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Abstract: This paper considers the two-dimensional (2D) anchorless localization problem for sensor
networks in global positioning system (GPS)-denied environments. We present an efficient method,
based on the multidimensional scaling (MDS) algorithm, in order to estimate the positions of the
nodes in the network using measurements of the inter-node distances. The proposed method takes
advantage of the mobility of the nodes to address the location ambiguity problem, i.e., rotation and
flip ambiguity, which arises in the anchorless MDS algorithm. Knowledge of the displacement of the
moving node is used to produce an analytical solution for the noise-free case. Subsequently, a least
squares estimator is presented for the noisy scenario and the associated closed-form solution derived.
The simulations show that the proposed algorithm accurately and efficiently estimates the locations
of nodes, outperforming alternative methods.

Keywords: localization; sensor network; multidimensional scaling; position ambiguity

1. Introduction

Because of the increased availability of low-cost low-power sensors, smart sensors,
and multi-functional sensors, wireless sensor networks are becoming increasingly ubiqui-
tous [1–4]. Wireless sensor networks are being utilized in a diverse array of tracking and
monitoring applications from environmental [5] and health monitoring [6] to traffic [7] and
border surveillance [8]. In many of these applications, the nodes in the network are mobile
and knowledge of their positions is a prerequisite for completing the task, and crucial
for information sharing, data collection, and scheduling [9]. For example, if the locations
of the nodes are unknown or significantly incorrect, the data they have collected from
surrounding environment, such as wildlife [10] or weather information [11], will be useless,
since the positional information is not available.

Localization algorithms estimate the locations of unknown nodes in the network
using the positions of a known subset of the nodes to provide the required positional
information. The most widely used localization techniques in the literature are distance-
based localization algorithms, such as trilateration, radio interference positioning system
(RIPS) [12], and the Hop-Distance algorithm [13]. These algorithms estimate the inter-
node distances and require anchors, which is nodes with known locations, to provide the
locations of the remaining nodes. The location of the anchor nodes is accessed via global
positioning system (GPS) or a priori information [12,14–18].

While, GPS is widely used in locating unknown nodes in many situations, such as
indoor, urban, and forest environments, the positions of nodes are difficult to obtain from
GPS [19–22]. In this case, the anchors are absent or the positions of the anchors are not
available, and the above algorithms cannot be applied. This is widely regarded as the most
significant challenge in the positioning and navigation field [23–25]. Therefore, there is an
increasing need for anchorless localization of sensor networks for use in GPS-denied or
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contested environments. Using the movement of nodes and the inter-node communication,
cooperative localization can be leveraged in order to solve this problem. This scenario
arises in the field of robotics swarms, especially in the navigation and formation control of
unmanned aerial vehicles swarms under a GPS-denied environment [20,25–27].

In practice, cooperative localization can be achieved by utilizing the inter-node dis-
tances [28]. However, relative localization only gives node positions that satisfy the distance
constraint, which means that there could be ambiguity problems, i.e., ambiguity due to
rotation and/or flip [29]. The multidimensional scaling (MDS) algorithm is a widely used
algorithm that is capable of tackling the anchorless localization problem [30–35]. The aim
of MDS is to represent the similarity (or dissimilarity) of high dimensional data in a lower
dimensional map which describes the relative distances between pairs of objects (in this
case sensor nodes). Like other relative localization methods MDS can also be subject
to the ambiguity problem; hence, algorithms have been proposed to attempt to address
this problem. In [36] a MDS-based algorithm using moving nodes is presented, which
constructs a cost function involving velocities and inter-node distances of all nodes at two
consecutive time instants. In [37], a similar algorithm is proposed to solve the anchorless
localization problem for nodes that can estimate the position via a nonlinear least square
estimator; however, in this case, only one node is moving.

In this paper, we present an efficient algorithm for anchorless cooperative localization
that is based on MDS. The algorithm mitigates the rotation and flip problems by taking
advantage of the movement and inter-node communication of the mobile nodes. Unlike
existing algorithms that operate in an iterative manner the proposed algorithm presents
a closed-form solution that is computationally efficient. The algorithm is first derived
in the noise-free case and the theoretical result is given. Subsrquently, the noisy case is
considered and the associated closed-form estimator is presented. The proposed algorithm
is supported by a rigorous theoretical derivation which provides optimal parameters.
The simulation results support the theoretical analysis and indicate that the algorithm
outperforms alternative methods.

This paper is organized, as follows: Section 2 introduces the background to the MDS
algorithm and the associated ambiguity problem. The theoretical solution to the ambiguity
problem is then presented in Section 3. Based on the theoretical analysis, Section 4 describes
the impact of noise and introduces the proposed closed-form estimator for determining
positions in noisy scenarios. Section 5 presents simulations for validating the proposed
algorithm and, finally, Section 6 concludes the paper.

2. Multidimensional Scaling Algorithm

In this section, we briefly introduce the MDS algorithm and the ambiguity problem
in an ideal scenario. As stated previously, the goal of MDS is to find a representation
of the data that provides a low dimensional map (usually two or three dimensions) of
the relative positions of the nodes based on their pairwise distances. If we consider the
two-dimensional case where there are n nodes with their true coordinates denoted by
S i = [xi, yi]

T where i = 1, . . . , n and n ≥ 3. Afterwards, in the noise-free case the distance
between nodes i and j, where i, j = 1, . . . , n and i 6= j is given by di,j. If we assume in the
ideal scenario that the nodes are able to measure the true distances between each other so
that the pairwise distance between two nodes with coordinates S i and S j is given by

di,j = ‖S i − S j‖ =
√
(S i − S j)T(S i − S j),

and, furthermore, the squared distance d2
i,j can be written as

d2
i,j = ST

i S i − 2ST
i S j + ST

j S j,

then we have the following symmetric Euclidean distance matrix:
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D =


0 d2

1,2 d2
1,3 · · · d2

1,n
d2

2,1 0 d2
2,3 · · · d2

2,n
d2

3,1 d2
3,2 0 · · · d2

3,n
...

...
...

. . .
...

d2
n,1 d2

n,2 d2
n,3 · · · 0

. (1)

If S = [S1, · · · ,Sn] is the collection of all of the node coordinates and ψ is the diagonal
elements of STS , i.e.,

ψ = diag(STS) =
[
sT

1 s1, . . . , sT
n sn

]T
,

then we can rewrite D as
D = ψeT − 2STS + eψT , (2)

where e = [1, . . . , 1]T is the vector of ones of length n. Using the centering operation
H = I− eeT/n, then we have

−1
2

HDH = UΛUT .

where UΛUT is the eigendecomposition of the symmetric matrix − 1
2 HDH. Then we can

recover S (up to a translation and orthogonal transformation) via the following formula

S∗ = Λ
1
2 UT , (3)

MDS is an efficient algorithm for resolving the relative positions of the nodes [32].
However, as is apparent from the above analysis, in the absence of anchor nodes, MDS can
only give relative positions of the nodes, which can include rotation and flip ambiguity.
In other words, the result of MDS maintains the relative inter-node distances; however,
these calculated locations of the nodes may be flipped and/or rotated versions of the
true positions of the nodes. Obviously, when considering navigation of mobile nodes
or formation control of the sensor network, incorrect positions of the nodes can lead
to problems.

The Ambiguity Problem

In order to consider the ambiguity problem, we assume a set of n nodes in 2D Eu-
clidean space. We fix a coordinate system, which, without a loss of generality, places the
first node s1 at the origin: s1 = [0, 0]T . We recall that knowledge of the distances provides
an ambiguity up to a universal Euclidean transformation of the nodes. This fixing of
node 1 at the origin removes the shift from this Euclidean transformation. Accordingly,
the solution of the MDS, S∗, is replaced by subtracting s∗1 from each column, so that,
with some abuse of notation, s∗1 = [0, 0]T , and the other s∗j become s∗j − s∗1 . Once the shift
is removed, the remaining ambiguity devolves to a rotation and a reflection (flip). We give
the definitions of rotation and flip ambiguities, as follows.

Definition 1 (Rotation ambiguity). If there exists an angle θ 6= 2kπ, k ∈ Z such that

S = M(θ)S∗, (4)

where M(θ) is rotation matrix with angle θ and it is defined by [38]

M(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (5)

then rotation ambiguity occurs.



Sensors 2021, 21, 1507 4 of 18

Definition 2 (Flip ambiguity). Flip ambiguity occurs if

S = FS∗ with F =

[
−1 0
0 1

]
. (6)

Remark 1. The matrix F can be defined equivalently by F =

[
1 0
0 −1

]
. This definition can be

obtained via simply rotating (6) by π. In the following analysis, we use the definition of F as in
Definition 2.

It can be seen that rotation ambiguity and flip ambiguity can occur simultaneously.
If this is the case, then the true positions can be represented by

S = M(θ)FS∗. (7)

Figure 1 shows samples of these two ambiguities.

(a) (b)

Figure 1. Illustration of the positions of nodes calculated via multidimensional scaling (MDS), where red circles are the
desired position (randomly generated) and black diamonds are the output of MDS. (a) rotation ambiguity only; and, (b)
rotation and flip ambiguities.

3. Resolving Rotation and Flip Ambiguities

In this section, the rotation ambiguity is analyzed mathematically in the noise-free
scenario and an analytical solution to the rotation and flip ambiguities presented.

3.1. Analysis of Rotation Ambiguity

Firstly, we assume that there only exists rotation ambiguity between S and S∗, no flip
ambiguity. This means that based on the coordination rotation principle [38], S∗ can be
rotated to S using an unknown angle θ via (4). Hence, the true (unknown) locations of the
nodes [xi, yi]

T , for i = 1, . . . , n, can be obtained by rotating [x∗i , y∗i ]
T by θ, i.e.,

S = M(θ)S∗. (8)

Therefore, we need to know θ to obtain the true locations of the nodes. In order to
achieve this, we allow the lead node to move; this movement can then be utilized to obtain
information that can be used to recover the locations of other nodes. Consider mobile nodes
that are equipped with inertial navigation systems, the lead node can move with known
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displacement and orientation; that is, we let the lead node move to a known position,
i.e., [∆x′1, ∆y′1]

T . Subsequently, the coordinates of all nodes after moving can be obtained as

S ′ = S + ∆S ′ (9)

where the i-th column of ∆S ′ is given by

∆S ′i =
{
[∆x′1, ∆y′1]

T i = 1
[0, 0]T i 6= 1

, (10)

Accordingly, after moving the distance between the ith and jth nodes is

d′i,j = ‖S ′i − S ′j‖,

where S ′i is the ith column of S ′. We can then update the distance matrix (2) with the
entries d′ 2

i,j to give

D′ = ψ′eT − 2S ′TS ′ + eψ′
T , (11)

where, by considering S1 = [0, 0]T and ∆S ′i = [0, 0]T for i = 2, . . . , n,

ψ′ = diag(S ′TS ′) = diag(STS) + diag(∆S ′T∆S ′) , ψ + ∆ψ′ (12)

Substituting (9) and (12) into the distance matrix (11) we have

D′ = (ψ + ∆ψ′)eT − 2(S + ∆S ′)T(S + ∆S ′) + e(ψ + ∆ψ′)T

= (ψeT − 2STS + eψT) + (∆ψ′eT − 2∆S ′T∆S ′ + e∆ψ′
T
)− 2∆S ′TS − 2ST∆S ′

= D + ∆D′ − 2∆S ′TS − 2ST∆S ′,

giving

0 = D−D′ + ∆D′ − 2∆S ′TS − 2ST∆S ′, (13)

where 0 is a zero matrix with dimensions n× n. This equation describes the relationship
between both the locations and distance matrices pre and post the lead node moving; this
information can be used to obtain the angle of rotation θ. If we break the analysis of (13)
into three parts, then we have the following:

1. Since only the lead node’s position is changed, then the term D−D′ in (13) becomes

D−D′ =


0 d2

1,2 − d′ 2
1,2 · · · d2

1,n − d′ 2
1,n

d2
1,2 − d′ 2

1,2 0 · · · 0
...

...
. . .

...
d2

1,n − d′ 2
1,n 0 · · · 0

. (14)

2. In (13), ∆D is the distance matrix between point ∆S1 and n− 1 origin points [0, 0]T ,
i.e.,

∆D′ =


0 ∆x′1

2 + ∆y′1
2 · · · ∆x′1

2 + ∆y′1
2

∆x′1
2 + ∆y′1

2 0 · · · 0
...

...
. . .

...
∆x′1

2 + ∆y′1
2 0 · · · 0

. (15)
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3. For the term −2∆S ′TS − 2ST∆S ′ in (13), since ST∆S ′ can be calculated by

ST∆S ′ =


0 0
x2 y2
x3 y3
...

...
xn yn


[

∆x′1 0 0 · · · 0
∆y′1 0 0 · · · 0

]
=


0 0 · · · 0

x2∆x′1 + y2∆y′1 0 · · · 0
...

...
. . .

...
xn∆x′1 + yn∆y′1 0 . . . 0

, (16)

therefore

−
(

2∆S ′TS + 2ST∆S ′
)
= −2

((
ST∆S ′

)T
+ ST∆S ′

)
. (17)

Inserting the rotation (8) into xi∆x′1 + yi∆y′1 in (16), for i = 2, . . . , n, we have

xi∆x′1 + yi∆y′1 = x∗i ∆x′1 cos(θ) + y∗i ∆x′1 sin(θ) + y∗i ∆y′1 cos(θ)− x∗i ∆y′1 sin(θ)

= (x∗i ∆x′1 + y∗i ∆y′1) cos(θ) + (y∗i ∆x′1 − x∗i ∆y′1) sin(θ). (18)

Using (18) allows us to express (17) in a way that is independent of [xi, yi]
T .

If we combine (14)–(18), then (13) becomes

D−D′ + ∆D′ − 2∆S ′TS − 2ST∆S ′ =


0 f2(θ) · · · fn(θ)

f2(θ) 0 · · · 0
...

...
. . .

...
fn(θ) 0 . . . 0

 = 0, (19)

where

fi(θ) = ai + bi cos(θ) + ci sin(θ), i = 2, . . . , n (20)

with coefficients

ai = d2
1,i − d′ 2

1,i + ∆x′1
2
+ ∆y′1

2 (21)

bi = −2(x∗i ∆x′1 + y∗i ∆y′1) (22)

ci = 2(x∗i ∆y′1 − y∗i ∆x′1) (23)

Equation (19) is equivalent to the following system of equations:
a2 + b2 cos(θ) + c2 sin(θ) = 0

...
...

an + bn cos(θ) + cn sin(θ) = 0

, (24)

Finally, the solution to (24) is the angle to resolve the rotation ambiguity. Importantly,
this solution can be shown to be unique when n ≥ 3. If we consider the case of n = 3,
then (24) can be expressed as

sin(θ) =
a3b2 − a2b3

b3c2 − b2c3
, W1

cos(θ) =
a2c3 − a3c2

b3c2 − b2c3
, W2

. (25)

Obviously, given W1 and W2, (25) has a unique solution to θ within [−π, π). Similarly,
it is straightforward to show that, when n ≥ 3, (24) has a unique solution within [−π, π).
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3.2. Analysis of Rotation and Flip Ambiguities

Having obtained a unique solution to the rotation angle when only rotation ambiguity
is present, in this section we present an analytical solution that is based on the analysis
in Section 3.1 for when rotation and flip ambiguities occur simultaneously. The key idea
behind this method is again to use the mobility of the lead node to acquire extra information
in order to detect the flip of the initial MDS localization result.

Firstly, we assume that there exist three non-collinear nodes in order to be able to
detect flip ambiguity. Next, we note that the ith equation in (24) has the following solutions
θi,1 and θi,2:

θi,1,2 = atan2
(

aibi ± |ci|
√

b2
i + c2

i − a2
i , aici ∓

bi
ci
|ci|
√

b2
i + c2

i − a2
i

)
, (26)

where atan2(·, ·) ∈ [−π, π) is the 2-argument arctangent. Therefore, the solution to (26),
which is common to all values of i, ∀i = 2, . . . , n is the unique solution to (24). It can
also be shown that θi,1,2 ∈ [−π, π) given in (26) can be rewritten and rearranged into a
concise form

θi,1 = g
(

atan2(y∗i , x∗i )− atan2(yi, xi)
)

(27)

θi,2 = g
(

θi,1 + 2Θi

)
(28)

where Θi = atan2(yi, xi) + atan2
(
∆x′1, ∆y′1

)
− π

2 and the function g(t) = t− 2π
⌊

t
2π + 1

2

⌋
can wrap any arbitrary angle t in radians into range [−π, π). Appendix A provides the full
derivation of these equations.

The angles θi,1 in (27) represent the angles between vectors
−−−→
S1S∗i and

−−−→
S1S i for

i = 2, . . . , n, as shown in Figure 2, and play an important role in the ability to detect
flip ambiguity. When there is only rotation ambiguity, because of the uniqueness of solu-
tion of (24), we have θi,1 = θj,1, ∀i, j = 2, . . . , n, as shown in the previous section. Whereas,
the angles θi,2 in (28) are the summation of θi,1 and the angle induced by ∆x′1 and ∆x′2.
Obviously, if there exist three non-collinear nodes, Θi 6= Θj, ∀i, j = 2, . . . , n and i 6= j and,
therefore, from (28) we have θi,2 6= θj,2, ∀i, j = 2, . . . , n. In contrast, it can be shown that flip
ambiguity exists if and only if θi,1 6= θj,1, ∀i, j = 2, . . . , n and i 6= j. In order to illustrate
why this is the case, we give the counter example, assuming without loss of generality,
that n = 3, θ2,1 = θ3,1 and flip ambiguity exists. θ2,1 = θ3,1 implies that S∗i , i = 2, 3, can be
rotated simultaneously to the true positions S i via either θ2,1 or θ3,1, as shown in Figure 2a.
Hence, this contradicts the assumption of the existence of flip ambiguity.

(a) (b)

Figure 2. Illustration of angle θi,1 given in (27) using three nodes with true locations si and solved ambiguous locations s∗i .
(a) rotation ambiguity and θ2,1 = θ3,1; (b) flip ambiguity and θ2,1 6= θ3,1.
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Furthermore, extending to the case where n > 3, still assuming that θ2,1 = θ3,1 and
flip ambiguity exists. We know that, for i = 2, 3, S∗i can be simultaneously rotated to the
true positions S i via θ2,1 (or θ3,1). Because there exist three non-collinear nodes, then three
nodes with correct positions are sufficient for guaranteeing the localization of the whole
network [39]. In this case, s1, s2 and s3 can be found exactly from θ2,1 (or θ3,1). Therefore,
S i, for i = 4, . . . , n, must be solvable via rotating S∗i by angle θ2,1 (or θ3,1) and, as a result,
θi,1 = θ2,1 = θ3,1. This again contradicts the assumption of existence of flip ambiguity.
On the other hand, if θi,1 6= θj,1, ∀i, j = 2, · · · , n and i 6= j, then it is obvious that there
exists flip ambiguity, since s∗i cannot be rotated to S i simultaneously. As a conclusion,
there exists flip ambiguity if and only if θi,1 6= θj,1, ∀i, j = 2, · · · , n and i 6= j.

In what follows, we assume that there exist three non-collinear nodes and, based on
the above analysis, we make the following conclusion:

∀i, j = 2, . . . , n and i 6= j

{
θi,1 = θj,1(equivalently θi,2 6= θj,2), If no flip ambiguity exists.
θi,1 6= θj,1(equivalently θi,2 = θj,2), If flip ambiguity exists.

(29)

Although we cannot use (27)–(29) directly to determine the existence of flip as they
contain unknown true positions, those results are crucial in deriving the estimator for
locations in noisy scenario.

In reality, the solution to (24) is computed using S∗, ∆S ′ and D′. We denote this
unique solution by θR

(
S∗, ∆S ′, D′

)
. The same notation θR(·, ·, ·) is used to denote a rotation

angle that is calculated with different variables, nonetheless, whatever the variables used,
the method is the same as described above. If we denote the positions that are calculated
using the rotation angle θR

(
S∗, ∆S ′, D′

)
as S∗∗ we have the following result

S∗∗ = M
(
θR(S∗, ∆S ′, D′)

)
S∗ =

[
x∗∗1 , x∗∗2 , · · · , x∗∗n
y∗∗1 , y∗∗2 , · · · , y∗∗n

]
. (30)

If the lead node then moves to a second position [∆x′′1 , ∆y′′1 ] giving a matrix formed
by true positions S ′′ = S + ∆S ′′, where

∆S ′′ =
[
∆S ′′1 , ∆S ′′2 , . . . , ∆S ′′n

]
=

[
∆x′′1 0 · · · 0
∆y′′1 0 · · · 0

]
. (31)

After obtaining a new distance matrix D′′ at position S ′′, we can solve θR(S∗∗, ∆S ′′, D′′).
If θR(S∗∗, ∆S ′′, D′′) = 0, then there is no flip ambiguity and the true positions are S = S∗∗;
otherwise, we move to the process of resolving the flip ambiguity. For this, according to
Definition 2, all the values in S∗ along the x−axis are required to be flipped to obtain
FS∗. Subsequently, we only need to calculate the rotation angle using θR(FS∗, ∆S ′, D′).
It should be noted that, since ∆S ′ and D′ are fixed, it is unnecessary to take any new
measurements and the true position S can be resolved by

S = M
(
θR(FS∗, ∆S ′, D′)

)
FS∗. (32)

4. Proposed Algorithm Robust to Ambiguity and Noise

The analysis in the previous section assumes ideal measurements; however, in prac-
tice, the measurements are corrupted by noise that can have a significant impact on the
localization performance. If we consider the distances between two nodes, in the noise-free
case the distance between the ith and jth nodes is the same regardless of which node it is
measured from, i.e., di,j = dj,i. When noise is introduced, this is no longer the case, if we
denote the measured distances as d̄i,j and d̄j,i, then d̄i,j 6= d̄j,i resulting in uncertainty in our
estimates of the distances. In general, the measured distance between the ith and jth nodes
can be modeled by

d̄i,j = di,j + ωi,j, i, j = 1, . . . , n, i 6= j, (33)

where di,j is the true distance and ωi,j is the measurement noise.
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Accordingly, the noisy Euclidean distance matrix (EDM) can be written into

D̄ =


0 d̄2

1,2 d̄2
1,3 · · · d̄2

1,n
d̄2

2,1 0 d̄2
2,3 · · · d̄2

2,n
d̄2

3,1 d̄2
3,2 0 · · · d̄2

3,n
...

...
...

. . .
...

d̄2
n,1 d̄2

n,2 d̄2
n,3 · · · 0

. (34)

As we know that di,j = dj,i when the noise is absent, therefore, in order to obtain a
symmetric EDM in noisy case, we can use

d̂i,j = d̂j,i = E(d̄i,j, d̄j,i) (35)

where E(d̄i,j, d̄j,i) is an estimator for the distance between i-th and j-th nodes using d̄i,j and
d̄j,i. In practice, this estimator is designed by using the knowledge of noise distribution.
For example, when the noise in d̄i,j and d̄j,i are assumed to comprise independent and iden-
tically distributed (i.i.d.) normal distributions, then we have d̂i,j = d̂j,i =

1
2
(
d̄i,j + d̄j,i

)
[40].

Because the study of the estimator E(d̄i,j, d̄j,i) and estimation of the EDM is outside the
scope of this article, we refer the interested reader to [40,41] for more information, including
completing and estimating an EDM.

Accordingly, the estimated symmetric EDM D̂ can be obtained while using d̂i,j. Simi-
larly, we can obtain D̂′ by using the new position of S ′ = S + ∆S ′, as described in (10).

In (24), in the noise-free case, the solution is unique and easy to find. However, in the
noisy environment, the theoretical unique solution to (24) is not guaranteed. Therefore,
a key issue in estimating θ is to find a value that satisfies a certain objective, i.e.,

θ̂R
(
S∗, ∆S ′, D′

)
= arg min

θ∈[−π,π)
Obj

(
θ; S∗, ∆S ′, D̂′

)
, (36)

where Obj
(
θ; S∗, ∆S ′, D′

)
is an objective function of θ given S∗, ∆S ′, and D̂′. In general,

the least square estimator provides a good choice of objective function, as it is a well
defined computationally efficient estimator. The objective function based on the least
square estimator is given by

Obj
(
θ; S∗, ∆S ′, D′

)
=

n

∑
i=1

(ai + bi cos(θ) + ci sin(θ))2. (37)

Solutions to (37) can be obtained by taking the derivative of the objective function with
respect to θ and equating to zero, from this we obtain a quartic equation (see Appendix B
for details), which has, at most, four real roots giving the corresponding collection of
angles as

θλ =
{

arcsin(λ1), g(π − arcsin(λ1)), . . . , arcsin(λm), g(π − arcsin(λm))
}
∈ [−π, π),

where λj ∈ [−1, 1], j = 1, . . . , m, and m is the number of solutions, such that 1 ≤ m ≤ 4.
Subsequently, (37) becomes

θ̂R

(
S∗, ∆S ′, D̂′

)
= arg min

θ∈θλ

Obj
(

θ; S∗, ∆S ′, D̂′
)

, (38)

and, accordingly, by (30)

S∗∗ = M
(

θ̂R

(
S∗, ∆S ′, D̂′

))
S∗. (39)
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In order to detect flip ambiguity, we can follow the same method, as described in
Section 3, i.e., let the lead node move to another position [∆x′′1 , ∆y′′1 ]

T and solve θ̂R(S∗∗,
∆S ′′, D̂′′) via (38) while using the estimated distance matrix D̂′′ obtained at the new
position S ′′ = S + ∆S ′′. However, becasue of the presence of noise θ̂R

(
S∗∗, ∆S ′′, D̂′′

)
is

not necessarily equal to 0 when there is no flip ambiguity. To handle this, we need to create
a detector for the flip. For this, we use a straightforward threshold detector:no flip, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ ≤ |l|
flip, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ > |l|, (40)

The following proposition, the proof of which is given in Appendix C, allows for us to
efficiently find an optimal threshold in (40).

Proposition 1. Under the noise-free case, if there exists flip ambiguity, then

θR
(
S∗∗, ∆S ′′, D′′

)
= g

(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
, (41)

where g(t) = t− 2π
⌊

t
2π + 1

2

⌋
.

From Proposition 1, under the noise-free case, we know the value of θR
(
S∗∗, ∆S ′′, D′′

)
when a flip occurs; therefore, in the noisy case, the optimal threshold is

l =
1
2

g
(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
.

As a conclusion, the positions of nodes can estimated using the following formula:

Ŝ =

M
(

θ̂R

(
S∗, ∆S ′, D̂′

))
S∗, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ ≤ |l|
M
(

θ̂R

(
FS∗, ∆S ′, D̂′

))
FS∗, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ > |l| (42)

Algorithm 1 summarizes the algorithm to estimate locations of nodes with noisy
measurements.
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Algorithm 1: Algorithm to estimate locations of mobile nodes.
Result: Estimated locations of nodes
Initialization;
begin /* First step */

Collect d̄i,j for i, j = 1, · · · , n and estimate D̂ via (35);
Calculate S∗ via MDS algorithm;

end
begin /* Second step */

Let node 1 move to position [∆x′1, ∆y′1]
T ;

Collect d′i,j for i, j = 1, . . . , n at the new position and estimate D̂′;

Calculate θ̂R

(
S∗, ∆S ′, D̂′

)
according to (38);

end
begin /* Third step */

Let node 1 move to position [∆x′′1 , ∆y′′1 ]
T ;

Collect d′′i,j for i, j = 1, . . . , n at the new position and estimate D̂′′;

Calculate θ̂R

(
S∗∗, ∆S ′′, D̂′′

)
according to (38) and (39) using variables S∗∗,

∆S ′′ and D̂′′;
Use (42) to estimate the locations, i.e., Ŝ ;

end

if
∣∣∣θ̂R
(
S∗∗, ∆S ′′, D′′

)∣∣∣ < |l| then
Determine locations of nodes via F and (21)–(23);

else
Determine locations of nodes via (30);

end

5. Simulations

Networks with randomly generated nodes were used to test the performance of the
proposed algorithm. In all of the following simulations the position of the first node is
fixed to [0, 0] and the positions of the other nodes are uniformly generated within [−20, 20].

To validate the proposed approach that can address the ambiguity problem, we use
the same noise-free scenarios as given in Figure 1 the results of which are shown in Figure 3.
Unlike the results that are obtained from the MDS alone, as shown in Figure 1, when we
compare the locations of the true and estimated nodes in Figure 3, we can see that, while
using the method that is presented in Section 3, the rotation and flip ambiguities are solved
correctly and, therefore, the positions of the nodes are successfully recovered.

X

Y

True locations of nodes
Estimated locations of nodes using proposed algorithm

(a)

X

Y

True locations of nodes
Estimated locations of nodes using proposed algorithm

(b)

Figure 3. Estimation of the positions of nodes in noise-free scenarios. (a) Rotation only; and (b) Rotation and flip.
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Next, we consider the noisy scenario, as discussed in Section 4, in the noisy scenario
the detection of whether flip has occurred is no longer straightforward and requires
an appropriate choice of threshold. Firstly, to demonstrate the ability of the proposed
algorithm to detect flip or no flip states, we tested two different network configurations:
one with the number of nodes n = 6 and the other with n = 10. The noise is assumed to
be Gaussian distributed with mean 0 and standard deviation, σ, of 0.01. For each of the
configurations, the outcomes of 50 simulations are shown in Figure 4. The results show
that the proposed algorithm can correctly detect flip ambiguity in the noisy scenario.

(a) (b)

Figure 4. An illustration of the detection of flip/no flip states and the corresponding values of
∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣. The left

y-axes represent the values of
∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ and the threshold while the right y-axes show the true and detected

states of flip/no flip with σ = 0.01. (a) The number of nodes n = 6, [∆x′1, ∆y′1] = [1, 0] and [∆x′′1 , ∆y′′1 ] = [0, 1]; (b) The
number of nodes n = 10, [∆x′1, ∆y′1] = [1, 0.5] and [∆x′′1 , ∆y′′1 ] = [0, 1].

Having established that the proposed algorithm can successfully deal with the ambi-
guity problem, we now consider the performance of the algorithm in terms of the accuracy
of the localization. For the sake of simplicity, we define the noise level, standard variance
of the noise, as δ = −20 log10 σ, with δ chosen to range from 20 to 50 in steps of five and
σ calculated accordingly. For each noise level, the Root-Mean-Square Error (RMSE) from
2000 simulations is used to evaluate the performance of the localization. The RMSE is
defined by

RMSE =
1
n

n

∑
i=1

√√√√ m

∑
j=1

(x̂i,j − xi,j)2 + (ŷi,j − yi,j)2

m
(43)

where (xi,j, yi,j) and (x̂i,j, ŷi,j) are the true and estimated location of i-th, i = 1, · · · , n, node
in j-th, j = 1, · · · , m, Monte Carlo simulation. It is assumed that (xi,j, yi,j) is generated
within region [−100, 100]× [−100, 100] uniformly in each Monte Carlo simulation.

In order to provide a comparison with the proposed algorithm, we implemented the
nonlinear least squares estimator (NLSE) that is presented in [37], solving the nonlinear
least square problem using an optimization method. Additionally, the proposed algorithm
essentially takes advantage of the mobility of the node to create virtual anchors for localiz-
ing the unknown nodes. As a result, the alignment method of relative locations proposed
in [30,42] can be potentially applied in this scenario. As a comparison, the performance of
this conventional method is also given.

From the simulation results that are shown in Figure 5, it can be seen that the proposed
algorithm has better performance in terms of the RMSE for different noise levels and
numbers of nodes than the NLS estimator with the conventional method. The localization



Sensors 2021, 21, 1507 13 of 18

error are arise from two effects: 1. MDS localization error; 2. mis-alignment error, i.e., the
error from inaccurately aligning the positions. Additionally, it should also be noted that
the algorithm proposed in this paper can simultaneously estimate the positions of all of the
nodes, which cannot be achieved using the algorithm that was presented in [37]. As an
indication of the computational efficiency of the proposed algorithm, our simulations
indicate a ratio of required CPU time of the proposed algorithm relative to NLSE is
Proposed algorithm:NLSE = 1:8.83.

20 25 30 35 40 45 50
Noise level

0

2

4

6

8

10

12

14
R

M
S

E

Figure 5. The Root-Mean-Square Error (RMSE) for the proposed algorithm, the NLS estimator [37],
NLSE, and conventional algorithm proposed in [30,42] for different numbers of nodes and different
noise levels.

6. Conclusions

In this paper, we have presented an efficient cooperative localization algorithm that is
based on MDS. The algorithm provides a practical solution for anchorless localization of
mobile nodes using noisy measurements. Unlike traditional MDS algorithms, which suffer
from an ambiguity problem, the algorithm that is presented here can solve the flip and rota-
tion ambiguities and accurately estimate the positions of nodes in 2D space. The simulation
results demonstrate the accuracy of the algorithm, showing that it outperforms alternative
methods. At the same time, the proposed algorithm provides greater efficiency than alter-
native solutions that operate in an iterative manner by providing a closed-form solution.
We point out that the main limitations of this algorithm are twofold. Firstly, as mentioned
above, this algorithm has been developed in a 2D scenario, which limits its application
in more complex situations. Although one may follow a similar procedure to derive the
corresponding algorithm for a more general case, i.e., 3D space, this is non-trivial, as the
geometry of the network has more degrees of freedom in the 3D space. Secondly, and in a
similar vein to other algorithms, the algorithm proposed here requires inertial navigation to
provide the displacement of the moving node. Consequently, a deeper analysis of the error
that arises from the inertial navigation system should be taken into account in improving
this algorithm. These issues will be addressed in future work.
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Abbreviations
The following variables are used in this manuscript:

di,j The distance between nodes i and j

D Euclidean distance matrix given the collection of locations S

M(θ) Rotation matrix for given angle θ

S i = [xi, yi]
T True coordinates of the ith node

S = [S1, · · · ,Sn] Collection of the true locations of all of the nodes

S∗ Output of multidimensional scaling given the distance matrix D

S∗∗ Rotation of the output of multidimensional scaling, S∗, using rotation matrix
M(θ) with the angle, θ, obtained from the function θR(S∗, ∆S ′, D′)

θR(S∗, ∆S ′, D′) Function to solve the possible rotation angle between the true positions and
S∗ using the associated parameters

ψ The diagonal elements of STS

The following notation is used to denote changes in the variables:

(·)′ The parameter after the first movement

(·)′′ The parameter after the second movement

∆(·)′ The change in the parameter after the first movement

∆(·)′′ The change in the parameter, relative to the original, after the second movement

For example, S ′ is the collection of true locations of all of the nodes incorporating the changes in
position, i.e., S ′ = S + ∆S ′, similarly S ′′ = S + ∆S ′′. It should be noted that S ′′ = S + ∆S ′′ can
be re-formulated as S ′′ = S ′ + ∆S ′′ with ∆S ′′ , ∆S ′′ − ∆S ′.

Appendix A

Proposition A1. Function g(t) = t− 2π
⌊

t
2π + 1

2

⌋
can wrap arbitrary angle t in radians into

range [−π, π) and it satisfies following properties: P.1 g(t1 ± t2) = g(g(t1)± g(t2)); and P.2
g(−t) = −g(t).

Lemma A1. Let g(t) = t− 2π
⌊

t
2π + 1

2

⌋
, then

atan2(β1α2 ± β2α1, α1α2 ∓ β1β2) = g(atan2(β1, α1)± atan2(β2, α2)), (A1)

From (21)–(23), we have

ai = d2
1,i − d′ 2

1,i + ∆x′1
2
+ ∆y′1

2

=
(

x2
i + y2

i

)
−
(
(xi − ∆x′1)

2 + (yi − ∆y′1)
2
)
+ ∆x′1

2
+ ∆y′1

2

= 2
(
xi∆x′1 + yi∆y′1

)
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and

b2
i + c2

i − a2
i =4(x∗i ∆x′1 + y∗i ∆y′1)

2 + 4(y∗i ∆x′1 − x∗i ∆y′1)
2 − 4

(
xi∆x′1 + yi∆y′1

)2

=4
((

d2
1,i − d2

1,i + y2
i

)
∆x′1

2
+
(

d2
1,i − d2

1,i + x2
i

)
∆y′1

2 − 2xiyi∆x′1∆y′1
)

=4
(
xi∆y′1 − yi∆x′1

)2. (A2)

Then from Lemma A1 and (A2), we have

θi,1,2 = atan2
(
−aici ∓

bi
ci
|ci|
√

b2
i + c2

i − a2
i , −aibi ± |ci|

√
b2

i + c2
i − a2

i

)
= −g

(
atan2(bi, ci) + atan2

(
ai, ±

|ci|
ci

√
b2

i + c2
i − a2

i

))
(A3)

= −g
(

atan2(bi, ci) + atan2
(

ai, ±2(xi∆y1 − yi∆x1)
))

. (A4)

From (A3) to (A4), the sign of ± |ci |
ci

√
4(xi∆y1 − yi∆x1)

2 is interpreted by ±, which implies
that the values of θi,1 and θi,2 may be simply exchanged.

Furthermore,

atan2(bi, ci) = atan2
(
−
(
x∗i ∆x′1 + y∗i ∆y′1

)
, x∗i ∆y′1 − y∗i ∆x′1

)
= − atan2

(
x∗i ∆x′1 + y∗i ∆y′1, x∗i ∆y′1 − y∗i ∆x′1

)
= g

(
− atan2(y∗i , x∗i )− atan2

(
∆x′1, ∆y′1

))
(A5)

and

atan2
(
ai, ±2

(
xi∆y′1 − yi∆x′1

))
= g

(
atan2

(
2
(
xi∆x′1 + yi∆y′1

)
, ±2

(
xi∆y′1 − yi∆x′1

)))
=

g
(

atan2(yi, xi) + atan2(∆x′1, ∆y′1)
)

g
(
− atan2(yi, xi)− atan2(∆x′1, ∆y′1)

) . (A6)

Substituting (A6) and (A5) into (A4) leads to

θi,1 = g
(

atan2(y∗i , x∗i )− atan2(yi, xi)
)

θi,2 = g
(

atan2(y∗i , x∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)

= g
(

θi,1 + 2Θi

)
where Θi = atan2(yi, xi) + atan2(∆x′1, ∆y′1)−

π
2 .

Appendix B

Taking the derivative of Obj
(
θ; S∗, ∆S ′, D′

)
with respect to θ, we have

∂

∂θ

n

∑
i=1

(ai + bi cos(θ) + ci sin(θ))2

=
n

∑
i=1

2(ci cos(θ)− bi sin(θ))(ai + bi cos(θ) + ci sin(θ))

=
n

∑
i=1

(
−aibi sin(θ) + aici cos(θ) + bici cos2(θ)− bici sin2(θ) + (c2

i − b2) sin(θ) cos(θ)
)

=2
(
−αn sin(θ) + βn cos(θ) + 2γn cos2(θ) + δn sin(θ) cos(θ)− γn

)
, (A7)
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where

αn =
n

∑
i=1

aibi, βn =
n

∑
i=1

aici,

γn =
n

∑
i=1

bici, δn =
n

∑
i=1

(c2
i − b2

i ).

If we let sin(θ) = λ ∈ [−1, 1] and cos(θ) = ±
√

1− λ2. Then setting (A7) to 0 leads to:

γn ± βn
√

1− λ2 − 2γnλ2 ± δnλ
√

1− λ2 − αnλ = 0. (A8)

Rearranging (A8) and squaring both sides, we have:(
±(βn + δnλ)

√
1− λ2

)2
=
(
−γn + 2γnλ2 + αnλ

)2

=⇒ Anλ4 + Bnλ3 + Cnλ2 + Dnλ + En = 0, (A9)

where

An = 4γ2
n + δ2

n, Bn = 2(2αnγn + βnδn), Cn = α2
n + β2

n − 4γ2
n − δ2

n,

Dn = 2(−αnγn − βnδn), En = −β2
n + γ2

n.

Equation (A9) is a quartic equation [43] and has at most 4 real roots. Suppose that
we have 1 ≤ m ≤ 4 solution(s) from (A9) satisfying λj ∈ [−1, 1], j = 1, . . . , m, then the
corresponding collection of angles is

θλ =
{

arcsin(λ1), g(π − arcsin(λ1)), . . . , arcsin(λm), g(π − arcsin(λm))
}
∈ [−π, π).

Appendix C

Proof of Proposition 1. If we recall from (29) that in the case of flip ambiguity we have

θR
(
S∗, ∆S ′, D′

)
= g

(
atan2(y∗i , x∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π

)
, (A10)

then we can rearrange to give

θR
(
S∗, ∆S ′, D′

)
=g
(

atan2(y∗i , x∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π

+ atan2(y∗∗i , x∗∗i )− atan2(y∗∗i , x∗∗i )
)

=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)

+ g
(
− atan2(y∗∗i , x∗∗i ) + atan2(y∗i , x∗i )

)
. (A11)

From the definition of S∗∗ in (30) it can be shown that

g
(
− atan2(y∗∗i , x∗∗i ) + atan2(y∗i , x∗i )

)
= θR

(
S∗, ∆S ′, D′

)
,

giving

θR
(
S∗, ∆S ′, D′

)
=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)
+

θR
(
S∗, ∆S ′, D′

)
0 =g

(
atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π

)
. (A12)
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Incorporating (A12) into the equation for θR
(
S∗∗, ∆S ′′, D′′

)
we have

θR
(
S∗∗, ∆S ′′, D′′

)
=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′′1 , ∆y′′1 )− π
)

=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′′1 , ∆y′′1 )− π

+ 2 atan2(∆x′1, ∆y′1)− 2 atan2(∆x′1, ∆y′1)
)

=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)

+ g
(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
=g(0) + g

(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
=g
(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
. (A13)

References
1. Ramson, S.R.J.; Moni, D.J. Applications of Wireless Sensor Networks—A Survey. In Proceedings of the International Conference

on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), Coimbatore, India, 3–4 February
2017; pp. 325–329.

2. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 2292–2330. [CrossRef]
3. Mao, G.; Fidan, B.; Anderson, B.D. Wireless Sensor Network Localization Techniques. Comput. Netw. 2007, 51, 2529–2553.

[CrossRef]
4. Chong, C.Y.; Kumar, S. Sensor Networks: Evolution, Opportunities, and Challenges. Proc. IEEE 2003, 91, 1247–1256. [CrossRef]
5. Lombardo, L.; Corbellini, S.; Parvis, M.; Elsayed, A.; Angelini, E.; Grassini, S. Wireless Sensor Network for Distributed

Environmental Monitoring. IEEE Trans. Instrum. Meas. 2018, 67, 1214–1222. [CrossRef]
6. Alemdar, H.; Ersoy, C. Wireless Sensor Networks for Healthcare: A Survey. Comput. Netw. 2010, 54, 2688–2710. [CrossRef]
7. Kafi, M.A.; Challal, Y.; Djenouri, D.; Doudou, M.; Bouabdallah, A.; Badache, N. A Study of Wireless Sensor Networks for Urban

Traffic Monitoring: Applications and Architectures. Procedia Comput. Sci. 2013, 19, 617–626. [CrossRef]
8. Hammoudeh, M.; Al-Fayez, F.; Lloyd, H.; Newman, R.; Adebisi, B.; Bounceur, A.; Abuarqoub, A. A Wireless Sensor Network

Border Monitoring System: Deployment Issues and Routing Protocols. IEEE Sens. J. 2017, 17, 2572–2582. [CrossRef]
9. Moran, B.; Suvorova, S.; Howard, S. Sensor Management for Radar: A Tutorial. In Advances in Sensing with Security Applications;

NATO Security Through Science Series; Byrnes, J., Ostheimer, G., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 2,
pp. 269–291.

10. Garcia-Sanchez, A.J.; Garcia-Sanchez, F.; Losilla, F.; Kulakowski, P.; Garcia-Haro, J.; Rodríguez, A.; López-Bao, J.V.; Palomares, F.
Wireless Sensor Network Deployment for Monitoring Wildlife Passages. Sensors 2010, 10, 7236–7262. [CrossRef]

11. Abdullah, S.; Bertalan, S.; Masar, S.; Coskun, A.; Kale, I. A Wireless Sensor Network for Early Forest Fire Detection and Monitoring
as a Decision Factor in the Context of a Complex Integrated Emergency Response System. In Proceedings of the IEEE Workshop
on Environmental, Energy, and Structural Monitoring Systems (EESMS), Milan, Italy, 24–25 July 2017.

12. Maróti, M.; Völgyesi, P.; Dóra, S.; Kusý, B.; Nádas, A.; Lédeczi, Á.; Balogh, G.; Molnár, K. Radio Interferometric Geolocation.
In Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys); ACM Press: New York, NY,
USA, 2005.

13. Nath, S.; Ekambaram, V.N.; Kumar, A.; Kumar, P.V. Theory and Algorithms for Hop-Count-Based Localization with Random
Geometric Graph Models of Dense Sensor Networks. ACM Trans. Sens. Netw. 2012, 8, 1–38. [CrossRef]

14. Wang, X.; Moran, B.; Brazil, M. Hyperbolic Positioning Using RIPS Measurements for Wireless Sensor Networks. In Proceedings
of the 15th IEEE International Conference on Networks, Adelaide, Australia, 19–21 November 2007; pp. 425–430.

15. Wymeersch, H.; Lien, J.; Win, M.Z. Cooperative Localization in Wireless Networks. Proc. IEEE 2009, 97, 427–450. [CrossRef]
16. Yaghoubi, F.; Abbasfar, A.A.; Maham, B. Energy-Efficient RSSI-Based Localization for Wireless Sensor Networks. IEEE Commun.

Lett. 2014, 18, 973–976. [CrossRef]
17. Tomic, S.; Beko, M.; Dinis, R. RSS-Based Localization in Wireless Sensor Networks Using Convex Relaxation: Noncooperative

and Cooperative Schemes. IEEE Trans. Veh. Technol. 2015, 64, 2037–2050. [CrossRef]
18. Goel, S.; Kealy, A.; Lohani, B. Cooperative UAS Localization Using Lowcost Sensors. ISPRS Ann. Photogramm. Remote Sens.

Spatial Inf. Sci. 2016, III, 183–190. [CrossRef]
19. Ahrens, S.; Levine, D.; Andrews, G.; How, J.P. Vision-Based Guidance and Control of a Hovering Vehicle in Unknown, GPS-

Denied Environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17
May 2009; pp. 2643–2648.

http://doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1016/j.comnet.2006.11.018
http://dx.doi.org/10.1109/JPROC.2003.814918
http://dx.doi.org/10.1109/TIM.2017.2771979
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.procs.2013.06.082
http://dx.doi.org/10.1109/JSEN.2017.2672501
http://dx.doi.org/10.3390/s100807236
http://dx.doi.org/10.1145/2240116.2240124
http://dx.doi.org/10.1109/JPROC.2008.2008853
http://dx.doi.org/10.1109/LCOMM.2014.2320939
http://dx.doi.org/10.1109/TVT.2014.2334397
http://dx.doi.org/10.5194/isprs-annals-III-1-183-2016


Sensors 2021, 21, 1507 18 of 18

20. Bachrach, A.; Prentice, S.; He, R.; Roy, N. RANGE-Robust autonomous navigation in GPS-denied environments. J. Field Robot.
2011, 28, 644–666. [CrossRef]

21. Zhang, L.; Ye, M.; Anderson, B.D.; Sarunic, P.; Hmam, H. Cooperative localisation of UAVs in a GPS-denied environment using
bearing measurements. In Proceedings of the IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14
December 2016; pp. 4320–4326.

22. Balamurugan, G.; Valarmathi, J.; Naidu, V.P.S. Survey on UAV navigation in GPS denied environments. In Proceedings of the
2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Odisha, India,
3–4 October 2016; pp. 198–204.

23. de Paula Veronese, L.; Cheein, F.A.; Bastos-Filho, T.; Souza, A.F.D.; de Aguiar, E. A Computational Geometry Approach for
Localization and Tracking in GPS-denied Environments. J. Field Robot. 2015, 33, 946–966. [CrossRef]

24. Schnipke, E.; Reidling, S.; Meiring, J.; Jeffers, W.; Hashemi, M.; Tan, R.; Nemati, A.; Kumar, M. Autonomous Navigation of UAV
through GPS-Denied Indoor Environment with Obstacles. In Proceedings of the AIAA Infotech @ Aerospace, Kissimmee, FL,
USA, 5–9 January 2015.

25. Russell, J.S.; Ye, M.; Anderson, B.D.; Hmam, H.; Sarunic, P. Cooperative Localisation of a GPS-Denied UAV in 3-Dimensional
Space Using Direction of Arrival Measurements. IFAC PapersOnLine 2017, 50, 8019–8024. [CrossRef]

26. Singh, S.; Sujit, P. Landmarks based path planning for UAVs in GPS-denied areas. IFAC PapersOnLine 2016, 49, 396–400. [CrossRef]
27. Power, W.; Pavlovski, M.; Saranovic, D.; Stojkovic, I.; Obradovic, Z. Autonomous Navigation for Drone Swarms in GPS-Denied

Environments Using Structured Learning. In Artificial Intelligence Applications and Innovations; Springer International Publishing:
Cham, Switzerland, 2020; pp. 219–231.

28. Cao, M.; Anderson, B.D.O.; Morse, A.S. Sensor Network Localization with Imprecise Distances. Syst. Control Lett. 2006,
55, 887–893. [CrossRef]

29. Beck, B.; Baxley, R. Anchor Free Node Tracking Using Ranges, Odometry, and Multidimensional Scaling. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014.

30. Ji, X.; Zha, H. Sensor Positioning in Wireless Ad-Hoc Sensor Networks Using Multidimensional Scaling. In Proceedings of the
IEEE INFOCOM 2004, Hong Kong, China, 7–11 March 2004; Volume 4, pp. 2652–2661.

31. Borg, I.; Groenen, P.J.F. Modern Multidimensional Scaling; Springer: New York, NY, USA, 2005.
32. Costa, J.A.; Patwari, N.; Hero, A.O. Distributed Weighted-Multidimensional Scaling for Node Localization in Sensor Networks.

ACM Trans. Sens. Netw. 2006, 2, 39–64. [CrossRef]
33. Rajan, R.T.; van der Veen, A.J. Joint Ranging and Synchronization for an Anchorless Network of Mobile Nodes. IEEE Trans.

Signal Process. 2015, 63, 1925–1940. [CrossRef]
34. Wei, M.; Aragues, R.; Sagues, C.; Calafiore, G.C. Noisy Range Network Localization Based on Distributed Multidimensional

Scaling. IEEE Sens. J. 2015, 15, 1872–1883. [CrossRef]
35. Saeed, N.; Nam, H.; Al-Naffouri, T.Y.; Alouini, M. A State-of-the-Art Survey on Multidimensional Scaling-Based Localization

Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 3565–3583. [CrossRef]
36. Di Franco, C.; Melani, A.; Marinoni, M. Solving Ambiguities in MDS Relative Localization. In Proceedings of the International

Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–31 July 2015; pp. 230–236.
37. Guo, K.; Qiu, Z.; Meng, W.; Xie, L.; Teo, R. Ultra-wideband based cooperative relative localization algorithm and experiments for

multiple unmanned aerial vehicles in GPS denied environments. Int. J. Micro Air Veh. 2017, 9, 169–186. [CrossRef]
38. Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists, 7th ed.; Elsevier: Boston, MA, USA, 2013.
39. Anderson, B.D.O.; Shames, I.; Mao, G.; Fidan, B. Formal Theory of Noisy Sensor Network Localization. SIAM J. Discret. Math.

2010, 24, 684–698. [CrossRef]
40. Zhang, H.; Liu, Y.; Lei, H. Localization From Incomplete Euclidean Distance Matrix: Performance Analysis for the SVD–MDS

Approach. IEEE Trans. Signal Process. 2019, 67, 2196–2209. [CrossRef]
41. Dokmanic, I.; Parhizkar, R.; Ranieri, J.; Vetterli, M. Euclidean Distance Matrices: Essential theory, algorithms, and applications.

IEEE Signal Process. Mag. 2015, 32, 12–30. [CrossRef]
42. Di Franco, C.; Bini, E.; Marinoni, M.; Buttazzo, G.C. Multidimensional Scaling Localization with Anchors. In Proceedings of the

IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, Portugal, 26–28 April 2017;
pp. 49–54.

43. Strobach, P. The Fast Quartic Solver. J. Comput. Appl. Math. 2010, 234, 3007–3024. [CrossRef]

http://dx.doi.org/10.1002/rob.20400
http://dx.doi.org/10.1002/rob.21594
http://dx.doi.org/10.1016/j.ifacol.2017.08.1226
http://dx.doi.org/10.1016/j.ifacol.2016.03.086
http://dx.doi.org/10.1016/j.sysconle.2006.05.004
http://dx.doi.org/10.1145/1138127.1138129
http://dx.doi.org/10.1109/TSP.2015.2391076
http://dx.doi.org/10.1109/JSEN.2014.2366035
http://dx.doi.org/10.1109/COMST.2019.2921972
http://dx.doi.org/10.1177/1756829317695564
http://dx.doi.org/10.1137/100792366
http://dx.doi.org/10.1109/TSP.2019.2904022
http://dx.doi.org/10.1109/MSP.2015.2398954
http://dx.doi.org/10.1016/j.cam.2010.04.015

	Introduction
	Multidimensional Scaling Algorithm
	Resolving Rotation and Flip Ambiguities
	Analysis of Rotation Ambiguity
	Analysis of Rotation and Flip Ambiguities

	Proposed Algorithm Robust to Ambiguity and Noise
	Simulations
	Conclusions
	
	
	
	References

