
RESEARCH ARTICLE

An index-based algorithm for fast on-line

query processing of latent semantic analysis

Mingxi Zhang1,2*, Pohan Li2, Wei Wang2

1 College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai,

China, 2 School of Computer Science, Fudan University, Shanghai, China

* mingxizhang10@fudan.edu.cn

Abstract

Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is

similar to the query of keywords. Although LSA yield promising similar results, the existing

LSA algorithms involve lots of unnecessary operations in similarity computation and candi-

date check during on-line query processing, which is expensive in terms of time cost and

cannot efficiently response the query request especially when the dataset becomes large.

In this paper, we study the efficiency problem of on-line query processing for LSA towards

efficiently searching the similar documents to a given query. We rewrite the similarity equa-

tion of LSA combined with an intermediate value called partial similarity that is stored in a

designed index called partial index. For reducing the searching space, we give an approxi-

mate form of similarity equation, and then develop an efficient algorithm for building partial

index, which skips the partial similarities lower than a given threshold θ. Based on partial

index, we develop an efficient algorithm called ILSA for supporting fast on-line query pro-

cessing. The given query is transformed into a pseudo document vector, and the similarities

between query and candidate documents are computed by accumulating the partial similari-

ties obtained from the index nodes corresponds to non-zero entries in the pseudo document

vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query pro-

cessing by pruning the candidate documents that are not promising and skipping the

operations that make little contribution to similarity scores. Extensive experiments through

comparison with LSA have been done, which demonstrate the efficiency and effectiveness

of our proposed algorithm.

Introduction

Many real data sets could be grouped as documents, including as web pages, literature and

product profiles. With such data sets becoming massive and diverse, there is a need for design-

ing algorithmic tools and developing applications to discover the underlying relationship from

the data. Consider an example of the document search in a dataset, even though a document is

on precisely the same topic to a input query of keywords, it may not be searched when its con-

tained terms are different to the input keywords. In previous work, there are some semantic

approaches that can be used finding the documents whose semantic is similar to the query of

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhang M, Li P, Wang W (2017) An index-

based algorithm for fast on-line query processing

of latent semantic analysis. PLoS ONE 12(5):

e0177523. https://doi.org/10.1371/journal.

pone.0177523

Editor: Quan Zou, Tianjin University, CHINA

Received: December 30, 2016

Accepted: April 29, 2017

Published: May 16, 2017

Copyright: © 2017 Zhang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper, and the DBLP data are available

from the DBLP website (http://dblp.uni-trier.de/).

Funding: This work was supported by Natural

Science Foundation of Shanghai grant 16ZR14228,

http://www.stcsm.gov.cn/; Innovation Program of

Shanghai Municipal Education Commission grants

15ZZ073 and 15ZZ074, http://www.shmec.gov.cn/;

and Training Project of University of Shanghai for

Science and Technology grant 16HJPY-QN04,

http://www.usst.edu.cn/. The funders had no role

in study design, data collection and analysis,

https://doi.org/10.1371/journal.pone.0177523
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177523&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177523&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177523&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177523&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177523&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177523&domain=pdf&date_stamp=2017-05-16
https://doi.org/10.1371/journal.pone.0177523
https://doi.org/10.1371/journal.pone.0177523
http://creativecommons.org/licenses/by/4.0/
http://dblp.uni-trier.de/
http://www.stcsm.gov.cn/
http://www.shmec.gov.cn/
http://www.usst.edu.cn/

keywords, e.g., Latent Semantic Analysis (LSA) [1–4], Probabilistic LSA (PLSA) [5, 6], Latent

Dirichlet Allocation (LDA) [7–10] and latent factorization model (LFM) [11, 12]. Among

these approaches, LSA is a well-known representative which has been widely applied to various

research fields, including document retrieval [13, 14], query expansion [15, 16], data extraction

[17, 18] and text classification [19, 20]. For improving the performance of these applications,

LSA provides an effective function for searching the similar documents for a given query of

keywords. Specifically, LSA represents the relationship between documents and terms by a

term-document matrix that is further decomposed into a product of three other matrices by

the singular value decomposition (SVD) [1, 3, 4]. SVD is the mathematical tool behind LSA

and some applications including association prediction [21], similarity computation [22, 23],

clustering [24, 25], images analysis [26] and collaborative filtering [27, 28]. For the given

query, LSA transforms it into a pseudo document vector and computes the similarities

between query and candidate documents over the SVD result of the term-document matrix.

LSA has also been applied to other research fields recently, including social data analysis

[29, 30], collaborative filtering [31–33], sign language translation [34] and gene sequence anal-

ysis [35–40]. For example, in the field of social data analysis, [29] adopted LSA for producing

better annotated video clip in social multimedia data. [30] measured the semantic similarity in

the text of social media by using a topic-based LSA. For obtaining better result of recommen-

dation, [31] proposed a latent class regression recommender system (LCRRS) through extend-

ing PLSA for collaborative filtering based on cluster-wise linear regression. [32] presented a

component recommender approach based on LSA to initialize the word distributions for dif-

ferent topics. [33] fused LSA and K-means for better recommendation of antiarrhythmic

drugs through capturing the latent factors between the arrhythmia types and patients. In the

field of sign language translation, [34] used de-bruijn graph with LSA in the decoding process

to improve the quality and accuracy of translation result. For discovering the associations

between genes and diseases, [35] computed the similarities between genes using LSA algo-

rithm, and divided the similar cardiovascular disease (CVD) association genes into different

clusters. [36] applied the latent factorization model (LFM) to predict the genes related to dis-

eases by representing the relationship between genes and diseases with the gene-disease associ-

ation matrix [37, 38]. [39] employed LSA to visualize gene expression experiments and defined

an asymmetric similarity measure of association for genes by using the correspondence word-

gene document-experiment. [40] presented a text mining approach based on LSA for prioriti-

zation, clustering and functional annotation of miRNAs.

Nevertheless, although LSA yields promising similar results and provides an effective solu-

tion to above applications, however, lots of unnecessary operations are involved in similarity

computation and candidate check during on-line query processing, which make it expensive

in terms of time cost and cannot efficiently response the query request especially when the

dataset grows large.

Some optimization techniques on LSA have been developed recently. [41] proposed a faster

optimization algorithm for solving the Non-negative Sparse Latent Semantic Analysis

(NN-Sparse LSA), and implemented the parallel version of the fast NN-Sparse LSA algorithm

by parallel programming framework of the Compute Unified Device Architecture (CUDA).

[42] proposed an on-line belief propagation for PLSA to handle big data streams by splitting

the data stream into a set of small segments and uses the estimated parameters of previous seg-

ments to calculate the gradient descent of the current segment. [43] proposed a randomized

SVD algorithm that scales the original matrix to a small matrix by sampling a constant number

of rows or columns of the matrix, and the SVD of the original matrix is derived approximately

by computing the SVD of the small matrix. [44] proposed an incremental SVD algorithm,

which can update the SVD of a given matrix dynamically by adding rows and columns of data

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 2 / 23

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0177523

without re-computing the SVD result. [45] proposed an algorithm for incrementally comput-

ing the left singular vectors of SVD result by exploiting the relationship between the QR-

decomposition and the SVD. QUIC-SVD [46] provides an algorithm which producing the

approximation of the whole-matrix SVD based on a sampling mechanism called the cosine

tree, and provides speedups of several orders of magnitude over exact SVD. [47, 48] proposed

an algorithm for accurately computation of SVD by inhering the high accuracy properties of

the Jacobi algorithm [49]. [50] introduced a bi-iteration type subspace tracker for updating

SVD approximation of the cross-correlation matrix of dimension N × M. [51] designed a

secure, correct, and efficient protocols for outsourcing the SVD of a malicious cloud. [52] pro-

posed an algorithm for extremely fast dimensionality reduction by employing the Gaussian-

based random projection and a Hadamard-based random projection. However, the above

approaches mainly focus on improving the efficiency in the pre-computation stage, few of

them pay attention to the efficiency problem of on-line query processing.

In this paper, we study the efficiency problem of on-line query processing for LSA, towards

efficiently searching the similar documents in large dataset. We rewrite the similarity equation

of LSA combined with an intermediate value called partial similarity, and divide the similarity

computation into two steps: the first step is to compute the partial similarities, and the second

step is to compute the similarities between query and candidate documents based on the par-

tial similarities. The partial similarities are computed in the off-line stage and stored in a

designed index called partial index. For reducing the searching space during query processing,

we give an approximate form of similarity equation, and then develop an efficient algorithm

for building partial index, which skips the partial similarities lower than a given threshold θ.

The similarities between query and candidate document is computed in the on-line stage, and

an efficient algorithm called ILSA is developed for supporting fast on-line query processing

through searching similar documents from the partial index. For a given query of keywords,

we first transform it into a pseudo document vector and then compute the similarities between

query and candidate documents by accumulating the partial similarities obtained from the

partial index. ILSA accesses only the partial index nodes corresponds to non-zero entries in

the pseudo document vector, which prunes candidate documents that are not promising and

reduces the unnecessary operations on similarity computation that make little contribution to

similarity scores. By extensive mathematical analysis, we give the maximal upper bound of the

difference between ILSA and naive LSA under threshold θ. Extensive experiments through

comparison with LSA have been done, which demonstrate the efficiency and effectiveness of

our proposed algorithm.

Methods

Preliminaries

Before we discuss further on LSA, we first list the definition of correlation matrix of term-

document for the subsequent discussions.

Definition 1 (Correlation Matrix of Term-Document). A Correlation Matrix of Term-
Document is formalized as a M × N matrix CM × N, where M is size of term set T and N is the size
of document set D. In which, the entry Cti ;dj

represents the correlation between term ti and docu-
ment dj, which is initialized as the number of times that term ti occurs in document dj.

LSA maps each document into a M-dimension vector and forms a correlation matrix of

term-document C. Unlike precise matching method, the matrix C is decomposed by SVD, that

compresses matrix C into a new low-dimension space to remove the noise terms. SVD can not

only reduce the scale of the data, but also find the underlying relationship between terms. Dur-

ing the on-line query processing, the input terms are firstly transform into a query vector of

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 3 / 23

https://doi.org/10.1371/journal.pone.0177523

pseudo document, and then LSA uses cosine coefficient to compute the similarity between

query vector and the low-dimension vector corresponds to each document over the decompo-

sition result of matrix C. The candidate documents are sorted according to the corresponding

similarities, and then returned to current user. Besides cosine, other measure can also be used

for computing similarity, such as Jaccard coefficient and dot product, and without loss of gen-

erality we choose cosine to measure the similarity. Specifically, the procedure of LSA can be

summarized as follows.

1. Building term-document correlation matrix C by analyzing document set D. For each docu-

ment di 2 D, transform it into vector form Vi(v1, v2, . . ., vM), where vj refers to Cti;dj as

described in Definition 1, that is computed by counting the number of times that term tj
occurs in document di. Precisely, vj is usually defined by the normalized TF�IDF (term fre-

quency inverse � document frequency) model [53, 54] that is widely used for measuring the

term weights in a document set [55, 56]. Specifically, the entry Cti;dj is assigned as the

TF�IDF of term ti that occurs in document dj. After normalizing vector Vi for each docu-

ment di 2 D, the term-document correlation matrix C is represented as:

C ¼ ðV1;V2; . . . ;VNÞ ð1Þ

2. Singular value decomposition (SVD) of term-document correlation matrix C. For a term-

document correlation matrix C, there exists a decomposition such that

C ¼ USVT ð2Þ

where U is an M × M matrix, the column of U is the orthogonal vector of matrix CCT, and

CT is the transpose of C; S is an M × N matrix, Si;i ¼
ffiffiffiffi
li

p
, and λi is the i-th biggest eigen-

value of CCT; and V is an N × N matrix, the vector of V is the orthogonal vector of matrix

CT C, and VT is the transpose of V.

3. Get low rank approximation matrix of matrix C. The r-dimension rank approximation

matrix of C can be described as:

Cr ¼ UrSrV
T
r ð3Þ

where Ur and Vr are calculated by discarding the columns of U and V from r + 1 on, Sr are

calculated by discarding both columns and rows from r + 1 on, and r�M. The noisy

terms can be removed by setting r, but some informative terms would be ignored when r is

set too small. On the other hand, when r is set too big, some noisy terms would be involved.

4. On-line query processing for input keywords. Given a query Q of keywords, the procedure

of on-line query processing is described as follows. First, view this as a vector of a mini doc-

ument and transform it into a pseudo document vector Q̂ of low-dimensional space accord-

ing to the result of SVD, described as:

Q̂ ¼ S� 1

r UT
r Q ð4Þ

where S� 1
r is the inverse matrix of Sr. Second, compute the similarity between Q and docu-

ment di 2 D by the cosine value between Q̂ and the column vector VT(:, i), described as:

simðQ;diÞ ¼ cosineðQ̂;VT
r ð:; diÞÞ ¼

P
tj
Q̂ðtjÞVT

r ðtj; diÞ
ffiP

tj
ðQ̂ðtjÞÞ

2
q ffiP

tj
ðVT

r ðtj; diÞÞ
2

q ð5Þ

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 4 / 23

https://doi.org/10.1371/journal.pone.0177523

And finally, find top k most similar documents ranking from the document set such that

sim(Q, di)� sim(Q, dx) for di in the returning list and dx not, and then sort them with simi-

larities descending in the returning list.

Rewrite LSA similarity equation

During on-line query processing of LSA, two factors that increase the computational cost are

involved. First, the more candidates to check, the more time the algorithm will take; and sec-

ond, when computing the similarity between the query and each candidate, the more terms

related to the candidate, the more time will take. Therefore, the intuition to speed up the search

is to prune the candidates that are not promising and reduce the unnecessary operations that

make little contribution to similarity scores.

For optimizing the on-line query processing, we next rewrite the similarity equation of LSA

equivalently based on Eq (5), described as:

simðQ;diÞ ¼

P
tj
Q̂ðtjÞPartialSimðdi; tjÞ

ffiP
tj
ðQ̂ðtjÞÞ

2
q ð6Þ

where PartialSim(di, tj) is defined as:

PartialSimðdi; tjÞ ¼
VT

r ðtj; diÞ
ffiP

tj
ðVT

r ðtj; diÞÞ
2

q ð7Þ

which is called the partial similarity between document di and term tj. Based on this equation,

the LSA similarity computation can be divided into two steps: the first step is to compute the

partial similarities between documents and terms, and second step is to compute the similarity

scores based on the partial similarities.

Partial index

We next introduce an index, called partial index, for reducing the searching space of LSA. The

partial index used for storing the partial similarity scores in order to reduce the candidate size

and optimize similarity computation. The spiritual of the partial index is similar to the pruning

index proposed in our previous work in [57, 58]. An example of partial index is shown as

Fig 1, where TermID denotes the term ID, DocID denotes document ID, PartialSim denotes

the partial similarity, and the two-tuple hDocID,PartialSimi describes that the partial similarity

between a document DocID and a term TermID that the document DocID belongs to is Par-

tialSim. For example, in the set of “3276”, the h7181, 0.003i describes that the partial similarity

between document “7181” and term “3276” is 0.003, and in the set of “7801”, the h3058, 0.013i

describes that the partial similarity between document “3058” and term “7801” is 0.013.

Fig 1. Example of partial index.

https://doi.org/10.1371/journal.pone.0177523.g001

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 5 / 23

https://doi.org/10.1371/journal.pone.0177523.g001
https://doi.org/10.1371/journal.pone.0177523

Formally, the partial index is represented by a set I ¼ [jTji¼1fIðtjÞg, where I(tj) = {hdi, Partial-

Sim(di, tj)i|di 2 D^hdi, PartialSim(di, tj)i 6¼ 0}. In which, hdi, PartialSim(di, tj)i is a node of the

partial index corresponds to the 2-tuple of hDocID, PartialSimi form. Specifically, di is the doc-

ument corresponds to DocID and PartialSim(di, tj) is the partial similarity between document

di and term tj corresponds to PartialSim.

Approximate form of partial index

In fact, not all the terms are informative to represent the documents. For example, “SimRank:

A Measure of Structural-Context Similarity” is a paper on the topic of structural-based similar-

ity measure, so it is usually high relevant to the terms “SimRank”,“link”, “LinkClus”, “similar-

ity” and etc., and low or not relevant to terms “phisical”, “astronomy” and etc. During on-line

query processing, the lower or not relevant terms would decrease the on-line query processing

efficiency and even affect the quality of returned rankings.

For removing the items corresponds to terms of lower informative involved in candidate

check and similarity computation, we give an approximate form of ILSA similarity equation,

defined as:

simyðQ; diÞ ¼

P
tj
Q̂ðtjÞPartialSimyðdi; tjÞ

ffiP
tj
ðQ̂ðtjÞÞ

2
q ð8Þ

where PartialSimθ(di, tj) is the partial similarity under threshold θ between document di and

term tj, defined as:

PartialSimyðdi; tjÞ ¼
VT

r ðtj; diÞ
ffiP

tj
ðVT

r ðtj; diÞÞ
2

q ð9Þ

if right-hand� θ, PartialSimθ(di, tj) = 0 for otherwise.

Under the threshold θ, we next consider removing the items corresponds to terms of

lower informative from the partial index. Specifically, for a 2-tuple hdi,PartialSim(di, tj)i in

the corresponding partial index, we remove it from the partial index if the partial similarity

PartialSimθ(di, tj) is lower than θ. The partial index under threshold θ is denoted by a set

Iy ¼ [
jTj
i¼1fIyðtjÞg, where Iθ(tj) = {hdi,PartialSimθ(di, tj)i|di 2 D ^ PartialSimθ(di, tj) 6¼ θ},

i.e., only the 2-tuples of non-zero partial similarities are contained in Iθ(tj). In which,

hdi,PartialSimθ(di, tj)i is a node of the partial index under threshold θ corresponds to the

2-tuple of hDocID,PartialSimi form, specifically, di is a document corresponds to DocID and

PartialSimθ(di, tj) is the partial similarity under threshold θ between document di and term tj
corresponds to PartialSim.

Fig 2 shows a partial index obtained from Fig 1 by setting threshold θ = 0.005. From this

figure, we find that the index size is reduced after removing the 2-tuples h7181, 0.003i,

h1003, 0.001i and h9091, 0.001i correspond to the partial similarities lower than 0.005.

Index building algorithm

The procedure for building partial index is shown in Algorithm 1. The input of this algorithm

is matrix Vr, document D and threshold θ, and the output is the partial index Iθ. In the initiali-

zation step, the partial index Iθ is set as ;. For each term tj 2 ftjjjVT
r ðtj :Þj 6¼ 0g, we create node

Iθ(tj) initialized as ; in the partial index Iθ. And for each document di 2 D, we compute Partial-

Simθ(di, tj) and create node hdi,PartialSimθ(di, tj)i in Iθ(di) if PartialSimθ(di, tj)� θ.

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0177523

Algorithm 1 Algorithm for building partial index.
Input:
MatrixVr, documentset D, thresholdθ;

Output:
PartialindexIθ;

1: InitializeIθ as ;;
2: for tj 2 ftjjjVT

r ðtj :Þj 6¼ 0g do
3: Iθ(tj) ;;
4: Iθ Iθ [{Iθ(tj)};
5: for di 2 D do

6: PartialSimyðdi; tjÞ
VT

r ðj;iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
ðVT

r ðj;iÞÞ
2

q ;

7: if PartialSimθ(di, tj)� θ then
8: Iθ(tj) Iθ(tj) [{hdi,PartialSimθ(di, tj)i};
9: end if
10: end for
11: end for
12: returnIθ;

Next we analyze the time complexity of this algorithm. In the initialization stage, the time

cost for creating an empty set Iθ is derived as O(1). For each term tj, the time cost for comput-

ing partial similarities between di and tj for all di 2 D is derived as O(N). Since only the partial

similarities bigger than θ are considering for creating index nodes, so the total time cost for

creating hdi,PartialSimθ(di, tj)i in Iθ(tj) for all di 2 D is derived as Oðεtj
NÞ, where εtj

is ratio

of the partial similarities lower than θ between term tj and all document di 2 D. And then

the total time cost for computing partial similarities and creating index nodes is derived as

O((1 + �)N). And finally, the time cost of this algorithm is derived as O(1 + (1 + �)rN), where �

is average εti
for all tj 2 ftjjjVT

r ðtj :Þj 6¼ 0g. The time cost of this algorithm is determined by

the size of matrix VT
r and threshold θ. Usually, a higher threshold θ would reduce the searching

space of ILSA, and subsequently lead to lower time cost of on-line query processing, since the

partial similarities corresponds to lower partial similarities are skipped when building partial

index.

Index-based LSA (ILSA)

The on-line query processing procedure of the Index-based LSA (ILSA) is shown in Algorithm

2. For a given query Q, we transform it into a pseudo document vector Q̂ and initialize hC;Si
by setting both C and S as ;, where C is the set candidate documents, S is the set of similarities

between query and candidates, and the element SðdiÞ in S is the similarity between query Q
and document di. And then, we search the candidate documents and compute the similarities

between query and candidate documents by accumulating the partial similarities obtained

from the partial index nodes corresponds to non-zero entries in Q̂. Specifically, for each

term tj 2 ftjjQ̂ðtjÞ 6¼ 0g, we get each document hdi,PartialSimθ(di, tj)i 2 Iθ(tj), obtain partial

Fig 2. Example of partial index under θ = 0.005.

https://doi.org/10.1371/journal.pone.0177523.g002

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 7 / 23

https://doi.org/10.1371/journal.pone.0177523.g002
https://doi.org/10.1371/journal.pone.0177523

similarity PartialSimθ(di, tj) from hdi,PartialSimθ(di, tj)i, and then update the similarity

between Q and di by accumulating
Q̂ðjÞPartialSimyðdi ;tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
ðQ̂ðjÞÞ2

q . GetSortedCenter(k, Q) is the function used

for obtaining the k most similar documents according to hC;Si, the basic process of which is

that firstly get the k most similar nodes from C according to their corresponding similarities in

S, then sort and return them.

Algorithm 2 ILSA algorithm.
Input:
MatrixU, X ¼ S� 1

r UT
r , index Iθ, queryQ and parameterk;

Output:
Top-rmost similarsorteddocuments;

1: Initialize hC;Si by setting C and S as ;;
2: Q̂ XQ;
3: For tj 2 ftjjQ̂ðtjÞ 6¼ 0g do
4: For hdi,PartialSimθ(di, tj)i 2 Iθ(tj) do
5: obtainPartialSimθ(di, tj) from hdi,PartialSimθ(di, tj)i;
6: if di 2 C then

7: SðdiÞ SðdiÞ þ
Q̂ðjÞPartialSimyðdi ;tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
ðQ̂ðjÞÞ2

q ;

8: else

9: SðdiÞ
Q̂ðjÞPartialSimyðdi ;tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
ðQ̂ðjÞÞ2

q ;

10: C C [fdig;
11: S S [fSðdiÞg;
12: end if
13: end for
14: end for
15: returnGetSortedCenterðk; hC;SiÞ;

The time cost of this algorithm is affected by the following three aspects. First is the time

cost for transforming the given query into pseudo document, derived as O(rN). Second is the

time cost for choosing top k most similar documents, derived as Oð
P

tj2ftjjQ̂ðtjÞ6¼0g
jIyðtjÞj þkjCjÞ.

And third is the time cost for sorting these k documents, denoted by O(Γ(k)), that is depends

on the sort algorithm and we use selection sort in our research. So the total time cost of this

algorithm is derived as OðrN þ
P

tj2ftjjQ̂ðtjÞ6¼0g
jIyðtjÞj þ kjCj þ GðkÞÞ.

In ILSA algorithm, we first get the non-zero entries from vector Q̂, and then check

the candidates in the partial index corresponds to the non-zero entries. Therefore,

the candidate set is derived as C ¼ [tj2ftjjQ̂ðtjÞ6¼0gCðtjÞ, where CðtjÞ is the sub candidate set

corresponds to term tj. We access only the 2-tuple hdi,PartialSimθ(di, tj)i 2 Iθ(tj) in partial

index Iθ during on-line query processing, so the sub candidate set CðtjÞ is derived as

CðtjÞ ¼ fdijhdi;PartialSimyðdi; tjÞi 2 IyðtjÞg, and subsequently the candidate set C is derived

as C ¼ [tj2ftjjQ̂ðtjÞ6¼0gfdijhdi;PartialSimyðdi; tjÞi 2 IyðtjÞg. When giving a higher threshold θ,

the accumulation operations for computing similarities would be reduced, which conse-

quently reduces the time cost. In this case, the size of CðtjÞ would become smaller, and

hence the size of C would have a downward trend. So the time cost for choosing the r centers

from C would become lower as well. Note that the size of CðtjÞ is equal to the size of Iθ(tj).

Lemma 1 For given document di 2 D, term ti 2 T and threshold θ, we have 0� PartialSim(di, tj)
− PartialSimθ(di, tj)� θ.

Proof. By Eqs (7) and (9), we have PartialSim(di, tj) = PartialSimθ(di, tj) when

PartialSim(di, tj)> θ, which gives PartialSim(di, tj) − PartialSimθ(di, tj) = 0; and when

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 8 / 23

https://doi.org/10.1371/journal.pone.0177523

PartialSim(di, tj)� θ, we have PartialSimθ(di, tj) = 0, which gives PartialSim(di, tj) −
PartialSimθ(di, tj) = PartialSim(di, tj)� θ.

Theorem 1 For given query Q, document di 2 D and threshold θ, we have 0� sim(Q, di)

− simθ(Q, di)� θ.

Proof. For given query Q, document di 2 D and threshold θ, by Eqs (6) and (8), we have

simðQ;diÞ � simyðQ; diÞ ¼

P
tj
Q̂ðtjÞPartialSimðdi; tjÞ

ffiP
tj
ðQ̂ðtjÞÞ

2
q �

P
tj
Q̂ðtjÞPartialSimyðdi; tjÞ

ffiP
jðQ̂ðjÞÞ

2
q

¼

P
tj
Q̂ðtjÞ

ffiP
tj
ðQ̂ðjÞÞ2

q ðPartialSimðdi; tjÞ � PartialSimyðdi; tjÞÞ

By Lemma 1, we have 0� PartialSim(di, tj) − PartialSimθ(di, tj)� θ, so sim(Q, di) − simθ(Q, di)

� 0 and

simðQ;diÞ � simyðQ; diÞ �

P
tj
Q̂ðtjÞ

ffiP
tj
ðQ̂ðtjÞÞ

2
q � y ¼

P
tj
Q̂ðtjÞ � y

ffiP
tj
ðQ̂ðtjÞÞ

2
q ffiffiffiffiffi

y
2

p � y � y

Fig 3. NDCG on varying θ.

https://doi.org/10.1371/journal.pone.0177523.g003

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0177523.g003
https://doi.org/10.1371/journal.pone.0177523

Theorem 1 gives the maximal difference of the maximal upper bound between LSA and

ILSA, which is under control by tuning threshold θ.

Results

In this section, some preliminary experimental results are reported in real datasets. Experi-

ments were done on a 2.90 GHz Intel(R) Core i7-3520M CPU with 8 GB main memory, run-

ning Windows 7 SP1. All algorithms were implemented in C++ and compiled by using Visual

Studio C++. Net 2010.

Datasets and evaluation

The dataset used in our experiments is the set of the papers that are selected from DBLP

(http://dblp.uni-trier.de/). We only keep entries of the snapshot that correspond to the papers

published before March 10th, 2013. The titles of the papers that are published in SIGMOD,

VLDB, SIGIR, CIKM, ICDE and EDBT conferences from 2004 to 2013 are selected. From

this dataset, we choose the titles of 8,884 papers to test our algorithm and the comparisons,

which contains 8,572 terms after removing the stop words, and the values of entries in term-

document matrix is assigned by the TF�IDF model [53, 54].

Fig 4. NDCG on varying k.

https://doi.org/10.1371/journal.pone.0177523.g004

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 10 / 23

http://dblp.uni-trier.de/
https://doi.org/10.1371/journal.pone.0177523.g004
https://doi.org/10.1371/journal.pone.0177523

We use the NDCG (Normalized Discounted Cumulative Gain) [59] to evaluate the effec-

tiveness of returned ranking list. The NDCG@k (NDCG value at the k-th position) of the rank-

ing result is computed by the exact LSA scores. Formally, NDCG@k is defined as:

NDCG@k¼
DCG@k
IDCG@k

ð10Þ

where DCG@k (Discounted Cumulative Gain at k) is defined as:

DCG@k¼

RELðv; viÞ; if i < 2

DCG@iþ
Xk

i¼2

RELðv; viÞ

log 2i
; if i � 2

8
><

>:
ð11Þ

where i denotes position of vi in the returned list, REL(v, vi) denotes the similarity score of the

naive LSA between v and vi.

Efficiency comparison includes the running time for building index, execution time of on-

line query processing. In [60], extensive experiments are done in large datasets to test the per-

formance of LSA. The results suggest that, a value r� 400 provides the best performance, and

there is something of an “island of stability” in the r = 300 to 500 range. According to this

Fig 5. NDCG on varying r.

https://doi.org/10.1371/journal.pone.0177523.g005

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 11 / 23

https://doi.org/10.1371/journal.pone.0177523.g005
https://doi.org/10.1371/journal.pone.0177523

conclusion, we set parameter r = 400 to test both LSA and ILSA in our experiments. Other

parameter settings of the comparison method are implemented strictly following the literature.

We input 10 queries that consists of two keywords to test the NDCG value and the time cost of

on-line query processing. In order to accurately test the execution time of query processing,

we process each query with 10 runs, and then average the total time cost.

Effectiveness

In this section, we observe effectiveness of ILSA through testing the NDCG value by setting dif-

ferent threshold θ, and then choose different k and r to observe the NDCG value on a fixed θ.

Fig 3 shows NDCG values on varying threshold θ and the interval is 0.001, where k is set as

100. From θ = 0 to 0.010, we observe that NDCG value decreases with θ increasing, this is

because higher θ would lead to more accuracy loss, which is consistent with our previous dis-

cussions in Theorem 1. We also observe that the accuracy loss of ILSA before θ = 0.01 is not

too much, which suggests a good ranking quality of our approach.

Fig 4 shows the NDCG change on different position k, where θ = 0.001, 0.005, 0.010, and

ILSA(0.001), ILSA(0.005), ILSA(0.010) represent the ILSA algorithms at θ = 0.001, 0.005, 0.010

Fig 6. Query processing time on varying θ.

https://doi.org/10.1371/journal.pone.0177523.g006

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 12 / 23

https://doi.org/10.1371/journal.pone.0177523.g006
https://doi.org/10.1371/journal.pone.0177523

respectively. With k increasing, we find that the curve of ILSA(0.001) is nearly horizontal,

since the accuracy loss is very minor; and the NDCG values of ILSA(0.005), ILSA(0.010)

shown a upward generally as k increases, this is because some similar documents are lost when

setting a higher threshold θ. And these similar documents are obtained again as k increases,

which increases the accuracy loss. At each position k, the NDCG value of ILSA(0.001) is always

close to 1, and ILSA(0.005) is lower than ILSA(0.001) and higher than ILSA(0.010), since

higher θ leads to more accuracy loss, which is consistent with the result in Fig 3. The NDCG of

both LSA and ILSA(0) are always 1 at each position k, which are not repeatedly shown in our

experiment.

Fig 5 shows the NDCG change of ILSA on varying rank r, where k = 100 and θ = 0.001.

From this result, we observe that the NDCG increases rapidly from r = 100 to 350, this is

because more informative terms are contained in similarity computation when increasing r,

which consequently increases the effectiveness of the returned rankings. From r = 350 to 450,

the NDCG scores are relatively higher and stable, since the number of informative terms are

suitable and the noisy terms are not too many. After r = 450, the NDCG value shows a down-

ward trend, since the number of noisy terms are increased when r is set too big, which also

affects the returned rankings. This result demonstrates that the returned rankings of ILSA are

Fig 7. Query processing time on varying r.

https://doi.org/10.1371/journal.pone.0177523.g007

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 13 / 23

https://doi.org/10.1371/journal.pone.0177523.g007
https://doi.org/10.1371/journal.pone.0177523

affected evidently by r, and the effectiveness would be decreased when r is set too big or too

small.

Efficiency

Fig 6 shows the execution time of on-line query processing on varying θ, where k = 100. From

this result, we observe that the time cost decreases with θ increasing, this is because the index

nodes corresponds to the partial similarities lower than threshold θ are skipped when building

partial index, and subsequently the searching space of on-line query processing is reduced.

Fig 7 shows the time cost of on-line query processing on varying rank r, where k = 100 and

θ = 0.001. We observe that the execution time of on-line query processing increases with r
increasing, this is because more operations on transformation from the query into pseudo doc-

ument are involved during on-line query processing. And the incremental time becomes

smaller as gradually as r increases, since the size of the document set corresponds to each term

in partial index is reduced, which reduces the operations for checking candidates during on-

line query processing.

Fig 8 shows the execution time of on-line query processing on varying k, where θ = 0, 0.001,

0.005, 0.010 and k = 50, 100, 150, . . ., 450. From this result, we observe that the incremental

Fig 8. Query processing time on varying k.

https://doi.org/10.1371/journal.pone.0177523.g008

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0177523.g008
https://doi.org/10.1371/journal.pone.0177523

time is very minor as k increases, this is because the time cost of on-line query processing is

mainly affected by the similarity computation between query and candidates and the transfor-

mation from the query into the pseudo document vector. Both of these two steps account for a

large proportion of the time cost during on-line query processing. ILSA(0.010) is the most effi-

cient method, this is because the searching space is reduced during on-line query processing

when setting a higher θ, which is consistent with the result in Fig 6. Generally, our proposed

ILSA is more efficient than LSA at different position k, which demonstrates the improvement

on efficiency of our proposed ILSA.

Fig 9 shows the time cost for building partial index on varying threshold θ. We observe that

the time cost for building partial index decreases with threshold θ increasing, this is because

the operations for creating index nodes are saved by skipping the partial similarities lower

than θ, which is consistent with the previous discussions on complexity analysis. This result

demonstrates that the additional time cost in preprocessing stage for building partial index is

very low, which would benefit some researches on semantic analysis in real applications.

Fig 10 shows the time cost for building partial index on varying rank r, where k = 100 and

θ = 0.001. From this figure, we find that the time cost of index building increases linearly with

r increasing, since a bigger r can increase the size of SVD matrices and consequently increase

Fig 9. Index building time on varying θ.

https://doi.org/10.1371/journal.pone.0177523.g009

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 15 / 23

https://doi.org/10.1371/journal.pone.0177523.g009
https://doi.org/10.1371/journal.pone.0177523

access operations to these matrices, which is consistent with the analysis on time complexity in

Algorithm 1.

Scalability

Fig 11 shows the execution time of on-line query processing on different document scale N,

where θ = 0, 0.001, 0.005, 0.010 respectively. We observe that the query processing time

increases when document scale grows large, since the incremental documents increase the

searching space over partial index during on-line query processing. We also observe that the

execution time of ILSA(0) is higher than others, and ILSA(0.010) is the most efficient one,

since the operations for computing similarities and checking candidates are reduced by setting

a higher threshold θ.

Fig 12 shows the index building time on different document scale N, where θ = 0, 0.001,

0.005, 0.010 respectively. From this figure, we observe that the time cost for building index

increases linearly with N increasing, since more access operations on matrices of SVD are

involved in the index building process. In practice, although the running time is significantly

higher than the query processing time at each document scale, it is acceptable in real applica-

tions since the index is built in off-line stage.

Fig 10. Index building time on varying r.

https://doi.org/10.1371/journal.pone.0177523.g010

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0177523.g010
https://doi.org/10.1371/journal.pone.0177523

Fig 13 shows the NDCG change on different document scale N, where θ = 0.001, 0.005,

0.010. We find that the NDCG value of ILSA(0.001) is always close to 1 on varying N and the

change is minor, which shows good performance when searching similar documents. The

NDCG value of ILSA(0.005) shows a minor downward trend with N increasing, since the can-

didate set increases when increasing document scale, which subsequently increases the num-

ber of similar documents to the given query, but the similar documents should be returned are

lost when setting a bigger θ. The downward trend of ILSA(0.010) is more evident than both

ILSA(0.001) and ILSA(0.005) as N increases, since θ = 0.010 leads to more accuracy loss when

compared to θ = 0.001, 0.005. We also find that the curve of ILSA(0.010) of is evidently lower

than both ILSA(0.001) and ILSA(0.005), this is because the effectiveness of the returned rank-

ings would be decreased when setting a higher threshold θ, which is consistent with the result

in Fig 3.

Discussion

This paper introduced an index-based query processing algorithm ILSA for efficiently find-

ing similar documents in large document datasets. Compared to the LSA algorithm, ILSA

searches the documents over a designed partial index that is derived from the SVD of the

Fig 11. On-line query processing time on varying N.

https://doi.org/10.1371/journal.pone.0177523.g011

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 17 / 23

https://doi.org/10.1371/journal.pone.0177523.g011
https://doi.org/10.1371/journal.pone.0177523

term-document matrix, and the searching space can be reduced by skipping the partial simi-

larities lower than a given threshold. ILSA reduces the time cost of on-line query processing

by pruning the candidate documents that are not promising and skipping the operations

that make little contribution to similarity scores, which shows better performance than LSA,

and the accuracy loss is under controlled by tuning the threshold. Empirical studies on

DBLP through comparison with LSA demonstrate the effectiveness and efficiency of our

approach.

There are some directions in our future work. First, ILSA is on the static datasets, and the

dynamic datasets are not considered. Accordingly, we will study on how to building a dynam-

ical partial index for the dynamic term set and document set by integrating existing incremen-

tal LSA algorithm [61, 62] and incremental SVD algorithm [63–65]. Second, our approach

does not pay attention to the transformation process from query into pseudo document which

involves lots of unnecessary operations on entries of lower values and increases the execution

time of on-line query process. To further reduce the time cost of on-line query process, we

plan to optimize the transformation process by skipping the entries of lower values in the SVD

matrices, and further optimize the similarity computation between query and candidate docu-

ments by skipping the entries of lower values in the vector of pseudo document.

Fig 12. Index building time on varying N.

https://doi.org/10.1371/journal.pone.0177523.g012

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 18 / 23

https://doi.org/10.1371/journal.pone.0177523.g012
https://doi.org/10.1371/journal.pone.0177523

Acknowledgments

This work was supported by Natural Science Foundation of Shanghai grant 16ZR14228, http://

www.stcsm.gov.cn/; Innovation Program of Shanghai Municipal Education Commission

grants 15ZZ073 and 15ZZ074, http://www.shmec.gov.cn/; and Training Project of University

of Shanghai for Science and Technology grant 16HJPY-QN04, http://www.usst.edu.cn/. The

funders had no role in study design, data collection and analysis, decision to publish, or prepa-

ration of the manuscript.

Author Contributions

Conceptualization: MZ PL.

Data curation: MZ PL.

Formal analysis: MZ PL.

Funding acquisition: MZ WW.

Investigation: MZ PL.

Fig 13. NDCG on varying N.

https://doi.org/10.1371/journal.pone.0177523.g013

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 19 / 23

http://www.stcsm.gov.cn/
http://www.stcsm.gov.cn/
http://www.shmec.gov.cn/
http://www.usst.edu.cn/
https://doi.org/10.1371/journal.pone.0177523.g013
https://doi.org/10.1371/journal.pone.0177523

Methodology: MZ PL WW.

Project administration: MZ PL WW.

Resources: MZ PL WW.

Software: MZ PL.

Supervision: WW.

Visualization: MZ.

Writing – original draft: MZ PL WW.

References

1. Deerwester SC, Dumais ST, Landauer TK, Furnas GW, Harshman RA. Indexing by Latent Semantic

Analysis. JASIS. 1990; 41(6):391–407.

2. Zhang W, Yoshida T, Tang X. TFIDF, LSI and multi-word in information retrieval and text categorization.

In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Singapore,

12–15 October 2008; 2008. p. 108–113.

3. Landauer TK, Foltz PW, Laham D. An Introduction to Latent Semantic Analysis. Discourse Processes.

1998; 25:259–284. https://doi.org/10.1080/01638539809545028

4. Mirzal A. Clustering and latent semantic indexing aspects of the singular value decomposition. IJIDS.

2016; 8(1):53–72. https://doi.org/10.1504/IJIDS.2016.075790

5. Hofmann T. Probabilistic Latent Semantic Indexing. In: SIGIR; 1999. p. 50–57.

6. Hofmann T. Probabilistic Latent Semantic Analysis. CoRR. 2013;abs/1301.6705.

7. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. Journal of Machine Learning Research. 2003;

3:993–1022.

8. Anandkumar A, Foster DP, Hsu DJ, Kakade SM, Liu Y. A Spectral Algorithm for Latent Dirichlet Alloca-

tion. Algorithmica. 2015; 72(1):193–214. https://doi.org/10.1007/s00453-014-9909-1

9. Chen J, Li K, Zhu J, Chen W. WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation.

PVLDB. 2016; 9(10):744–755. https://doi.org/10.14778/2977797.2977801

10. Tang L, Peng S, Bi Y, Shan P, Hu X. A New Method Combining LDA and PLS for Dimension Reduction.

PLOS ONE. 2014; 9(5):e96944. https://doi.org/10.1371/journal.pone.0096944 PMID: 24820185

11. Latent Factor Models and Matrix Factorizations. In: Encyclopedia of Machine Learning; 2010. p. 571.

12. Luo X, Zhou M, Xia Y, Zhu Q, Ammari AC, Alabdulwahab A. Generating Highly Accurate Predictions for

Missing QoS Data via Aggregating Nonnegative Latent Factor Models. IEEE Trans Neural Netw Learn-

ing Syst. 2016; 27(3):524–537. https://doi.org/10.1109/TNNLS.2015.2412037 PMID: 25910255

13. Allioua S, Boufaïda Z. Knowledge Representation Using LSA and DRT Rules for Semantic Search of

Documents. In: Networked Digital Technologies—4th International Conference, NDT 2012, Dubai,

UAE, April 24–26, 2012. Proceedings, Part I; 2012. p. 297–306.

14. Layfield C, Azzopardi J, Staff C. Experiments with Document Retrieval from Small Text Collections

Using Latent Semantic Analysis or Term Similarity with Query Coordination and Automatic Relevance

Feedback. In: Semantic Keyword-Based Search on Structured Data Sources—COST Action IC1302

Second International KEYSTONE Conference, IKC 2016, Cluj-Napoca, Romania, September 8–9,

2016, Revised Selected Papers; 2016. p. 25–36.

15. An X, Huang JX. Boosting novelty for biomedical information retrieval through probabilistic latent

semantic analysis. In: The 36th International ACM SIGIR conference on research and development in

Information Retrieval, SIGIR’13, Dublin, Ireland—July 28–August 01, 2013; 2013. p. 829–832.

16. Ghali BE, Qadi AE. Context-aware query expansion method using Language Models and Latent

Semantic Analyses. Knowl Inf Syst. 2017; 50(3):751–762.

17. Nugumanova A, Bessmertny I. Applying the Latent Semantic Analysis to the Issue of Automatic Extrac-

tion of Collocations from the Domain Texts. In: Knowledge Engineering and the Semantic Web—4th

International Conference, KESW 2013, St. Petersburg, Russia, October 7–9, 2013. Proceedings; 2013.

p. 92–101.

18. Nath C, Albaghdadi MS, Jonnalagadda SR. A Natural Language Processing Tool for Large-Scale Data

Extraction from Echocardiography Reports. PLOS ONE. 2016; 11(4):e0153749. https://doi.org/10.

1371/journal.pone.0153749 PMID: 27124000

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 20 / 23

https://doi.org/10.1080/01638539809545028
https://doi.org/10.1504/IJIDS.2016.075790
https://doi.org/10.1007/s00453-014-9909-1
https://doi.org/10.14778/2977797.2977801
https://doi.org/10.1371/journal.pone.0096944
http://www.ncbi.nlm.nih.gov/pubmed/24820185
https://doi.org/10.1109/TNNLS.2015.2412037
http://www.ncbi.nlm.nih.gov/pubmed/25910255
https://doi.org/10.1371/journal.pone.0153749
https://doi.org/10.1371/journal.pone.0153749
http://www.ncbi.nlm.nih.gov/pubmed/27124000
https://doi.org/10.1371/journal.pone.0177523

19. Huang Y. Conceptually categorizing geographic features from text based on latent semantic analysis

and ontologies. Annals of GIS. 2016; 22(2):113–127. https://doi.org/10.1080/19475683.2016.1144648

20. Elghazel H, Aussem A, Gharroudi O, Saadaoui W. Ensemble multi-label text categorization based on

rotation forest and latent semantic indexing. Expert Syst Appl. 2016; 57:1–11. https://doi.org/10.1016/j.

eswa.2016.03.041

21. Franceschini A, Lin J, von Mering C, Jensen LJ. SVD-phy: improved prediction of protein functional

associations through singular value decomposition of phylogenetic profiles. Bioinformatics. 2016;

32(7):1085–1087. https://doi.org/10.1093/bioinformatics/btv696 PMID: 26614125

22. Zhang W, Xiao F, Li B, Zhang S. Using SVD on Clusters to Improve Precision of Interdocument Similar-

ity Measure. Comp Int and Neurosc. 2016; 2016:1096271:1–1096271:11. https://doi.org/10.1155/2016/

1096271 PMID: 27579031

23. Li C, Han J, He G, Jin X, Sun Y, Yu Y, et al. Fast computation of SimRank for static and dynamic infor-

mation networks. In: EDBT, Lausanne, Switzerland; 2010. p. 465–476.

24. Ghoshdastidar D, Dukkipati A. Spectral Clustering Using Multilinear SVD: Analysis, Approximations

and Applications. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Janu-

ary 25–30, 2015, Austin, Texas, USA.; 2015. p. 2610–2616.

25. Balouchestani M, Krishnan S. Advanced K-means clustering algorithm for large ECG data sets based

on a collaboration of compressed sensing theory and K-SVD approach. Signal, Image and Video Pro-

cessing. 2016; 10(1):113–120.

26. Wu X, Yang Z, Hu J, Peng J, He P, Zhou J. Diffusion-Weighted Images Superresolution Using High-

Order SVD. Comp Math Methods in Medicine. 2016; 2016:3647202:1–3647202:9. https://doi.org/10.

1155/2016/3647202 PMID: 27635150

27. Brand M. Fast Online SVD Revisions for Lightweight Recommender Systems. In: Proceedings of the

Third SIAM International Conference on Data Mining, San Francisco, CA, USA, May 1–3, 2003; 2003.

p. 37–46.

28. Guan X, Li C, Guan Y. Enhanced SVD for Collaborative Filtering. In: Advances in Knowledge Discovery

and Data Mining—20th Pacific-Asia Conference, PAKDD 2016, Auckland, New Zealand, April 19–22,

2016, Proceedings, Part II; 2016. p. 503–514.

29. Ntalianis KS, Doulamis AD. Event-complementing Online Human Life Summarization based on Social

Latent Semantic Analysis. In: VISAPP 2015—Proceedings of the 10th International Conference on

Computer Vision Theory and Applications, Volume 2, Berlin, Germany, 11–14 March, 2015.; 2015.

p. 611–622.

30. Dang A, Moh’d A, Islam A, Minghim R, Smit M, Milios EE. Reddit Temporal N-gram Corpus and its

Applications on Paraphrase and Semantic Similarity in Social Media using a Topic-based Latent

Semantic Analysis. In: COLING 2016, 26th International Conference on Computational Linguistics, Pro-

ceedings of the Conference: Technical Papers, December 11–16, 2016, Osaka, Japan; 2016. p.

3553–3564.

31. Kagie M, van der Loos M, van Wezel MC. Including item characteristics in the probabilistic latent

semantic analysis model for collaborative filtering. AI Commun. 2009; 22(4):249–265.

32. Yan M, Zhang X, Yang D, Xu L, Kymer JD. A component recommender for bug reports using Discrimi-

native Probability Latent Semantic Analysis. Information & Software Technology. 2016; 73:37–51.

https://doi.org/10.1016/j.infsof.2016.01.005

33. Park J, Kang M, Hur J, Kang K. Recommendations for antiarrhythmic drugs based on latent semantic

analysis with fc-means clustering. In: 38th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, August 16–20, 2016; 2016. p.

4423–4426.

34. Boulares M, Jemni M. Learning sign language machine translation based on elastic net regularization

and latent semantic analysis. Artif Intell Rev. 2016; 46(2):145–166. https://doi.org/10.1007/s10462-016-

9460-3

35. Wang CCN, Lee Y, Sheu PCY, Tsai JJP. Application of Latent Semantic Analysis to Clustering of Car-

diovascular Gene Ontology. In: 16th IEEE International Conference on Bioinformatics and Bioengineer-

ing, BIBE 2016, Taichung, Taiwan, October 31—November 2, 2016; 2016. p. 363–368.

36. Zeng X, Ding N, Zou Q. Latent factor model with heterogeneous similarity regularization for predicting

gene-disease associations. In: IEEE International Conference on Bioinformatics and Biomedicine,

BIBM 2016, Shenzhen, China, December 15–18, 2016; 2016. p. 682–687.

37. Zeng X, Zhang X, Zou Q. Integrative approaches for predicting microRNA function and prioritizing dis-

ease-related microRNA using biological interaction networks. Briefings in Bioinformatics. 2016; 17(2):

193–203. https://doi.org/10.1093/bib/bbv033 PMID: 26059461

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 21 / 23

https://doi.org/10.1080/19475683.2016.1144648
https://doi.org/10.1016/j.eswa.2016.03.041
https://doi.org/10.1016/j.eswa.2016.03.041
https://doi.org/10.1093/bioinformatics/btv696
http://www.ncbi.nlm.nih.gov/pubmed/26614125
https://doi.org/10.1155/2016/1096271
https://doi.org/10.1155/2016/1096271
http://www.ncbi.nlm.nih.gov/pubmed/27579031
https://doi.org/10.1155/2016/3647202
https://doi.org/10.1155/2016/3647202
http://www.ncbi.nlm.nih.gov/pubmed/27635150
https://doi.org/10.1016/j.infsof.2016.01.005
https://doi.org/10.1007/s10462-016-9460-3
https://doi.org/10.1007/s10462-016-9460-3
https://doi.org/10.1093/bib/bbv033
http://www.ncbi.nlm.nih.gov/pubmed/26059461
https://doi.org/10.1371/journal.pone.0177523

38. Zou Q, Li J, Song L, Wang G. Similarity computation strategies in the microRNA-disease network: a sur-

vey. Brief Funct Genomics. 2016; 15(1):55–64. https://doi.org/10.1093/bfgp/elv024 PMID: 26134276

39. González J, Muñoz A, Martos G. Asymmetric latent semantic indexing for gene expression experiments

visualization. J Bioinformatics and Computational Biology. 2016; 14(4):1–18. https://doi.org/10.1142/

S0219720016500232 PMID: 27427382

40. Roy S, Curry BC, Madahian B, Homayouni R. Prioritization, clustering and functional annotation of

MicroRNAs using latent semantic indexing of MEDLINE abstracts. BMC Bioinformatics. 2016;

17(S-13):350. https://doi.org/10.1186/s12859-016-1223-2 PMID: 27766940

41. Zhang Y, Yi D, Wei B, Zhuang Y. A GPU-accelerated non-negative sparse latent semantic analysis

algorithm for social tagging data. Inf Sci. 2014; 281:687–702. https://doi.org/10.1016/j.ins.2014.04.047

42. Ye Y, Gong S, Liu C, Zeng J, Jia N, Zhang Y. Online belief propagation algorithm for probabilistic latent

semantic analysis. Frontiers of Computer Science. 2013; 7(4):526–535. https://doi.org/10.1007/

s11704-013-2360-7

43. Drinea E, Drineas P, Huggins P. A randomized singular value decomposition algorithm for image pro-

cessing. In: Panhellenic Conference on Informatics (PCI); 2001.

44. Brand M. Incremental Singular Value Decomposition of Uncertain Data with Missing Values. In:

ECCV (1); 2002. p. 707–720.

45. Levy A, Lindenbaum M. Sequential Karhunen-Loeve basis extraction and its application to images.

IEEE Transactions on Image Processing. 2000; 9(8):1371–1374. https://doi.org/10.1109/83.855432

PMID: 18262974

46. Holmes MP, Gray AG, Jr CLI. QUIC-SVD: Fast SVD Using Cosine Trees. In: Advances in Neural Infor-

mation Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural

Information Processing Systems, Vancouver, British Columbia, Canada, December 8–11, 2008; 2008.

p. 673–680.

47. Drmac Z, Veselic K. New Fast and Accurate Jacobi SVD Algorithm. I. SIAM J Matrix Analysis Applica-

tions. 2007; 29(4):1322–1342. https://doi.org/10.1137/050639193

48. Drmac Z, Veselic K. New Fast and Accurate Jacobi SVD Algorithm. II. SIAM J Matrix Analysis Applica-

tions. 2007; 29(4):1343–1362. https://doi.org/10.1137/05063920X

49. Ait-Haddou R, Barton M. Constrained multi-degree reduction with respect to Jacobi norms. Computer

Aided Geometric Design. 2016; 42:23–30. https://doi.org/10.1016/j.cagd.2015.12.003

50. Strobach P. The fast householder Bi-SVD subspace tracking algorithm. Signal Processing. 2008;

88(11):2651–2661. https://doi.org/10.1016/j.sigpro.2008.05.004

51. Zhou L, Li C. Outsourcing Eigen-Decomposition and Singular Value Decomposition of Large Matrix to a

Public Cloud. IEEE Access. 2016; 4:869–879. https://doi.org/10.1109/ACCESS.2016.2535103

52. Menon V, Du Q, Fowler JE. Fast SVD With Random Hadamard Projection for Hyperspectral

Dimensionality Reduction. IEEE Geosci Remote Sensing Lett. 2016; 13(9):1275–1279. https://doi.org/

10.1109/LGRS.2016.2581172

53. Joachims T. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization. In:

Proceedings of the Fourteenth International Conference on Machine Learning (ICML 1997), Nashville,

Tennessee, USA, July 8–12, 1997; 1997. p. 143–151.

54. Qin P, Xu W, Guo J. A novel negative sampling based on TFIDF for learning word representation. Neu-

rocomputing. 2016; 177:257–265. https://doi.org/10.1016/j.neucom.2015.11.028

55. Domeniconi G, Moro G, Pasolini R, Sartori C. A Study on Term Weighting for Text Categorization: A

Novel Supervised Variant of tf.idf. In: DATA 2015—Proceedings of 4th International Conference on

Data Management Technologies and Applications, Colmar, Alsace, France, 20–22 July, 2015.; 2015.

p. 26–37.

56. Chen K, Zhang Z, Long J, Zhang H. Turning from TF-IDF to TF-IGM for term weighting in text classifica-

tion. Expert Syst Appl. 2016; 66:245–260. https://doi.org/10.1016/j.eswa.2016.09.009

57. Zhang M, Hu H, He Z, Gao L, Sun L. Efficient link-based similarity search in web networks. Expert Syst

Appl. 2015; 42(22):8868–8880. https://doi.org/10.1016/j.eswa.2015.07.042

58. Zhang M, Hu H, He Z, Wang W. Top-k similarity search in heterogeneous information networks with x-

star network schema. Expert Syst Appl. 2015; 42(2):699–712. https://doi.org/10.1016/j.eswa.2014.08.

039

59. Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst.

2002; 20(4):422–446.

60. Bradford RB. An empirical study of required dimensionality for large-scale latent semantic indexing

applications. In: Proceedings of the 17th ACM Conference on Information and Knowledge Manage-

ment, CIKM 2008, Napa Valley, California, USA, October 26–30, 2008; 2008. p. 153–162.

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 22 / 23

https://doi.org/10.1093/bfgp/elv024
http://www.ncbi.nlm.nih.gov/pubmed/26134276
https://doi.org/10.1142/S0219720016500232
https://doi.org/10.1142/S0219720016500232
http://www.ncbi.nlm.nih.gov/pubmed/27427382
https://doi.org/10.1186/s12859-016-1223-2
http://www.ncbi.nlm.nih.gov/pubmed/27766940
https://doi.org/10.1016/j.ins.2014.04.047
https://doi.org/10.1007/s11704-013-2360-7
https://doi.org/10.1007/s11704-013-2360-7
https://doi.org/10.1109/83.855432
http://www.ncbi.nlm.nih.gov/pubmed/18262974
https://doi.org/10.1137/050639193
https://doi.org/10.1137/05063920X
https://doi.org/10.1016/j.cagd.2015.12.003
https://doi.org/10.1016/j.sigpro.2008.05.004
https://doi.org/10.1109/ACCESS.2016.2535103
https://doi.org/10.1109/LGRS.2016.2581172
https://doi.org/10.1109/LGRS.2016.2581172
https://doi.org/10.1016/j.neucom.2015.11.028
https://doi.org/10.1016/j.eswa.2016.09.009
https://doi.org/10.1016/j.eswa.2015.07.042
https://doi.org/10.1016/j.eswa.2014.08.039
https://doi.org/10.1016/j.eswa.2014.08.039
https://doi.org/10.1371/journal.pone.0177523

61. Zhang M, Hao S, Xu Y, Ke D, Peng H. Automated Essay Scoring Using Incremental Latent Semantic

Analysis. JSW. 2014; 9(2):429–436. https://doi.org/10.4304/jsw.9.2.429-436

62. Çelikkanat H, Orhan G, Pugeault N, Guerin F, Sahin E, Kalkan S. Learning Context on a Humanoid

Robot using Incremental Latent Dirichlet Allocation. IEEE Trans Cognitive and Developmental Sys-

tems. 2016; 8(1):42–59.

63. Lee M, Choi C. Incremental (N) -Mode SVD for Large-Scale Multilinear Generative Models. IEEE Trans

Image Processing. 2014; 23(10):4255–4269. https://doi.org/10.1109/TIP.2014.2346012 PMID:

25122567

64. Iwen MA, Ong BW. A Distributed and Incremental SVD Algorithm for Agglomerative Data Analysis on

Large Networks. CoRR. 2016;abs/1601.07010. https://doi.org/10.1137/16M1058467

65. Balzano L, Wright SJ. On GROUSE and Incremental SVD. CoRR. 2013;abs/1307.5494. https://doi.org/

10.1109/CAMSAP.2013.6713992

Fast on-line query processing of latent semantic analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177523 May 16, 2017 23 / 23

https://doi.org/10.4304/jsw.9.2.429-436
https://doi.org/10.1109/TIP.2014.2346012
http://www.ncbi.nlm.nih.gov/pubmed/25122567
https://doi.org/10.1137/16M1058467
https://doi.org/10.1109/CAMSAP.2013.6713992
https://doi.org/10.1109/CAMSAP.2013.6713992
https://doi.org/10.1371/journal.pone.0177523

