP-20 fusion pro- 
tein in a peroxisomal location were undertaken. The expres- 
sion and peroxisomal transport of this fusion protein, con- 
taining the last 12 amino acids of the C. boidinii PMP-20 
gene fused to the carboxy terminus of chloramphenicol 
acetyltransferase in transfected CV-1 cells has been described 
previously (Gould et al., 1989, 1990a). In the present study 
the CAT-PMP-20 protein colocalized with endogenous cata- 
lase to the peroxisomes as judged by double indirect im- 
munofluorescence (not shown). The results (Fig. 5, a and b) 
demonstrate that the majority of vesicles containing alcohol 
oxidase were distinct from those containing the CAT-PMP- 
20 fusion protein. They differed in both size and location 
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Figure 6. Localization of coinjeeted alcohol oxidase and luciferase. Cells microinjeeted with alcohol oxidase (A) and luciferase (B) were 
incubated for 16 h at 37"C and then processed for double indirect immunofluorescence. Arrows indicate vesicles that costained for both 
alcohol oxidase and luciferase. Inserts are approximately twofold magnifications. Determination of costaining vesicles involved the printing 
of large-format photographs of each micrograph at identical magnification. Coalignment was deduced by triangulation from fixed reference 
points on each photograph. Bar, 10 #m. 

when compared to endogenous peroxisomes. However, sev- 
eral vesicles ('~1% of the total) costained for both alcohol 
oxidase and CAT-PMP-20, as judged by both vesicle size and 
triangulation from fixed reference points. When microin- 
jeered alcohol oxidase was costained with antibodies directed 
against peroxisomai integral membrane proteins (Fig. 5, c 
and d) similar results were obtained; a small fraction of the 
vesicles containing the alcohol oxidase colocalized with 
vesicles that stained for peroxisomal integral membrane 
proteins. 

When alcohol oxidase was coinjected with luciferase (Fig. 
6, a and b) the proteins appeared to be transported both to 
identical and distinct vesicles. The luciferase was trans- 

ported to peroxisomes as demonstrated by colocalization 
with the endogenous catalase (Walton et al., 1992). These 
results indicated that at least a fraction of the microinjected 
alcohol oxidase was transported to vesicles containing 
peroxisomal proteins, but there were also vesicles containing 
alcohol oxidase or luciferase alone. Coinjection of alcohol 
oxidase and luciferase resulted in the transport of both pro- 
teins without apparent competition at the levels used. 

Transport of  Microinjected Alcohol Oxidase 
in Human Cells 
The transport of alcohol oxidase in various human cell lines 
was examined by microinjection. The cell lines included a 
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Figure 7. Transport of microinjected alcohol oxidase in human ceU lines. Normal human fibroblasts (HS68) (top row) and cell lines derived 
from patients with Zcllweger syndrome GM00228 (second row) and GM04340 (third row), were injected with alcohol oxidase (first and 
second columns), or alcohol oxidase plus a 100-fold molar excess of a pcptide bearing the PTS (NH2-CRYHLKPLQAKL-COOH) (third 
and fourth columns). After injection the cells were incubated for 16 h at 37~ and then processed for double indirect immunofluorescence. 
Columns 1 and 3 indicate injected cells as visualized by staining for coinjected mouse IgG. Columns 2 and 4 show the distribution of 
alcohol oxidase in these injected cells. Bar, 10/zm. 
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normal human fibroblast cell line (HS68), and two cell lines 
derived from patients with lethal abnormalities in perox- 
isomal transport. The cell lines GM00228 and GM04340 
come from patients with Zellweger syndrome. These two 
cell lines were unable to transport microinjected proteins 
ending in the SKL tripeptide PTS into their peroxisomes 
(walton et al., 1992). As can be seen in Fig. 7 (first and sec- 
ond columns) all three cell lines imported extensive amounts 
of alcohol oxidase in overnight (18 h) incubations. This 
transport uses some components of the peroxisomal trans- 
port machinery. Coinjection of the inhibitory peptide (NH2- 
CRYHLKPLQAKL-COOH) bearing the PTS at a 100-fold 
molar excess abolished transport in all of the cell lines (Fig. 
7, third and fourth columns). 

Discus s ion  

This report describes the transport of microinjected alcohol 
oxidase into vesicles in mammalian cells. The inability to 
detect alcohol oxidase-containing vesicles in cells permeabi- 
lized with digitonin confirms that the protein is on the inside 
of the vesicles, and not residing untransported on the surface 
or as aggregates in the cytoplasm. 

The vesicles containing alcohol oxidase appear to grow to 
a definite size upon overnight incubations. Like the peroxi- 
somes seen in yeast (Goodman et al., 1984; Distel et al., 
1988; Roggenkamp et al., 1989; Cregg et al., 1990), the 
final diameter of these vesicles is 0.5-1.0 #m. It is not known 
if there is a mechanism which limits the size of the vesicles, 
although they are much larger than that observed with en- 
dogenous peroxisomes. 

Several lines of evidence suggest that in mammalian cells 
the transport of alcohol oxidase is into peroxisomes. First, 
a subset of the alcohol-oxidase-containing vesicles clearly 
colocalizes with vesicles containing two other bona fide 
peroxisomal matrix proteins, luciferase and CAT-PMP20 
(Figs. 5 and 6). Some of the alcohol oxidase-containing vesi- 
cles also colocalize with vesicles containing peroxisomal 
membrane proteins (Fig. 5). Second, the complete inhibition 
of transport of alcohol oxidase into vesicles by peptides con- 
taining the tripeptide PTS but not by control peptides lacking 
this PTS is a strong argument for the peroxisomal nature of 
the vesicles. Finally, the time and temperature dependence of 
alcohol oxidase transport into vesicles, as well as the satura- 
bility of the transport process, are all reminiscent of perox- 
isomal protein import in microinjected cells (Walton et al., 
1992). 

The temperature dependence is indicative of an energy- 
requiring process. Demonstration of a requirement for ATP 
by depleting endogenous ATP supplies was not possible in 
this in vivo system. We did not observe any alcohol oxidase 
bound to vesicles after 60 min at 4~ Therefore, we could 
not confirm the results of Imanaka et al. (1987) in which they 
demonstrated binding of acyl-CoA oxidase to rat liver perox- 
isomes, without transport, at 0~ The transport of alcohol 
oxidase was approximately eightfold faster than that ob- 
served for microinjected luciferase (Walton et al., 1992). Al- 
though this may reflect a different ability to detect the pro- 
teins, it may also indicate a difference in transport between 
luciferase and alcohol oxidase. 

Although, as stated above, some of the alcohol oxidase 
was transported into vesicles harboring other known perox- 

isomal proteins, the majority of the alcohol oxidase-contain- 
ing vesicles did not contain other peroxisomal proteins. It 
seemed possible that the import of such large amounts of al- 
cohol oxidase masked the endogenous peroxisomal proteins 
from immunological detection. In yeast, alcohol oxidase as- 
sembles into large crystalline arrays following import (Veen- 
huis et al., 1978, 1981). However, it seems inconceivable that 
the preexisting peroxisomal proteins were being entombed 
by the recently imported alcohol oxidase, as costaining with 
antibodies directed against peroxisomal integral membrane 
proteins failed to demonstrate a significantly greater number 
of costained vesicles. In uninjected cells these antibodies 
directed against peroxisomal integral membrane proteins ap- 
pear to stain the endoplasmic reticulum. However, within 
1-2 rain after injection of alcohol oxidase into normal fibro- 
blast and Zellweger cell lines, the reticular pattern of stain- 
ing is diminished and many punctate vesicles appear. These 
vesicles persist for at least 16-h postinjection. This antibody 
does not recognize alcohol oxidase on Western blots, nor is 
the alcohol oxidase in punctate vesicles immediately after 
microinjection. Bodnar and Rachubinski (1991) have used 
this antibody to demonstrate that a 50 kD peroxisomal inte- 
gral membrane protein is synthesized on membrane-bound 
polysomes of the ER. We hypothesize that we have observed 
the recruitment of a protein constituent of the ER into vesi- 
cles following microinjection of alcohol oxidase. Further ex- 
periments are in progress to characterize this intriguing ob- 
servation in greater detail. 

The nature of the majority of vesicles containing trans- 
ported alcohol oxidase is an enigma. The alcohol oxi- 
dase-containing vesicles did not costain with antibodies 
directed against proteins of the lysosomal, rough ER or 
Golgi compartments (results not shown). Furthermore, the 
absence of any KFERQ-Iike sequences (Dice et al., 1987; 
Koutz et al., 1989) in alcohol oxidase, the absence of any 
effect on the vesicles by chloroquine and the long-term sta- 
bility of the vesicles argue that the vesicles are not lyso- 
somes. In view of the evidence that transport of alcohol oxi- 
dase into vesicles is completely inhibited by PTS peptides 
and in the absence of any reason to think that the vesicles 
comprise some other subcellular compartment, we conclude 
that the alcohol oxidase-containing vesicles are either novel 
peroxisomes or a new peroxisome-like compartment. 

The existence of vesicles containing only a subpopulation 
of peroxisomal enzymes is not unprecedented. In Neu- 
rospora crassa, there exist vesicles that contain peroxisomal 
proteins but not catalase (Wanner and Theimer, 1982; Ki- 
onka and Kunau, 1985). Several yeasts display heterogenei- 
ties in their microbody population. When H. polymorpha, 
C boidinii, or C ufilis were shifted from media containing 
ammonium sulfate to those containing methylamine as the 
nitrogen source, the newly synthesized amine oxidase was 
transported to a distinct subset of microbodies (Veenhuis et 
al., 1989). In H. polymorpha, overexpression of alcohol oxi- 
dase in a nonmethylotrophic state results in its transport to 
vesicles that lack the other enzymes of methanol assimilation 
(Distel et al., 1988). Synthesis of large amounts of alcohol 
oxidase does not result in the expression of other perox- 
isomal proteins (Roggenkamp et al., 1989). Similarly, ex- 
pression of dihydroxyacetone synthase from H. polymorpha 
in S. cerevisiae induces growth but not proliferation of 
peroxisomes (Godecke et al., 1989). Similarly, microinjec- 
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tion of alcohol oxidase into mammalian cells results in the 
induction of new vesicles and the translocation of the alcohol 
oxidase into peroxisome-like vesicles, but does not involve 
the expression and transport of other peroxisomal proteins 
into these same vesicles. 

The ability of Zellweger syndrome fibroblasts to transport 
alcohol oxidase but not catalase, luciferase or albumin con- 
jugated to peptides bearing the carboxy-terminal tripeptide 
PTS (Walton et al., 1992) is reminiscent of the transport of 
another matrix protein, peroxisomal thiolase, into peroxi- 
somes in some of these patients (Balfe et al., 1990). Recent 
evidence from our laboratory has shown that thiolase con- 
tains a new amino-terminal PTS distinct from the carboxy- 
terminal tripeptide PTS (Swinkels et al., 1991). Based on 
this analogy, and the lack of evidence for the existence of an 
SKL-like PTS in alcohol oxidase (Hansen et al., 1990), we 
suggest that alcohol oxidase, like thiolase, is likely to contain 
a different PTS than luciferase. Import of some proteins des- 
tined for the mitochondria is proposed to be mediated through 
two different targeting signals that bind to two distinct recep- 
tors. Translocation then occurs by interaction of these recep- 
tors with a general insertion protein located in the outer mi- 
tochondrial membrane (Pfanner and Neupert, 1990). The 
intriguing result that peptides containing the tripeptide PTS 
inhibit transport of alcohol oxidase into peroxisome-like 
vesicles would then imply that although alcohol oxidase and 
luciferase contain different PTS's they share a common down- 
stream component of the recognition and/or translocation 
machinery. 

This work was supported by grants from the National Institutes of  Health 
(DK41737) to S. Subramani and an NIH grant (CA39811) to J. R. Fer- 
amisco. Paul Walton was supported by a Medical Research Council of 
Canada Postdoctoral Fellowship. 

Received for publication 3 April 1992. 

References 

Balfe, A., G. Hoefler, W. W. Cben, and P. A. Watkins. 1990. Aberrant subcel- 
lular localization of peroxisomal 3-ketoacyl-CoA thiolase in the Zellweger 
syndrome and rhizomelic chondrodysplasia punctata. Pediatr. Res. 27: 
304-310. 

Bodnar, A. G., and R. A. Rachubinski. 1991. Characterization of the integral 
membrane polypeptides of rat liver peroxisomes isolated from untreated and 
clofibrate-treated rats. Biochem. Cell Biol. 69:499-508. 

Cregg, J. M., I. J. van Klei, G. J. Sulter, M. Veenhuis, and W. Harder. 1990. 
Peroxidase-deflcient mutants in Haasenula polymorpha. Yeast. 6:87-97. 

Dice, J. F. 1987. Molecular determinants of protein half-lives in eukaryotic 
cells. FASEB (Fed. Am. Soc. Exp. Biol.) J. 1:349-357. 

Distel, B., M. Veenhuis, and H. F. Tabak. 1987. Import of alcohol oxidase 
into peroxisomes of Saccharomyces cerevisiae. EMBO (Eur. Mol. Biol. Or- 
gan.) J. 6:3111-3116. 

Distal, B., I. Van der Leij, M. Veenhuis, and H. F. Tabak. 1988. Alcohol oxi- 
dase expressed under non-methylotrophic conditions is imperted, assem- 
bled, and enzymatically active in peroxisomes of Hansenula polymorpha. J. 
Cell Biol. 107:1669-1675. 

Douma, A. C., M. Veenhuis, W. de Konig, and W. Harder. 1985. Dihydrox- 
yacetune synthase is located in the peroxisomal matrix of methanol-grown 
Hansenula polymorpha. Arch. Microbiol. 143:237-243. 

Douma, A. C., M. Veenhuis, A. J. M. Driessen, and W. Harder. 1990. 
Liposoma-mediated introduction of proteins into protoplasts of the yeast 
Hansenula polymorpha as a possible tool to study peroxisome biogenesis. 
Yeast. 6:99-105. 

Feramisco, J. R. 1979. Microinjectiou of fluorescently labeled o~-actinin into 
living fibroblasts. Proc. Natl. Acad. Sci. USA. 76:3967-3971. 

Godecke, A., Veenhuis, M., Roggenkamp, R., Janowicz, Z. A., and HoUen- 
berg, C. P. 1989. Biosynthesis of the peroxisomal dihydroxyacetone syn- 
thase from Hansenula polymorpha in Saccharomyces cerevisiae induces 
growth but not proliferation of peroxisomes. Curr. C-enet. 16:13-20. 

Goodman, J. M. 1985. Dihydroxyacetune synthase is an abundant constituent 
of the methanol-induced peroxisome of Candida boidinii. J. Biol. Chem. 
260:7108-7113. 

Goodman, J. M., C. W. Scott, P. N. Denahue, andJ. P. Atherton. 1984. Alco- 

hol oxidase assembles post-translationally into peroxisomes of Candida 
boidinii. J. Biol. Chem. 259:8485-8493. 

Gould, S. J., G.-A. Keller, N. Hosken, J. Wilkinson, and S. Subramani. 1989. 
A conserved tripeptide sorts protein to peroxisomes. J. Cell Biol. 
108:1657-1664. 

Gould, S. J., G.-A. Keller, M. Schneider, S. H. Howell, L. J. Garrard, J. M. 
Goodman, B. Distel, H. Tabak, and S. Subramani. 1990a. Peroxisomal ira- 
pert is conserved between yeast, plants, insects, and mammals. EMBO (Fur. 
Mol. Biol. Organ.)J. 9:85-90. 

Gould, S. J., S. Krisans, G.-A. Keller, and S. Subramani. 1990b. Antibodies 
directed against the targeting signal of Firefly lnciferase recognize multiple 
mammalian peroxisomal proteins. J. Cell Biol. 110:27-34. 

Hansen, H., M. Veenhnis, and R. Roggenkamp. 1990. Peroxisomal protein ira- 
pert in a methylotrophic yeast. J. Cell Biochem. Suppl. 14C, 26. 

Imanaka, T., G. M. Small, and P. B. Lazarow. 1987. Translocation of acyl- 
CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane 
petential. J. Cell Biol. 105:2915-2922. 

Kamijo, K., S. Taketani, S. Yokota, T. Osumi, and T. Hashimoto. 1990. The 
70-kDa peroxisomal membrane protein is a member of the Mdr (P-glyco- 
protein)-related ATP-binding protein superfamily. J. Biol. Chem. 265: 
4534-4540. 

Katn, N., Y. Omori, Y. Tani, and K. Ogata. 1976. Alcohol oxidases of Kloeck- 
era sp. and Hansenula polymorpha. Catalytic properties and subunil struc- 
tures. Fur. J. Biochem. 64:341-350. 

Kionka, C., and Kunau, W.-H. 1985. Inducible/5-oxiilation pathway in Neu- 
rospora crassa. J. Bact. 161:153-157. 

Koutz, P., G. R. Davis, C. Stillman, K. Barringer, J. M. Cregg, and G. Thill. 
1989. Structural comparison of the Pichia pastoris alcohol oxidase genes. 
Yeast. 5:167-177. 

Lazarow, P. B., and Y. Fujiki. 1985. Biogenesis of peroxisomes. Annu. Rev. 
Cell Biol. 1:489-530. 

Ledeboer, A. M., L. Edens, J. Maat, C. Visser, J. W. Bos, C. T. Verrips, Z. 
Janowicz, M. Eckart, R. Roggenkamp, and C. P. Hollenberg. 1985. Molec- 
ular cloning and characterization of a gene coding for methanol oxidase in 
Hansenuta polymorpha. Nucleic Acids Res. 13:3063-3083. 

Pfanner, N., and W. Neupert. 1990. The mitochondrial protein import appara- 
tus. Annu. Rev. Biochem. 59:331-353. 

Roa, M., and G. Blobel. 1983. Biosynthesis of peroxisomal enzymes in the 
methylotrophic yeast Hansenala pelymorpha. Proc. Natl. Acad. Sci. USA. 
80:6872-6876. 

Roggenkamp, R., H. Sabra, W. Hinkelmann, and F. Wagner. 1975. Alcohol 
oxidase and catalase in peroxisomes of methanol-grown Candida boidinii. 
Eur. J. Biochem. 59:231-236. 

Roggenkamp, R., Z. Janowicz, B. Stanikowski, and C. P. Hollenberg. 1984. 
Biosynthesis and regulation of peroxisomal methanol oxidase from the 
methylotrophic yeast Hansenula polymorpha. Mol. C, en. Genet. 194:489- 
493. 

Roggenkamp, R., R. T. Didion, and K. V. Kowallik. 1989. Formation of irreg- 
ular giant peroxisomes by overproduction of the crystalloid core protein 
methanol oxidase in the methylotrophic yeast Hansenula polymorpha. Mol. 
Cell Biol. 9:988-994. 

Sabra, H. R., R. Roggenkamp, W. Hinkelmann, and F. Wagner. 1975. Micro- 
bodies in methanol-grown Candida boidinii. J. C-en. Microbiol. 88:218- 
222. 

Swinkels, B. W., S. J. Gould, A. G. Bodnar, R. A. Rachnbinski, and S. 
Subramani. 1991. A novel, cleavable peroxisomal targeting signal at the 
amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO (Fur. Mol. Biol. 
Organ.) J. 10:3255-3262. 

van der Klei, I. J., Veenhuis, I. van der I.~y, and W. Harder. 1989. Heterolo- 
gous expression of alcohol oxidase in Saccharomyces cerevisiae: properties 
of the enzyme and implications for microbody development. FEMS Micro- 
biol. Letters. 57:133-138. 

van der Klei, I. J., W. Harder, and M. Veenhuis. 1991. Biosynthesis and assem- 
bly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic 
yeasts: a review. Yeast. 7:195-209. 

Veenhuis, M., J. P. van Dijken, S. A. F. Pilou, and W. Harder. 1978. Develop- 
ment of crystalline peroxisomes in methanol-grown cells of Hansenula poly- 
morpha and its relation to environmental conditions. Arch. Microbiol. 
117:153-163. 

Veenhuis, M., J. P. van Dijken, W. Harder, and F. Mayer. 1981. Structure 
of crystalline peroxisomes in methanol-grown Hansenula polymorpha: evi- 
dence for an in vivo crystal of alcohol oxidase. Mol. Cell Biol. 1:949-957. 

Veenhuis, M., J. P. Dijken, and W. Harder. 1983. The significance of peroxi- 
somes in the metabolism of one carbon compounds in yeast. Adv. Microb. 
Physiol. 24:1-82. 

Veenhuis, M., O. Sulter, I. van der Klei, and W. Harder. 1989. Evidence for 
functional heterogeneity among microbodies in yeasts. Arch. Microbiol. 
151:105-110. 

Walton, P. A., S. J. Gould, J. R. Feramisco, and S. Subramani. 1992. Trans- 
pert of microinjected proteins into the peroxisomes of mammalian cells. 
MoL Cell. Biol. 12:531-541. 

Wanner, G., and Theimer, R. R. 1982. Two types of microbodies in N. crassa. 
Annals NY Acad. Sci. 386:269-282. 

Wolvetang, E. J., J. M. Tager, and R. 3. A. Wanders. 1990. Latency of the 
peroxisomal enzyme acyl-coA:dihydroxyacetonephnsphate acyltransferase 
in digitunin-permeabilized flbroblasts: the effect of ATP and ATPase inhibi- 
tors. Biochem. Biophys. Res. Commun. 170:1135-1143. 

The Journal of Cell Biology, Volume 118, 1992 508 


