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Although sex disparity in immunological function and susceptibility to various

inflammatory and infectious disease is recognized in adults, far less is known about

the situation in young infants during immune development. We have used an outbred

piglet model to explore potential early sex disparity underlying both mucosal immune

development and systemic responses to novel antigen. Despite similarities in intestinal

barrier function and therefore, presumably, antigen exposure, females had less CD172+

(Sirp-α) antigen presenting cells and expression of MHCIIDR at 28 days old compared

to males, along with greater regulatory T-cell numbers. This suggests that, during

infancy, females may have greater potential for local immune regulation than their

male counterparts. However, females also presented with significantly greater systemic

antibody responses to injected ovalbumin and dietary soya. Females also synthesized

significantly more IgA in mesenteric lymph nodes, whereas males synthesized more

in caecal mucosa, suggesting that plasma cells were retained within the MLN in

females, but increased numbers of plasma cells circulated through to the mucosal

tissue in males. Significant effects of inulin and Bifidobacterium lactis NCC2818 on

the developing immune system were also sex-dependent. Our results may start to

explain inconsistencies in outcomes of trials of functional foods in infants, as distinction

between males and females is seldom made. Since later functionality of the immune

system is highly dependent on appropriate development during infancy, stratifying

nutritional interventions by sex may present a novel means of optimizing treatments and

preventative strategies to reduce the risk of the development of immunological disorders

in later life.
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INTRODUCTION

Sex plays a role in innate, humoral, and cell-mediated immunity.
It is well-established that adult males are more susceptible
to infectious disease (1) and generate less reactive immune
profiles (2, 3), whereas adult females are more susceptible to
inflammation and autoimmunity (4, 5) but fare better when it
comes to infectious disease (6). Females are reported to generate
significantly higher levels of protective antibodies and cell-
mediated immunity following viral vaccinations against measles,
rubella, rabies, smallpox, dengue, mumps, influenza, yellow
fever, and hepatitis A and B (7–9). However, there are clearly
complexities as other studies have reported that the incidence
of immune-associated conditions such as asthma (10) and type
1 diabetes (11) is considerably higher in males than in females.
These differences are likely to be attributable, at least in part,
to sex steroids which can bind to immune-associated cells and
impact on their function (2), but also to non-endocrine-related
genes since significant numbers of immune-associated genes
are located on the X chromosome (12). In addition, there is
growing evidence for sexual dimorphism of intestinal microbiota
in humans and other species (13–16), and this may contribute
to divergent development of host immune systems (17–22).
However, it is not yet clear whether this has a genetic basis, or
if other determinant factors are the key drivers.

The studies regarding sex differences in immunity in young
adults of all species, including humans and pigs, have tended
to address the differences which may be present after sexual
maturity (23). However, there is a growing body of evidence
that immune differences are present very early on, even during
the prenatal stages. For example, preterm females exhibit a
less severe disease course and improved prognosis in many
pathological states compared to male counterparts and this has
been linked, in part, to differences in early immune development
(24). Neonatal screening programs for detection of primary
immune deficiencies show that in males, cord blood contains
lower numbers of CD4+ T-lymphocytes, lower CD4/CD8 T-
lymphocyte ratios, and higher CD8+ T-lymphocyte and NK cell
counts than cord blood from females (25). In addition, neonatal
immune challenges with LPS have been shown to induce long-
term effects on cardiac development and heart function which
are sex-dependent in rats. Here, male rats exhibited decreased left
ventricle to body weight ratios compared to females and this was
linked to delays in post-ischemic recovery following exposure
to LPS (26). Differences between sexes in humeral immune
responses to vaccines are variable but, where differences are
observed, responses are higher in girls than in boys (27). Taken
together, these data suggest that sexual dimorphic immunity is
not restricted to puberty or to post-pubertal adults. However,
there is a paucity of knowledge of sexual dimorphic prepubertal
immunity, despite the clear implications for the treatment of
infant disease.

Probiotics are “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”

(28). Human-derived Bifidobacterium lactis NCC2818

strain has been demonstrated as having probiotic activity

in humans and in rodent models. These include reduced allergy

symptoms and pathogen load, and prevention or reduction of
antibiotic-associated, and rotavirus-associated diarrhea (29–32).
The effects of probiotics, including B. lactis NCC2818, during
the neonatal period, a time when the resident microbiota is
changing rapidly, remain unclear. However, fewer and shorter
episodes of diarrhea and fewer antibiotic prescriptions have
been reported in human infants receiving B. lactis supplemented
formula milk compared to unsupplemented formula (33). On
the other hand, prebiotics are “selectively fermented ingredients
that result in specific changes in the composition and/or activity
of the gastrointestinal microbiota, thus conferring benefit(s)
upon host health” (34), largely by driving proliferation of target
bacterial species such as Bifidobacterium and Lactobacillus.
The prebiotic chicory-derived inulin has been demonstrated to
protect against chronic inflammatory diseases by dampening
immune responses through short-chain fatty acid production
(35), improved intestinal barrier function and by reducing
innate immune cell infiltration (neutrophils and macrophages)
into the colonic mucosa (36). Inulin appears especially useful
in increasing Bifidobacteria numbers in the elderly, in whom
such populations are often depleted (37). However, the impact
of inulin supplementation on the immune system of healthy
neonates remains unclear. To the best of our knowledge, the
effects of dietary supplementation with either probiotics, or
prebiotics on the development of the immune system has yet to
be explored in a sex specific manner. Failing to consider sexual
dimorphism in immune development, and on the response
to dietary supplementation in infants could, in part, explain
inconsistency in results from intervention trials in both humans
and other species.

Precocial piglets are important models for studies of the
impact of early nutrition and nutritional supplementation on
immune development since their self-sufficiency permits early
separation from their mothers, thus limiting the maternal
influence at this critical period of developmental plasticity.
Additionally, pigs are valuable, tractable, preclinical models for
humans (38) since they share many features of gastrointestinal
physiology, immunology, microbiology, diet and pathologies
(39–43) and are more outbred than rodent models so better
reflect the human population. Given the evidence for sex-
based immunological differences during early-life, it follows
that nutritional immune modifiers may drive differences in the
development of the immune system in a sex-specific manner.
We thus hypothesize that B. lactis NCC2818, and inulin, will
have sexually dimorphic effects on both the development of
porcine mucosal immunity, and systemic antibody responses
to challenge.

METHODS

Animal Model
Animal housing and experimental procedures were all performed
at the University of Bristol Veterinary Science School in
accordance with local ethical guidelines. All experiments were
reviewed and approved by the Bristol AnimalWelfare and Ethical
Review Body (AWERB) and were performed under a UK Home
Office License.
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FIGURE 1 | Animal trial (A) where 28 piglets were weaned at 3 weeks old onto diets where soya was the sole protein source (groups A–D). Half (groups B,D) were

supplemented with Bifidobacteria lactis NCC1828. Groups (A,B) received an intraperitoneal (IP) injection of ovalbumin (OVA) with Quil-A adjuvant at 3 (primary) and 9

(secondary) weeks, while groups (C,D) received OVA IP injection with Quil-A adjuvant only at 9 weeks and this was the primary exposure. Males and female piglets

(Continued)
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FIGURE 1 | were evenly distributed between the groups (n = 7). Weight at 3 weeks (B) and weight gain between 3 and 11 weeks (C) are presented by sex (females

= black bars and males = white bars) and treatment group (group and show no significant difference between the sexes or in response to treatment. A second animal

trial (D) where 30 piglets were removed from maternal nutrition and received bovine-based formula milk from 1 day old until the conclusion of the trial at 28 days. The

formula received by 5 males and 5 females was supplemented with inulin (gray panel) whilst a further 5 males and 5 females were supplemented with starch (white

panel). A further 5 males and 5 females received no supplementation (controls, black panel). Day 1 weights (E) and weight gain at 28 days (F) are presented by sex

and treatment group (control, inulin, or starch). Females are denoted in black and males in white. Error bars = SEM.

TABLE 1 | Diet composition of soya-based weaner feed (Calculated).

Ingredient (%) Soya-based weaner feed

Whole dried egg –

Extruded Full fat soya (unmodified, 35%

protein, 19% fat)

17.6

High protein soya (48% protein, 2.7% fat) 12.2

Cooked wheat (MASHM) 19.4

Presco maize 19.7

Cooked naked oats 9.2

Dairy crest tint whey 8.8

Denatured skimmed milk -A 6.7

Dextrose 1.6

Vitamin and mineral mix 1.0

Dicalcium phosphate 1.5

Limestone Trical 130 0.5

L. lysine 0.4

L. threnine 0.1

Salt 0.1

Protein 21.2

Oil 11.2

Fiber 2.3

Ash 5.3

Moisture 9.9

NFE 50.1

Vitamin and mineral mix (Calculated units in finished feed).

Vitamin A 16,000 iu/kg; vitamin D3 2,000 iu/kg; vitamin E 250 iu/kg; vitamin K (menadione)

4 mg/kg; vitamin B1 10 mg/kg; vitamin B2 16 mg/kg; vitamin B6 10 mg/kg; vitamin B12

0.05 mg/kg; Nicotinic acid 50 mg/kg; Pantothenic acid 30 mg/kg; Biotin (Vitamin K) 0.2

mg/kg; Vitamin C 200 mg/kg; Folic acid 3 mg/kg; Choline Chloride 300 mg/kg. Trace

minerals: Copper 155 mg/kg; Iron 375 mg/kg; Zinc 110 mg/kg, Manganese 100 mg/kg;

Cobalt 0.5 mg/kg; Iodine 1.2 mg/kg; Selenium 0.3 mg/kg.

In experiment 1, sex-specific effects on systemic antibody
response to novel exposure to injected OVA and fed soya
protein at weaning were examined. Seven outbred Large white
× Landrace F1 hybrid sows were artificially inseminated using
semen from a single UK standard commercial fast-grow Hylean
boar (supplied by Hermitage-Seaborough Ltd, North Tawton,
Devon, UK). Sows were transported to the department of
Clinical Veterinary Science at the University of Bristol 6 weeks
prior to parturition and fed on a wheat-based diet (BOCM
Pauls Ltd., Wherstead, UK). Colostrum uptake was not assessed
in any experiment. At 3 weeks of age, the resulting piglets
(n = 28) were weaned into 4 groups (n = 7 per group)
(Figure 1A), with sexes and litters stratified within treatment
groups (2 pens/treatment) and housed on straw in standard
temperature controlled large animal facilities. At this point,

piglets were weaned onto a soya-based diet (Feed composition
information available in Table 1) supplemented with appropriate
levels of vitamins and minerals, designed to meet the nutritional
requirements of pigs of this age and manufactured to order
by Volac (Parnutt Foods Ltd., Sleaford, Lincolnshire, UK). The
weaning diet contained 21% protein which was exclusively from
soya. Half the pigs (group B and D, males and females) also
received Bifidobacterium animalis subsp. lactis (CNCM I-3446,
NCC2818 supplied by Nestle Ltd) probiotic diet supplementation
in the form of spray-dried culture mixed into mash feed at a
concentration of 4.2 × 106 CFU/ml (∼2 × 109 cfu/kg metabolic
wt/day). The required quantity of feed supplemented with fresh
probiotics was fed twice a day. Piglets in groups A and B
received intraperitoneal (ip) injections of 2mg soluble ovalbumin
(OVA) from chicken egg white (Sigma, Dorset UK) (systemic
exposure) and 2mg Quil-A adjuvant (Brenntag Biosector A/S,
Frederikssund, Denmark) in 2ml Phosphate Buffered Saline
(PBS, Sigma) at 3 weeks of age to investigate the immune
response against systemically administered novel protein. All
piglets received the same immunization with ovalbumin (2mg
plus 2mg Quil-A i.p.) at 9 weeks: for groups A and B this was
their secondary response to ovalbumin; for groups C and D this
was the primary response to ovalbumin. Piglets were bled by
venepuncture at 3, 4, 5, and 9 weeks for collection of serum.
Piglets were sedated with azaperone and euthanized with an
overdose of barbiturate (Euthesate, Willows Francis Veterinary
Ltd., Crawley, UK). At post-mortem, heart blood was recovered
from all pigs.

In experiment 2, 30 piglets were taken to the department of
Clinical Veterinary Science at the University of Bristol at 12 h old
(after colostrum intake) and housed in temperature controlled
(28◦C), slatted floored accommodation and supplied with heat
lamps and vetbed R© bedding. Piglets were housed together for 1
day whilst they learnt to drink bovine-based formula milk (Volac
Ltd., Sleaford, Lincolnshire, UK). The nutritional composition of
this formula is summarized in Table 2 and is similar to that given
to human infants. In order to minimize the time taken for all
of the piglets to learn to drink from bowls, piglets were housed
in groups to learn by emulation. At two days old, the piglets
were moved to individual units which also had slatted floors,
heat lamps, and vetbed R©, and were fed hourly for the duration
of the trial (4 weeks). Once individually housed, the piglets were
allocated into gender-balanced treatment groups which received
either inulin (n = 10), starch (n = 10) supplementation in the
formula, or received no supplementation (control group, n= 10)
with 5males and 5 females/group (Figure 1D). The commercially
available product of chicory inulin, with a dry matter of 96.3%,
containing >90% inulin with an average polymerization degree
of 10%, a free sugar content of <10% and average chain length
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TABLE 2 | Diet Composition of bovine-based formula milk (Calculated).

Ingredient (%) Formula (%)

Spray dried instant whey powder 20.0

Whey protein concentrate (35%) 10.0

Whey Protein concentrate (80%) 4.0

Dairy crest tint whey 20.0

Denatured skimmed milk 43.4

Dextrose 0.8

Formula milk supplement* 1.0

Calcium formate 0.8

Protein 24.0

Oil 18.0

Fiber 7.5

Ash 3.5

Nitrogen free Extract NFE 47.0

*Formula milk supplement (units in finished feed).

Vitamin A 16 mg/kg; vitamin D3 2 mg/kg; vitamin E 250 mg/kg; vitamin K (menadione) 4

mg/kg; vitamin C 150 mg/kg; plus full complement of B group vitamins.

of 8–13 monomers (Sensu Ltd., Roosendaal, The Netherlands)
or soluble starch from potato (Sigma) was added to the formula
milk at a concentration of 0.45 g/Lt to give average inulin or
starch consumption of 0.2 g/kg Metabolic Wt/day. Piglets were
euthanized with an overdose of barbiturate (Euthesate, Willows
Francis Veterinary Ltd., Crawley, UK) at 4 weeks old and tissues
(mesenteric lymph node, distal jejunum, caecum and colon) were
collected at post-mortem.

Tissue Culture
At sacrifice, 4 cm2 samples of intestinal mucosa (distal
jejunum, caecum tip, and descending colon) and 1 cm3 of
MLN (draining the distal jejunum) were collected and placed
in cold sterile medium. Organ fragment culture (OFC) was
carried out as previously described (44). Briefly, the sample
were vigorously washed three times in Ca2+ and Mg2+-free
Dulbecco’s PBS (Sigma) containing 0.5mM EDTA (Sigma),
1M HEPES (Invitrogen, Paisley, UK) and 50µg/ml gentamycin
(Gibco), followed by 3 further washes in Ca2+ and Mg2+-
free Dulbecco’s PBS containing 1% HEPES and 50µg/ml
gentamycin before being placed in Roswell Park Memorial
Institute (RPMI) 1640 (Sigma) containing 10% fetal calf serum
(FCS) (PAA, UK), 200mM L-Glutamine (Invitrogen), 20 U/ml
streptomycin/penicillin (Invitrogen), and 50µg/ml gentamycin
(complete medium). All intestinal tissues were cut into fragments
approximately 3mm square while MLN was cut into 2mm
cubes and one fragment of tissue was placed in each of 6
individual wells of a 24 well culture plate (Corning Incorporated,
UK) containing 1ml of complete medium. Cultures were
incubated at 37◦C, 5% CO2, 100% humidity for 96 h, after
which they were frozen at −20◦C. The plates were defrosted
and the spent medium from each of the 6 duplicate wells
for each sample was pooled and refrozen for analysis of
immunoglobulin content.

Immunoglobulin Assays
Catching ELISA was carried out to determine total IgA and IgM
in spent medium from OFC. Briefly, 96 well microplates were
coated with either affinity purified goat anti-pig IgA or goat anti-
pig IgM (Bethyl Laboratories, Montgomery, Texas, USA). Serial
dilutions of serum samples and reference standard were added
to coated plates and incubated for 2 h at room temperature.
Bound immunoglobulins were detected using isotype-specific
monoclonal antibodies (anti-pig IgA K61.1B4, anti-pig IgM
K52.1C3 from Biorad) followed by horseradish peroxidase
(HRP)-conjugated goat-anti-mouse IgG1. Concentrations of
immunoglobulin subclasses were determined by interpolation of
samples onto the reference standards.

Antigen-Specific Immunoglobulin Assays
Serum samples were analyzed for anti-ovalbumin IgG1

antibodies 14 days after ip injection at 3 weeks (primary)
and 9 weeks (secondary) by ELISA as previously described
in detail (45). Briefly, 96 well microplates were coated
with ovalbumin from chicken egg white (Sigma) before
non-specific binding sites were blocked with 2% bovine
serum albumin (BSA) (Sigma) in PBS-tween 20. After
washing, serial dilutions of serum samples and reference
standard were added to the plates. Reference standard
was porcine serum obtained following hyperimmunization
with ovalbumin. Bound anti-soya IgG1 antibodies were
detected using isotype-specific monoclonal antibodies (clone
K139 3C8, Biorad) followed by HRP-conjugated goat anti-
mouse as above, and relative concentrations of antibody
were determined by interpolation of samples onto the
reference standards.

In order to compare changes in serum antibody generated by
weaning and by injection of novel proteins in outbred animals,
in which the starting levels differ, results are expressed as the
ratio of antibody after manipulation to that before manipulation
(the –fold change in antibody following exposure to OVA).

Fluorescence Immunohistology
Proximal jejunum (avoiding Peyer’s patches) was identified in
each piglet at 75% along the length of the small intestine. The
tissues were snap frozen then serial, 5µm sections were cut
using a Model OTF cryotome (Brights Instrument Company
Ltd., Huntingdon. UK). Sections were air dried for 24 h then fixed
by immersion in acetone for 15min. Slides were dried prior to
storage at−80◦C.

Non-specific binding sites were blocked using 10% goat
(serotec) and pig serum (Langford commercial abattoir) and
the samples were then stained with monoclonal antibodies.
The following monoclonal antibodies were used: anti-porcine
CD4 (clone MIL17, BioRad); anti-porcine CD172/Sirp-α
(clone 74-22-15 Cambridge Bioscience), anti-porcine intestinal
capillary endothelium (clone MIL11, Bio-Rad), anti-porcine
MHC class II DR (clone MSA-3, BioRad), Rat anti-mouse
Foxp3 (clone FJK-16s, ThermoFisher), anti-porcine CD25
(clone K231.3B2, BioRad), rabbit anti-mouse Zona Occludin-1
(ZO-1, clone 61-7300, BioRad), anti-porcine CD45 (clone
k252-1e4, BioRad), and mouse anti-rat E-cadherin (clone
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FIGURE 2 | Difference between systemic ovalbumin (OVA)-specific IgG1 antibody levels from 3 to 5 weeks (A) and 9–11 weeks (B) of age in all soya-fed piglets.

Increase in OVA-specific IgG1 antibody in response to priming and recall with intraperitoneal (IP) OVA with QuilA adjuvant in male (white bars, p < 0.001), but not in

female (black bars) piglets weaned onto a soya protein-based diet. Significant interactions are presented in (C). Samples were obtained 14 days after both IP OVA

exposures. In order to compare changes in serum antibody generated by weaning and by injection of novel proteins in outbred animals, in which the starting levels

differ, results are expressed as the ratio of antibody after manipulation to that before manipulation (the Log10-fold change in antibody following exposure to OVA).

*significant difference between males and females within the experimental group p < 0.05; Error bars = SEM.

DECMA-1, AbCam). Binding was detected with the following:
goat anti-mouse IgG2b TRITC (Southern Biotechnology),
goat anti-mouse IgG1 FITC (Southern Biotechnology),
biotinylated goat anti-mouse IgE (Southern Biotechnology)
detected with AMCA-Avidin D (Vector Laboratories), goat
anti-mouse IgG2a AlexaFluor 633 (Invitrogen), goat anti-
rat IgG FITC (Stratech), biotinylated goat anti-mouse IgG1

(Southern Biotechnology), detected with AMCA-Avidin D
(Vector Laboratories), goat anti-rabbit TRITC (Southern
Biotechnology), and goat anti-mouse IgG1 TRITC (Southern
Biotechnology). Non-specific binding was prevented by 5%
pig serum, 5% goat serum, and 5% rat serum in PBS. Slides
were mounted using Vectashield (Vector Laboratories).

Negative control slides were prepared in conjunction with each
positive slide.

Image Capture and Analysis
Image capture and proportional area of CD4, CD172, MIL11,
MHCII, ZO-1, CD45, and E-cadherin positive staining were
analyzed using an in-house macro and ImageJ version 1.44
(46). Briefly, ten, 16 bit grayscale images were captured for
each piglet along the small intestine resulting in either 70
(Figure 1A) or 50 (Figure 1D) representational images for
each sex/treatment group, using a Leica DMR-B fluorescence
microscope fitted with appropriate fluorescence filters. The
proportion of positive pixels in each color channel was measured
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using a specifically developed in-house macro. This allowed
quantification of positive staining by the primary antibodies
and values were logged to achieve normal distributions,
as verified by Inman et al. (46). Because expression of
Foxp3 is nuclear, numbers of CD4+CD25+Foxp3+ were
analyzed manually.

Statistical Analysis
Multivariable linear regression was carried out using IBM
SPSS statistics (IBM, Chicago, IL, USA) on the quantitative
immunofluorescence and on antibody and immunoglobulin data
using piglet as the experimental unit and age, antigenic challenge
(ovalbumin i.p.), litter, sex, and nutritional supplementation
(probiotic, prebiotic, or starch) as variables where appropriate.
In order to avoid overfitting, simplified models where used in
which the only interactions considered were between sex and
probiotic, and sex, probiotic, and immunization in experiment
1 or sex, tissue, and prebiotic or starch in experiment 2.
Individual differences between treatment groups and sex were
determined by least-significant differences as in our previous
experiments (47). The proportion of pixels positive for CD4,
CD172, MIL11, MHCIIDR, ZO-1, CD45, E-cadherin, and the
number of CD4+CD25+Foxp3+ cells.mm2 were analyzed as
individual, dependant variables. Where multiple dependant
variables were analyzed, Bonferroni corrections were used to
avoid type 1 errors.

RESULTS

Sex Determines Levels of Antibody to
Ovalbumin After Weaning
In experiment 1, antibody to ovalbumin was detected in all
groups of animals at 3 weeks old, reflecting a combination
of response to immunization, maternally-derived antibody
and background crossreactive antibody. Between 3 and 5
weeks old, levels in unimmunized piglets generally declined,
reflecting the decline in maternally-derived antibody. In
piglets immunized at 3 weeks old, the decline in levels of
antibody to 5 weeks was, generally, reduced by comparison
with unimmunized piglets reflecting active immune responses
to immunization against this background of decreasing
maternal antibody (Figure 2A). However, although statistical
analysis confirmed significant effects of immunization (p
= 0.001), it also indicated significant effects of sex and
of probiotic. Importantly, there was a significant two-way
interaction between sex and probiotic (p = 0.002) and
an additional but less significant three-way interaction
between sex, probiotic, and immunization (p = 0.025),
indicating that sex differences were present both in the
immunized and unimmunized groups but were stronger on the
unimmunized (Figure 2C).

In piglets immunized at 9 weeks old, the effect of
immunization was more marked (p = 0.000002, Figure 2B),
likely because of the absence of maternally derived antibody,
and because all piglets received an immunization, the
difference being whether it was their first or second
immunization. Sex and administration of probiotic also had

significant effects, females making less antibody and probiotic
supplemented making more. Unlike at 3–5 weeks, there were no
significant interactions.

Immunoglobulin Production in Response
to Dietary Inulin and Starch Differed
Significantly Between the Sexes in Both
Lymphoid and Non-lymphoid Tissues
Total IgA and IgM were quantified in organ fragment
culture medium from all piglets in experiment 2 (controls,
inulin and starch supplemented). There were highly significant
differences between tissues in the amounts of IgA and IgM
produced irrespective of treatment (p < 0.0001, p = 0.0020,
respectively). There was no significant effect of inulin or starch
supplementation on IgA production when the results were
analyzed without taking sex into account. However, there were
also overall significant differences in response to treatment in
IgM production in all tissues (p = 0.002): both inulin (1.76 ±

0.16 log10 µg/ml) and starch (2.04 ± 0.19 log10 µg/ml) resulted
in increased IgM production compared to the control piglets
(1.29± 0.09 log10 µg/ml) when the results were analyzed without
taking sex into account.

When sex was included as a factor in the models, there
were statistically significant interactions between sex, tissue
and treatment (p = 0.002, Figure 3) in IgA production,
and between sex and treatment (p < 0.001, Figure 4) in
IgM production. In females, the increased IgA and IgM
synthesis in response to inulin supplementation was apparent
in the organized lymphoid tissues of the MLN whereas
in males, it was apparent in the primary fermentation
chamber, the caecum. Starch supplementation had no
effect on females but increased IgM synthesis in all tissues
in males.

The Development of Immune-Associated
Cells in the Intestinal Mucosa Is Dependent
on Sex, and in Response to Dietary
Supplementation With Inulin and Starch
Fluorescence immunohistology was used to assess sex differences
in the development of the immune system by quantifying
expression of immune-associated proteins in the intestinal
mucosa of the distal jejunum in control piglets, and in
response to dietary supplementation with inulin or starch at
28 days old. Representative images are shown in Figure 5A.
Supplementation with inulin resulted in a significant increase
in the proportion of area (log transformed) staining positive
for immune-associated proteins (dendritic cell surface marker
CD172/Sirp-α, p < 0.001, Figure 5B; CD4, p < 0.05, Figure 5C;
MHCIIDR, p < 0.001, Figure 5D; MIL11 capillary endothelium,
p < 0.01, Figure 5E) in females (compared to female
controls), whereas in males, inulin supplementation resulted
in a significant decrease in the area staining positive for
CD172/Sirp-α (p < 0.01) and MHCIIDR (p < 0.001) compared
to control males.

Supplementation with starch was also linked to increases
in the proportion of positive staining for CD4 (p <
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FIGURE 3 | Total IgA production (µg/ml, log-transformed) by organ fragment cultures from organized lymphoid tissue (mesenteric lymph node, MLN) (A) and

non-lymphoid tissues; distal jejunum (B), caecum (C), and colon (D) from female (black bars) and male (white bars) piglets supplemented with inulin or starch, and

non-supplemented (control) groups. Six replicates were pooled to generate each sample for analysis. Table of significances (E). *p < 0.05; **p < 0.01. Error bars SEM

(n = 5/sex/treatment group).
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FIGURE 4 | Total IgM production (µg/ml, log-transformed) by organ fragment cultures (OFC) from organized lymphoid tissue (mesenteric lymph node, MLN) (A) and

non-lymphoid tissues; distal jejunum (B), caecum (C), and colon (D) from female (black bars) and male (white bars) piglets supplemented with inulin or starch, and

non-supplemented (control) groups. Six replicates were pooled to generate each sample for analysis. Table of significances (E). *p < 0.05; **p < 0.01. Error bars SEM

(n = 5/sex/treatment group).
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FIGURE 5 | Representation of fluorescence immunohistology from the distal jejunum lamina propria of a 28 day old female control (no dietary supplementation) and

inulin supplemented piglets showing CD172 (Sirpα), CD4, and MIL11 (capillary endothelium) MHCIIDR positive staining (A) Bar = 100µm. Quantitative analysis of

proportion positive pixels by fluorescence immunohistology (log transformed) of CD172 (B), CD4 (C), MHCIIDR (D), and MIL11 (E) positive staining in the distal

(Continued)
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FIGURE 5 | jejunum lamina propria of 28 day old piglets by treatment (unsupplemented control, inulin, or starch supplemented) and by sex (females = black bars,

males = white bars). Observed (dark gray = females, light gray = males) area of the indicated stains compared with the expected (black = female, white = male) area

(i.e., the area of staining predicted from a null hypothesis that each element of positive staining is distributed randomly and independently) for CD4CD172MHCIIMIL11

(F), CD4CD172MHCII (G), and CD4MIL11MHCII (H) co-staining. Ten individual images were analyzed for each sample, *p < 0.05; **p < 0.01; ***p < 0.001. Error

bars SEM (n = 5/sex/treatment group).

0.001), MIL11 (p < 0.05), and MHCIIDR (p < 0.001) in
females compared to their control counterparts, but not in
males. As with supplementation with inulin, intervention
with dietary starch resulted in significant decreases in
expression of MHCII (p < 0.01) in males compared to
unsupplemented male controls. The proportion of positive
staining for CD172/Sirp-α and MHCIIDR was significantly
higher in males compared to females in the control
groups (p < 0.001).

Interestingly, although control males expressed higher
levels of CD4+ staining in the intestinal mucosa of the
distal jejunum compared to their female counterparts, they
had significantly fewer CD4+CD25+Foxp3+ cells/mm2

(representative images in Figure 6A) in this tissue than the
female control piglets (p < 0.001, Figure 6B). Supplementation
with both inulin and starch resulted in an increase in the number
of CD4+CD25+Foxp3+ cells/mm2 (p < 0.01 in both cases)
in males. However, neither dietary supplement resulted in
significant changes in the number of cells with this phenotype in
female piglets.

In previous studies, we have compared the observed
overlap between CD4, MHCII, CD172, and MIL11 to that
expected if the distribution was random and independent, to
show that CD4+ T-cells in the intestinal lamina propria do
interact directly both with dendritic cells and with endothelial
cells in vivo and demonstrated that both cell types are
capable of antigen presentation (48). Sex-related differences
in recruitment of CD172, CD4, and MHCII+ cells could
be resulting in functional differences in the number of
interactions between these cell types or the recruited cells
could be simply “in transit,” not engaging in any kind of
surveillance. In all cases, the observed overlap was significantly
greater than that expected (p < 0.000001). In the studies
reported here, increases associated with inulin supplementation
in females in total areas of CD4, CD172, MHCII, and
MIL11 and differences between males and females remained
significantly different from expected (Figures 5F–H), indicating
that differences in the number of recruited cells are likely
to contribute to quantitative changes in the local antigen
presenting environment.

Intestinal Barrier Function Is Increased by
Supplementation With Both Inulin and
Starch in a Sex Independent Manner
Quantitative fluorescence immunohistology was used to assess
expression of proteins associated with barrier-function in the
epithelium of the distal jejunum in response to supplementation
with inulin and starch in 28 day old piglets. Representative
images are shown in Figure 7A. Expression of the tight cell

FIGURE 6 | Representation of 3 color fluorescence immunohistology of CD4

(red), CD25 (blue), Foxp3 (green), and CD4CD25 (magenta) positive staining in

the distal jejunum lamina propria of a 28 day old female and male control (no

dietary supplementation) piglets (A). Bar = 10µm. Quantitative analysis (log

transformed) of CD4+CD25+Foxp3+ cells/mm2 of distal jejunum lamina

propria in 28 day old piglets by treatment (unsupplemented control, inulin or

starch supplemented) and by sex (females = black bars, males = white bars)

(B). Ten individual images were analyzed for each sample. *p < 0.05; **p <

0.01; ***p < 0.001. Error bars SEM (n = 5/sex/treatment group).

junction associated protein Zonaoccludin-1 (ZO-1) and the
lymphocyte common antigen CD45 were increased in the
epithelium in response to dietary supplementation with both
inulin and starch and differences were not observed between
female and male piglets (Figures 7B–D). In contrast, inulin
supplementation resulted in significant differences between the
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sexes in expression of E-cadherin, females expressing higher
levels than males (p < 0.05). Supplementation with starch was
linked to increases in both sexes compared to their control
counterparts (Figure 7C, p < 0.001).

Antibody Responses to Novel Protein Fed
at Weaning Are Higher in Females Than
Males, and Is Increased by
Supplementation With Bifidobacterium

lactis NCC2818 in Both Sexes
As we have previously reported (44), there was an increase
in IgG1 anti-soya antibody in serum of piglets after weaning
at 3 weeks old onto soya-based diets. Statistical analysis using
sex, NCC2818 supplementation, litter, and treatment as fixed
factors demonstrated that there was no significant effect of
ovalbumin injection on the level of anti-soya antibody produced
in response to weaning onto soya protein (Figure 8B, p =

0.198): therefore, for display (Figure 8A), animals in groups
A and C (shown in Figure 1) were grouped together as were
animals in groups B and D. The level of antibody produced
after weaning varied between litters, but was significantly
increased by supplementation with NCC2818 (Figure 8, p =

0.0111). However, there were also significant differences between
soya-fed males and females in the level of response: 7 days
after initial exposure, both unsupplemented and supplemented
female piglets made significantly more IgG1 anti-soya antibody
than their male counterparts (p = 0.016). No interaction
between sex and probiotic supplementation was observed at
this time point (p = 0.642). In addition, no significant
differences were observed between the sexes by 14 days after
weaning, or in response to supplementation with B. lactis
NCC2818. There were no significant sex differences in IgG2

anti-soya antibody response to novel soya protein at weaning
(data not shown).

DISCUSSION

Sex disparity in immune responses is well-documented.
However, sex differences in immune development during
early infancy are still poorly understood, despite their clear
importance for the development of stratified healthcare in
both human and veterinary medicine. Here, using an outbred
piglet model, we have identified several important differences
in early immune development between the sexes as early
as 28 days of age. These include CD172+ (Sirp-α) antigen
presenting numbers and expression of MHCIIDR in the
intestinal mucosa, regulatory T-cell populations, mucosal
IgA production and systemic antibody response to injected
novel ovalbumin.

Decreased intestinal barrier function is emerging as an early
predisposing factor for metabolic and immune dysfunction that
underlies several chronic degenerative diseases in later life (49).
In healthy adult males, intestinal barrier function is generally less
effective than in females and less sensitive to NSAID-induced
perturbation. Barrier integrity is also more variable in males
compared to females and, in some cases, can decrease to levels

similar to those observed in inflammatory bowel conditions
(50). Despite this, our study did not find significant sexual
disparity in expression of epithelial ZO-1, a tight cell junction
(TCJ) protein associated with barrier function (51, 52), or in
E-cadherin which has an important role in maintaining barrier
integrity under homeostatic condition (53) in 28 day old piglets.
This suggests that the differential development of gut barrier
function may occur later in life than infancy and could be
linked to differences in sex hormones which occur from puberty
onwards (54, 55).

However, despite the observed similarities in barrier function
between male and female piglets and, presumably, in levels of
exposure to antigen crossing this barrier, there was sex disparity
in both expression of antigen-presenting cell (APC) and of CD4+

T-cells -associated proteins in the intestinal mucosa. CD172+

(Sirp-α) APC and MHCIIDR expression were both significantly
higher in control, unsupplemented males than females. Sexual
bias in MHC I-associated CD8+ cell expansion in adults with
multiple sclerosis has previously been reported (56) but sex
differences in antigen presentation in healthy young animals has
not. In our study, control females presented with significantly less
CD172+ APC and less (though not significant) CD4+ staining
in the submucosa of the distal jejunum at 28 days compared
to unsupplemented males. Within the CD4+ T-cell population
in this location, females had significantly more regulatory T-
lymphocytes (Tregs) than males. Together, the lack of APC and
CD4+ staining and the higher number of Foxp3+ T-cells suggests
that females had reduced potential to generate mucosal immune
responses to antigens translocating into the lamina propria from
the lumen. While this is not consistent with reports in human
adults, where autoimmune diseases and allergies generally have
higher prevalence in females compared to males (1, 4, 5) the
opposite has been reported in children under 18 years old
where 64.35% of a food allergy cohort were male and 35.65%
were female (57). In addition, in a longitudinal study from
birth to late adulthood, asthma, allergic rhinitis, and eczema all
exhibited male predominance in childhood that reversed during
adolescence (58). This aligns with our results where young males
presented with a less regulated gut mucosal microenvironment,
whereas females were potentially better able to regulate mucosal
immune responses.

However, although control female piglets appeared to have
increased potential for local immune regulation in the gut
mucosa compared to their male counterparts, they produced
significantly increased systemic IgG antibody in response to
novel injected and oral antigens than control males around
weaning at 4 weeks old, suggesting greater ability to mount
systemic immune responses at this age. Although it is difficult
to make accurate analogies between piglet and human infant age
and stage of development, we do also demonstrate a switch to
males producing increased systemic antibody to injected OVA
with exposure at 9 weeks old. Thus, our results support amodel in
which normal, healthy females regulate mucosal responses better
than males in early neonatal life but mount stronger systemic
responses, but this switches around as the animals age.

In addition to sex effects in unsupplemented piglets, the
studies reported here demonstrated differences between males

Frontiers in Immunology | www.frontiersin.org 12 December 2019 | Volume 10 | Article 2705

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Christoforidou et al. Sex-Specific Effects of Diet on Immune Development

FIGURE 7 | Representation of fluorescence immunohistology from the distal jejunum epithelium of a 28 day old female control (no dietary supplementation) and inulin

supplemented piglets showing ZO-1 (zona occludin 1), E-cadherin and CD45 positive staining (A). Bar = 100µm. Quantitative analysis of proportion positive pixels by

fluorescence immunohistology (log transformed) of ZO-1 (B), E-cadherin (C), and CD45 (D) positive staining in the distal jejunum epithelium of 28 day old piglets by

treatment (unsupplemented control, inulin or starch supplemented) and by sex (females = black bars, males = white bars). Ten individual images were analyzed for

each sample. *p < 0.05; **p < 0.01; ***p < 0.001. Error bars SEM (n = 5/sex/treatment group).

and females supplemented with the prebiotic inulin. Consistent
with other studies which show that supplementation with inulin
resulted in significant increases in gene transcripts associated
with intestinal barrier function (59), we show that inulin
was associated with increased TCJ protein expression in the
epithelium of the distal jejunum at 28 days. However, the effects

of inulin on barrier function-related proteins were not different
between sexes. Our data are consistent with previous evidence
suggesting that younger females have greater control over
local, mucosal responses to antigen compared to males, inulin
supplementation resulted in significantly increased IgA and IgM
production by caecal mucosa in males but not in females,
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whereas mesenteric lymph node tissues from supplemented
females produced more than from males. Interestingly, both IgA
and IgM production by the MLN was higher in females than
males following supplementation. This may indicate that plasma
cells are more likely to differentiate and be retained in the MLN
in females but more likely to recirculate to the intestinal mucosa
in males.

How antigen is presented to the immune system is clearly
an important determinant in driving immune development in
young mammals. We assessed only the mucosal CD172+ APC
population and there could also be sex disparity in ratios of
other APC subsets (those defined, for example, by combinations
of CD172, CD16, and CD11R1 surface expression) which
ultimately result in differences in early T-cell differentiation
between the sexes. We have previously demonstrated that early
exposure of piglets to farm environments significantly affects
antigen presentation by both APC and stromal cell subsets
in the intestinal mucosa (60). It is well-established that early
exposure of human infants to farm environments is linked
with a reduced risk of allergy (i.e., the hygiene hypothesis).
One possibility is that some component within early farm
exposure may differentially affect male and female infants,
generating a more regulatory mucosal microenvironment similar
to that which occurs naturally in females. Our previous studies
clearly suggest that early environment does affect mucosal
regulatory environments, and specific components of a human
microbiome have been correlated with numbers of regulatory
T-cells (61). However, since this latter was a germ-free pig
model, it does not preclude the possibility that factors other
than the microbiome are also likely to be involved. It would
be interesting to explore whether there is sex disparity in
the protective effect of farm environments and other early-
life factors: to the best of our knowledge, this is yet to
be assessed.

Despite limited understanding of the mechanisms of action

of both prebiotics and probiotics, their use in functional foods

and in clinical applications has increased rapidly over recent

years. Meta-analyses of randomized controlled trials using

probiotics in infants show promising results in the prevention

and treatment of common diseases such as diarrhea and allergies

(62–65). In contrast, other studies have not shown that probiotic

supplementation in healthy infants has any discernible health

benefits (66). In such trials, although gestational age andweight at

birth, attendance at pre-school facilities, the presence of siblings

and pet ownership are often taken into account during analyses,

sex seldom is. However, we have previously shown that diet also

influences the response to probiotics (44) and the studies here

further demonstrate that some of the impacts of both prebiotic
and probiotics on immune development in young piglets were

also sex-specific. The combination of environmental, genetic,

and phenotypic influences on the response to functional foods
may, in part, begin to explain inconsistencies in the outcomes

of many reported studies. This also raises the possibility
that the beneficial effects of certain prebiotics and probiotics
may differ between sexes, providing a potential target for
stratified interventions, and is currently an avenue which remains

FIGURE 8 | Increased systemic soya-specific IgG1 antibody in response to

weaning onto a soya-based diet in females (solid lines), compared to males

(dotted lines) in piglets at 7 days post wean (p = 0.016). Supplementation with

B. lactis NCC2818 (black lines) also resulted in increased systemic

soya-specific IgG1 antibody production compared to unsupplemented piglets

(gray lines) in males and females (p = 0.011). Figures represent aggregated

data from groups A and C (Not supplemented with NCC2818) and groups B

and D (supplemented with NCC2818). A dilution series was analyzed for each

sample (A). Table of significances (B). Error bars SEM; (n =

7/sex/treatment group).

unexplored. As an example, this may be particularly important in
the application of prophylactic probiotic therapy in premature
babies with increased risk of necrotizing enterocolitis and late-
onset sepsis (67).

In conclusion, we present evidence that important
immunological differences occur between healthy female
and male outbred piglets, even as early as 28 days old. This
suggests that there will also be differences in predisposition
to immunological diseases in infants, as occurs in adults,
but that infant sex biases may be qualitatively different from
those which occur in adults. Similarly, we show that some
of the effects of probiotics and prebiotics on developing
immune systems appear to be different between the sexes.
This is, perhaps, unsurprising considering the underlying
immunological differences we observed. However, it does raise
the possibility that prebiotics and probiotics may need to be
targeted more specifically across age and sex in order to achieve
optimum health benefits. Outbred pigs, where direct, controlled
interventions in neonates can be followed by extensive, invasive
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tissue collection and analysis, may present an appropriate
model for studies of the mechanisms underlying sex disparity in
immune development and consequent sex-specific responses to
functional foods.
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