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In a realistic steady-state visual evoked potential (SSVEP) based brain-

computer interface (BCI) application like driving a car or controlling a

quadrotor, observing the surrounding environment while simultaneously

gazing at the stimulus is necessary. This kind of application inevitably could

cause head movements and variation of the accompanying gaze fixation

point, which might affect the SSVEP and BCI’s performance. However, few

papers studied the effects of head movements and gaze fixation switch on

SSVEP response, and the corresponding BCI performance. This study aimed

to explore these effects by designing a new ball tracking paradigm in a virtual

reality (VR) environment with two different moving tasks, i.e., the following and

free moving tasks, and three moving patterns, pitch, yaw, and static. Sixteen

subjects were recruited to conduct a BCI VR experiment. The offline data

analysis showed that head moving patterns [F(2, 30) = 9.369, p = 0.001, effect

size = 0.384] resulted in significantly different BCI decoding performance but

the moving tasks had no effect on the results [F(1, 15) = 3.484, p = 0.082,

effect size = 0.188]. Besides, the canonical correlation analysis (CCA) and filter

bank canonical correlation analysis (FBCCA) accuracy were better than the

PSDA and MEC methods in all of the conditions. These results implied that

head movement could significantly affect the SSVEP performance but it was

possible to switch gaze fixation to interact with the surroundings in a realistic

BCI application.
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Introduction

Brain-computer interface (BCI) is a novel technology that
directly bridges the brain and external devices without relying
on the pathway between the spinal cord and muscles (Wolpaw,
2013; He et al., 2020). BCI could assist in reconstructing motor
function for people with severe motor disabilities like stroke,
neuromuscular dystrophy, and amyotrophic lateral sclerosis
(Cincotti et al., 2008; Ang and Guan, 2015; Borgheai et al., 2020).
Steady-State Visual Evoked Potential (SSVEP) is the periodic
electrophysiological response to repetitive visual stimulus. It
can be detected over the occipital region (Müller-Putz et al.,
2005; Zhu et al., 2010). SSVEP-based BCIs have been widely
studied in recent years because of SSVEP’s high signal-to-noise
ratio (SNR) and excellent user adaptability. Thus, successful
applications such as BCI spellers (Chen et al., 2015b; Xu et al.,
2016; Nakanishi et al., 2017) have been intensively demonstrated
during the past decades.

Besides applications in BCI spellers, the SSVEP-based BCIs
also gained attention in physical/virtual object interactions such
as the wheelchair and robotic arm control due to their high
decoding accuracy (Li et al., 2013; Chen et al., 2020). Apart
from displaying visual stimulation by a computer screen, virtual
reality (VR), a new display technology, has been increasingly
studied in the SSVEP-based BCI for better immersion and
interaction with the surrounding environment (Lécuyer et al.,
2008; Coogan and He, 2018). Koo et al. (2015) validated the
improved performance in an SSVEP-controlled VR maze game
compared to the case in a monitor display. Armengol-Urpi and
Sarma (2018) investigated the application of movie playback
control in VR with visual stimuli. Wang et al. (2018) designed
a wearable SSVEP-BCI, which navigated quadcopter flight in
a 3D virtual environment. Utilizing VR in SSVEP-based BCI
has shown its superiority compared to conventional displays
and has become increasingly popular. However, the effect of
changing the stimulus presentation environment on SSVEP
signals deserves further investigation.

Unlike traditional BCIs that present tasks on flat screens,
head movement frequently occurs in interactive BCI VR
applications. Head movement is apparent, especially during
real-time control tasks like driving cars and interacting with
people in the game when subjects need to observe the
surrounding environment and issue commands simultaneously.
Several studies have explored the effects of movement on
SSVEP-based BCI with visual stimuli displayed on the screen.
Lin et al. (2014) assessed the quality of SSVEPs for people
walking on a treadmill, but the movement was a coupling of
the sub-motions of various parts. Kanoga et al. (2019) analyzed
the effects of head movement on signal characteristics and
classification performance by gazing at a single moving stimulus
on an ultra-widescreen. However, the sight was limited to the
center of the stimulus, which could not be applied in real-time
control.

Moreover, subjects might fix their gaze on one external
object rather than the stimulus in the same visual field to
keep abreast of the surroundings. Some studies called this
phenomenon visual selective attention (Müller and Hillyard,
2000; Zhang et al., 2010). They have shown that the SSVEP
amplitude of unattended flicker stimulus was smaller than the
attended one’s; Zhang et al. (2019) found a downward trend
in the SSVEP response with increasing gaze distance from the
center. Thus, switching gaze between the stimulus and the
surrounding environment might affect the SSVEP-based BCI
performance. However, the experiment was limited to the steady
gaze, while in a practical BCI, gaze fixation could frequently
switch from the stimulus to the environment and vice versa. VR
technology provided a powerful and unique tool to investigate
the effect of head movement and accompanied gaze fixation
switch separately. As a result, it is worth designing a practical
SSVEP-BCI in VR to discuss the effects of head movement and
accompanied gaze fixation switch. To the best of our knowledge,
no study has discussed these before.

By designing a new ball tracking paradigm, this study
found that the head movement could significantly affect
the BCI performance. However, no differences were found
between the yaw and pitch movement. Moreover, the gaze
fixation switch didn’t show a significant influence on BCI
performance, which indicated that it was possible to interact
with the surrounding environment while doing the SSVEP task.
This article is organized as follows: Section “Materials and
methods” is the materials and methods containing experimental
setup, paradigm, and data processing; Section “Results” covers
the results of pose data, signal characteristics, and target
identifications; Section “Discussion” is the discussion, and
Section “Conclusion” is the conclusion of this article.

Materials and methods

Experimental setup

The SSVEP-based BCI system’s hardware included an EEG
acquisition device, a head-mounted device (HMD), and a
computer. The experiment was executed in an electromagnetic
and acoustic shielding room to reduce ambient noise and
distraction. Figures 1A,B show the scenario of a participant
performing this experiment.

The EEG data were recorded with iRecorder W16 (Shanghai
Idea-Interaction Tech., Co., Ltd.), a wireless and portable
commercial EEG acquisition device. This portable acquisition
device guaranteed the EEG signal quality during subjects’
movement since the potential noise caused by the wire
movement was avoided. Six signal electrodes (PO3, POz, PO4,
O1, Oz, and O2) over the occipital area were used to decode
the SSVEP, while FCz and CPz were used as the ground and
reference electrodes, respectively, according to the international
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FIGURE 1

The experimental setup. (A) Illustration of the user interfaces in virtual reality. (B) Demonstration of a subject performing the experiment.
(C) Illustration of the computer and its wireless communication.

10−20 system. The analog signals were sampled at 500 Hz with
a compact wireless amplifier, magnetically attached to the back
of the cap (the black gadget shown in Figure 1B). The amplifier
transmitted the raw EEG signals through the Bluetooth serial
module plugged onto the computer’s USB port, from which the
computer can read the data for further signal processing.

The HMD used in this experiment was HTC VIVE Focus
(HTC Corporation), an all-in-one VR machine with no wire
linked to the computer. This wireless device also helped the
subject move freely without wires pulling. This HMD could
display the virtual scene with 2880× 1600 binocular resolution,
a maximum of 75 Hz refresh rate, and a 110◦ field of view (FOV).
For operational stability, the refresh rate in this experiment was
locked to 60 Hz. An additional belt was tied to the HMD along
the central axis from front to back. This belt helped reduce the
pressure of the HMD on the cheek and secure the HMD on the
head, eliminating the relative movement of HMD to the head.
The virtual scene was constructed using Unity 3D software, a
game engine usually used in VR. The scene consisted of four
parts: four stimuli, a gaze fixation point, a text label, and a ball
(Figure 1A). The stimuli’s flickering frequencies were selected

as 6.57 Hz, 8.57 Hz, 10 Hz, and 12 Hz, representing flicker once
every 9, 7, 6, and 5 frames. They were four squares on the left,
down, right, and upsides of the FOV.

For each horizontal stimulus, the off-center angle was 16.7
degrees. While for each vertical stimulus, the angle was 14
degrees, which was smaller than the horizontal one to match the
human’s natural view angle with broader horizontal FOV. The
angles were selected to balance natural gaze of the subject and
the greatest separation of the stimuli. The gaze fixation point
was a green dot in the center of the four stimuli used to track
the ball’s movement. The stimuli and the fixation point were
attached and bound together with the virtual camera, which was
denoted as the virtual eye. This virtual camera kept the relative
position of the stimuli and fixation point in the FOV unchanged.
Moreover, because humans tended to look downward at around
15◦ in a natural gazing state, all the components were located
below the center of the FOV, which helped the user gaze at the
fixation point naturally (Mon-Williams et al., 1998).

There were three moving patterns: static, yaw, and pitch.
A text label was shown on the upper side, indicating the current
moving pattern, and was only visible before each trial. The text
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was one of Static,←Yaw→, and ↑Pitch↓, denoting each moving
pattern, with red color and sufficiently prominent font size. The
red ball was displayed as a target, and it instructed the user to
follow it and generate a correct head movement. The head pose
data was collected using WaveXR (HTC Corporation) software
development kit to determine whether the subjects correctly
followed the instructions of moving their heads. The HMD’s
quaternions in each timestamp were converted to Euler angles in
the customized Unity application and sent to the computer via
UDP. Figure 1B also showed the representation of Euler angles.

An open-source BCI software platform, BCI2000, was
running on the computer (Figure 1C; Schalk et al., 2004). It
recorded the EEG and pose data, synchronized them, and saved
them on the computer. Furthermore, by keeping the computer
and the HMD in the same local area network, the customized
BCI2000 application also controlled the contents displayed in
the HMD in different phases by UDP.

Experimental paradigm

Sixteen subjects (10 males and 6 females; age:
24.0 ± 4.6 years) with normal or corrected to normal vision
participated in this experiment. Thirteen of them were naïve to
the SSVEP-based BCI experiments. They were all fully informed
of the procedure and signed the informed consent before the
experiment. The Institutional Review Board of Shanghai Jiao
Tong University approved all procedures and protocols.

Subjects needed to gaze at one of the four stimuli and move
their head simultaneously to figure out the influence of head
movement and its accompanying distraction and be close to
the practical application. There were two types of moving tasks:
one was the following task, and the other was a free one. In
the following task, the red ball would move around the virtual
camera vertically or horizontally at a constant speed of 10◦/s
or maintain still according to the moving pattern. Subjects
needed to move their head to covertly pay attention to the ball’s
movement and follow it until it stopped. Therefore, subjects
should focus on the flickering stimuli and spare limited attention
to the moving ball to follow it in this task.

Consequently, it was necessary to design another task to
explore the influence of the gaze fixation switch due to the
following movement. Correspondingly in the free task, the ball
was still, and subjects needed to rotate their heads voluntarily
according to the indicated pattern and tried to keep the same
speed as the following task. If subjects moved out of boundaries,
the green frame of the gazed stimulus would turn red to inform
the subject. A practice session before the whole experiment
was conducted until the subjects could be fully acquainted with
the moving details. This procedure usually lasted for at most a
couple of minutes.

There were three moving patterns in each task: static, yaw,
and pitch. The static pattern was set as a baseline with only

the SSVEP task but no head movement. For the yaw pattern,
subjects needed to rotate their heads horizontally in a free or
following way according to the indicated cue. First, subjects
should rotate their heads from the origin (0◦) to −20◦ on the
left side, turn to +20◦ on the right side and return to the origin
in each yaw trial. Similarly, for the pitch pattern, subjects should
nod their heads vertically from the origin to−20◦ on the upside,
then turn to +20◦ on the downside and return to the origin. The
moving range and orders (encircled numbers) were shown in
Figure 2A.

The experiment for each participant was divided into four
sessions with two following task sessions and two free task
sessions. Each session consisted of three runs, and one moving
pattern was randomly assigned in each run. Subjects would
take off the HMD and rest for 5 mins between each session.
Each run included sixteen trials with the same moving task
and pattern but different stimuli targets. A 2 mins break was
set between each run. The moving task, moving pattern, and
gazed stimulus were all in pseudo-random order to accomplish
full block randomization. Figure 2B showed an example of
the experimental protocol by block randomization. Therefore,
a participant would repeat eight times for each condition, and
the total number of trials obtained from each participant was
196 (2 moving tasks × 3 moving patterns × 4 frequencies × 8
repeated times). At the beginning of each trial, the four stimuli
would appear, highlighting the target stimulus with a green box.
Subjects needed to fix their gaze at the indicated stimulus and
minimize gaze shifting during the task. The text label would
be visible for 2 s to remind subjects of the current moving
pattern. Then the stimuli started to flicker, and subjects needed
to maintain their gaze and perform the corresponding moving
task simultaneously for 8 s. Subjects were asked to avoid blinking
during the stimulation to avoid ocular artifacts. In addition,
body movement, swallowing, and gnash were not allowed to
capture only head movement. After the 8th s, the stimuli
disappeared, and subjects could rest for 4 s until the next trial
started. The paradigm of one trial was shown in Figure 2C.

Data processing

Preprocessing
The EEG signal processing was implemented in Matlab

using the EEGLAB toolbox and customized scripts (Delorme
and Makeig, 2004). The EEG data was firstly bandpass filtered
from 3 to 30 Hz using a Hamming windowed sinc FIR filter.
According to previous successful studies (Nakanishi et al.,
2017), the latency of the BCI system and human vision system
was estimated at around 140ms. Hence, the EEG data epoch
was segmented from 0.14 s to 8 s, where 0 s represented
the stimulus onset. The HMD’s Euler angle data was also
segmented from −1 s to 8 s, with the baseline removed
by subtracting the mean of amplitudes from −1 s to 0 s.
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FIGURE 2

Experimental paradigm. (A) The moving range and orders (encircled numbers) when a subject performs yaw and pitch moving patterns. (B) An
example of the experimental protocol by the block randomization design. (C) The demonstration of one single trial in this experiment.

There was an additional screening procedure to remove the
artifact and erroneous trials before further processing. If a
trial met any of the following five criteria, it would be
manually excluded. The criteria were: (1) the maximum absolute
amplitude exceeded the mean plus five standard deviations;
(2) the actual moving pattern was not correct, e.g., pitching

in a yaw trial; (3) the moving speed was too fast or slow,
namely completing a cycle of movement with a period deviating
from the mean more than 1.5 s; (4) hurry or delay, was
that moving before the task start or didn’t move after 1 s
of the stimulus onset; (5) the moving direction was not
independent with irrelevant angle change larger than 7 degrees.

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2022.943070
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-943070 September 6, 2022 Time: 16:49 # 6

Duan et al. 10.3389/fnhum.2022.943070

Fifty-nine trials were finally excluded, with 1.88% of the total
trials.

Signal characteristics
The wide-band signal-to-noise ratio (SNR) was calculated

to compare the signal quality of SSVEP responses in different
conditions (Liu et al., 2020). The whole data (0.14−8 s) were
used to represent the overall signal properties in one trial. First,
the power spectra were calculated by using the square value of
the fast Fourier transform (FFT) of EEG signals. The wide-band
SNR was defined as the ratio of the added power spectra of
multiple harmonics to the total power from zero to the Nyquist
frequency, excluding the power of harmonics, as:

SNR = 10log10

 ∑k=Nh
k=1 P(k·f )∑f= fs

2
f=0 P(f )−

∑k=Nh
k=1 P(k·f )

 (1)

where Nh denotes the number of harmonics, P(f ) denotes
the power spectrum at the frequency of f , fs is the sampling
rate and fs/2 represents the Nyquist frequency. Comparing the
classification accuracies using different numbers of harmonics
in the preliminary experiments showed no difference beyond
the second harmonic. Therefore in this study, Nh was set to 2.
The wide-band SNRs of six channels were averaged to obtain
the outcome of a single value.

Feature extraction and classification
To evaluate the effect of head movement on SSVEP

tasks’ performance, calibration-free algorithms, including power
spectral density analysis (PSDA), minimum energy combination
(MEC), canonical correlation analysis (CCA), and filter bank
canonical correlation analysis (FBCCA) were adopted to extract
useful features and subsequently obtain the classification
accuracy. The design principle of the algorithms is to extract
response features maximally from EEG signals XNc×N , where
Nc was the number of channels, N was the number of sampling
points. In MEC and CCA, reference signals Y i

2×Nh×N were used
as a template, which was usually the combination of sin and cos
waves of a stimulus frequency fi, where Nh was the number of
harmonics:

Y i
2×Nh×N =



sin
(
2πfit

)
cos

(
2πfit

)
sin
(
4πfit

)
cos

(
4πfit

)
. . .

sin
(
2πNh × fit

)
cos

(
2πNh × fit

)


(2)

In the following, X was the EEG signal mentioned above, and
its sub-indexes Nc, N were omitted for simplicity. Y represented
the reference signals of frequency fi, its sub-indexes 2× Nh, N
and i were omitted as well.

The target class τ could be identified based on the maximum
feature value obtained in each algorithm:

τ = argmax
i

ρi, i = 1, 2, . . . ,Nf (3)

where, ρi is the feature in each frequency, Nf was the number of
stimuli classes.

Power spectral density analysis

Because of the periodicity of SSVEP signals, the intuitive
idea was to find the response frequency with the maximum
energy. PSDA was realized by using the fast Fourier transform
to calculate the power spectral density (PSD) of the EEG
signals (Cheng et al., 2002). It has been widely used because
of its simplicity and high efficiency. The frequency response
corresponding to the maximum power spectral density was
considered as the target frequency:

ρi = PSD
(
fi
)
, i = 1, 2, . . . ,Nf (4)

Minimum energy combination

Minimum energy combination was first proposed by Friman
et al. (2007) as an autonomous, multiple channel detection
method. MEC firstly removed SSVEP potentials from the
electrode signals to obtain the nuisance signals X̃:

X̃ = XT
− YT (YYT)−1 YXT (5)

The next step was to find a spatial filter W, to minimize the
energy of nuisance signals by solving the optimization problem:

min
W
‖ X̃TW ‖2

= min
W

WT X̃X̃TW (6)

The problem was solved by finding the eigenvalues and
eigenvectors of the symmetric matrix X̃X̃T . By selecting the
eigenvalues (λ1 < . . . < λNs ) in ascending order, W consisted
of the corresponding weight vectors (v1, . . . , vNs ):

W =
[
v1
λ1
· · ·

vNs
λNs

]
(7)

where Ns was the number of selected channels, based on how
much nuisance signals should be discarded. In this study, 90%
of the nuisance signals energy was discarded. Hence, the signals
that removed noise for each channel could be obtained:

S = XTW (8)

The feature value ρi could be calculated based on signal and
noise power estimation for each reference signal:

ρi =
1

NsNh

Ns∑
l=1

Nh∑
k=1

P̂k,l(fi)
σ̂k,l

2(fi)
, i = 1, 2, . . . ,Nf (9)

The SSVEP signal power P̂k,l(fi) could be estimated by:

P̂k,l(fi) = ‖ YkSl ‖2 (10)
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where Yk is the kth harmonic component of Y , Sl is the signal of
the lth channel.

The noise power σ̂k,l2(fi) could be obtained by fitting signals
Sl with auto-regressive models AR(p) using the Yule-Walker
method:

σ̂k,l
2
=

πN
4

σ̂ 2∣∣∣1+∑p
j=1 αj exp

(
−

2πijkf
Fs

)∣∣∣2 (11)

Here, σ̂ 2 was the estimation of the white noise when
deriving the AR(p) process, αj was the model parameters, and
the model order was set p = 15 in this study based on previous
research (Davila et al., 1998; Friman et al., 2007).

Canonical correlation analysis

Canonical correlation analysis was a multivariate
statistical method to maximize the correlation between
two multidimensional variables (Lin et al., 2006; Bin et al.,
2009). It had been widely used for its high accuracy, robustness,
and ease of use. CCA tried to find the best spatial projection
vector w and v, to maximize the correlation between the EEG
signals X and the reference signals Y :

ρi = max
w,v

wTXYv√
wTXXTwvTYYTv

, i = 1, 2, . . . ,Nf (12)

The sliding window method was used with a step of 0.2 s to
simulate the online detection process and window length varied
from 0.8 s to 2.0 s for each method. Signals in each window gave
out a result and the accuracy was calculated to divide the number
of correct results by the total number of classification results.

Filter bank canonical correlation analysis

Filter bank canonical correlation analysis was an extension
of CCA methods by utilizing harmonic frequency components
to improve the detection of SSVEPS (Chen et al., 2015a). It has
shown its superiority compared with CCA, especially under the
condition of a high amount of stimuli. FBCCA used multiple
filter banks to decompose the EEG signals into several sub-band
components and applied CCA on each component. The final
result was obtained by weighting each correlation coefficient and
adding them together.

In this study, the number of harmonics Nh were selected
as 2 based on standard CCA formulation. The M3 method in
Chen et al. (2015a) was adopted by using aI-type Chebyshev
filter, and the parameters were optimized by the first 25% trials
in each condition. The number of filter banks N and the weight
parameters a and b were determined by a grid search in the
parameter space of [1:1:9], [0:0.25:2], and [0:0.25:1] respectively.
Finally, N = 5, a = 1.25, b = 0.25 were selected.

Statistical analysis

Three-way repeated measures analysis of variances
(ANOVA) was applied to the wide-band SNR (2 moving
tasks × 3 moving patterns × 4 frequencies) to test the effect

of different factors. Besides, four-way repeated measures
of ANOVA were applied to the spectrum amplitude (2
moving tasks × 3 moving patterns × 4 frequencies × 2
harmonics) and SSVEP decoding accuracy (2 moving tasks × 3
moving patterns × 4 frequencies × 4 algorithms) to explore
the differences. All of the data were tested with sphericity
and corrected using the Greenhouse-Geisser method if the
sphericity was violated. In addition, the significances due
to multiple comparisons were corrected using Bonferroni
correction in post hoc tests.

Results

The Euler angles of head posture

The mean Euler angles in different moving tasks and
patterns throughout the experiment were shown in Figure 3.
Figure 3A showed the Euler angles changed when subjects
were yawing their heads in both free and following moving
tasks, while Figure 3B displayed the pitching results. Most
subjects followed the target very well at a uniform speed, and
the speed was well controlled even in the free moving task
without the indicating moving ball. Their head movements were
smooth and similar to the angle changes in the following task.
Moreover, subjects tended to move more continuously at the
turning back point in the free moving task, without a sudden
speed change. However, the moving range in the free moving
task was smaller than the range in the following task for about
3−4 degrees on both sides. This difference might be due to the
varying arrival times on both sides. Therefore, the amplitudes
might be smoother when averaging them together. Moreover,
the variances of angles in the free moving task were larger
than in the following task because of the inter-subject variation
in moving speed and range when there was no indicator. In
addition, the Euler angle change in the static pattern was not
shown here since the change was less than 0.5◦ in both moving
tasks.

Signal characteristics

Figure 4 showed the mean amplitude spectra of different
moving tasks and patterns under each stimulus frequency, and
the mean spectra were averaged from all electrodes and subjects.
The noise level in each condition showed no difference, but the
stimulus responses differed. The SSVEP response in the static
moving pattern displayed the highest frequency peak compared
to the SSVEP in the other two patterns for both tasks. But
there was no visible difference between the free and following
tasks in each moving pattern. Figure 5 demonstrated the group
average and standard error of the mean (SEM) of spectrum
amplitude corresponding to each stimulus frequency and its
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FIGURE 3

(A,B) Group average of Euler angle change in different following tasks (left column: free task; right column: following task) with different moving
patterns, including yaw and pitch. The shadow area presented the standard error of the group population.

second harmonic in different moving tasks and patterns. Under
6.67 Hz and 8.57 Hz visual stimulation, the frequency response
of the second harmonic was higher than that of the stimulus
frequency, but the trend that the static moving pattern elicits
the highest SSVEP response didn’t change. The statistical results
of four-way ANOVA showed significant difference in moving
patterns [F(2, 30) = 6.776, p = 0.014, effect size = 0.311],
frequencies [F(3, 45) = 7.289, p = 0.002, effect size = 0.327]
but no significant differences in moving tasks [F(1, 15) = 1.260,
p = 0.279, effect size = 0.077] and harmonics [F(1, 15) = 0.497,
p = 0.492, effect size = 0.032]. The pairwise post hoc test of the
moving pattern under all conditions showed that the SSVEP
response amplitude of the static pattern was significantly higher
than that of the yaw pattern (p = 0.037), but no difference was
found between the static and pitch pattern (p = 0.059), yaw and
pitch pattern (p = 1.000).

Figure 6 showed the average wide-band SNR bar plot
with the SEM in different moving tasks, patterns, and stimuli.
Because all the wide-band SNR was below zero, to visualize it
intuitively, the vertical axis of the graph was reversed so that
the higher the bar was, the lower SNR it represented. The static
pattern had the highest SNR in all of the stimuli, and the yaw
pattern in both moving tasks yielded the second-highest SNR,
while the pitch pattern yielded the lowest SNR. In response to
the 10 Hz stimuli, the SNR of the yaw pattern was lower than

the pitch pattern, but generally, the average response showed a
consistent trend with most frequencies. A three-way repeated-
measures ANOVA was applied to test the effect of moving
tasks, patterns, and stimuli frequencies. The results showed
significance of difference in moving patterns [F(2, 30) = 9.360,
p = 0.003, effect size = 0.384] and stimuli frequencies [F(3,
45) = 12.884, p < 0.001, effect size = 0.462] but showed no
significance of difference in moving tasks [F(1, 15) = 1.049,
p = 0.322, effect size = 0.065]. The pairwise post hoc test result
of each moving pattern pair under all conditions revealed that
the SNR of the static pattern is significantly higher than that of
the yaw pattern (p = 0.041) and pitch pattern (p = 0.003). But
there was no significant difference between the yaw and pitch
pattern (p = 0.105).

Classification result

Figure 7 showed the simulated detection accuracies with
SEM as each algorithm varies the window lengths in both
moving tasks. Table 1 listed the CCA classification accuracy
of sixteen subjects under all conditions in 2 s epoch length.
Furthermore, a four-way repeated-measures ANOVA was used
by comparing the accuracies in a window length of 2 s. The test
results showed significant difference in moving patterns [F(2,
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FIGURE 4

Comparisons of mean amplitude spectra in different moving
tasks and patterns.

30) = 9.296, p = 0.001, effect size = 0.383], frequencies [F(3,
45) = 6.327, p = 0.001, effect size = 0.297] and algorithms [F(3,
45) = 91.241, p < 0.001, effect size = 0.859]. No significant
main effect was found in moving tasks [F(1, 15) = 3.314,
p = 0.089, effect size = 0.181], which was in accordance with
the test result of spectrum amplitude and SNR. The pairwise
post hoc test of the moving pattern under all conditions showed
that the accuracy of the static pattern was significantly higher
than the other two [yaw (p = 0.047) and pitch (p = 0.003)].
However, the accuracy difference between the yaw and pitch
pattern was not significant (p = 0.991). Besides, CCA and
FBCCA algorithms obtained the highest accuracy compared to
MEC (p < 0.001) and PSDA (p < 0.001). But there was no

significant difference between CCA and FBCCA (p = 0.102).
From the observations and statistical results, we could draw
a few conclusions: (1) as the window length increased, the
accuracies increased in all conditions and were distinctly higher
than the 25% of chance level (the dashed line shown in Figure 8);
(2) the classification accuracy of the static moving pattern was
higher than the accuracies of the other two patterns in using
all the time window lengths, which was in accordance with the
previous results; (3) CCA and FBCCA algorithm demonstrated
the best result, and PSDA showed the worst; (4) the classification
accuracy in the free moving task showed no difference from the
following task.

Furthermore, the changes of classification accuracy across
different time periods within one trial were also explored in this
study. The data was segmented using sliding windows and the
CCA method was used to classify the result in each window.
The window length was set to 2 s and the step time was 0.2 s.
Figure 9 showed that the mean accuracy changed under all
of the conditions. Because the result came out only after the
data fills the window buffer out, the plot showed the change of
accuracy from 2 s to 8 s. The figure showed that the accuracy of
pitch pattern dropped most during the process of one trial. By
applying the Mann-Kendall trend test, the accuracy of the pitch
pattern had a significant downward trend in both moving tasks
(p< 0.001).

Discussion

In a realistic SSVEP-based BCI in the virtual reality
environment, it is necessary for the operators to turn their
heads and gaze at one of the stimuli simultaneously to interact
with the surrounding environment better. It is hypothesized
that head movement and the accompanying gaze fixation
switch can decrease the performance of the SSVEP-based
BCI. However, no studies were conducted to investigate this
problem, and the effects of the factors on SSVEP responses and
decoding accuracies were still unknown. This study proposed a
novel ball tracking paradigm, and experiments were performed
to compare both factors. In this experiment, three moving
patterns were designed to simulate the actual head movements
in real life. Moreover, two moving tasks were executed to
compare the effects of accompanying gaze fixation change
when moving the head. In the free task, the subjects directly
gazed at the flickering stimulus all the time, while in the
following task, the subjects might have to pay attention to the
ball covertly while gazing at the stimulus. This gaze fixation
point switch, could frequently happen in the realistic BCI.
Thanks to VR technology, we could design an experimental
paradigm to explore the head movements and gaze fixation
switch simultaneously and separately. The current test results
showed that only head movement could significantly decrease
the performance of the SSVEP-based BCI, indicating that
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FIGURE 5

The mean and standard error of the mean (SEM) of spectrum amplitude corresponding to the stimulus frequency and its second harmonic in
different moving tasks and patterns.

FIGURE 6

Wide-band signal-to-noise ratio (SNR) bar plot in different moving tasks, patterns, and stimuli (left column: free moving task; right column: the
following moving task).

it was possible to gaze at the stimulus and observe the
environment simultaneously.

In a previous study (Kanoga et al., 2019), the authors
studied the effects of head movement in a non-VR scenario.
The subjects tracked a single moving stimulus on a computer

screen in their paradigm. The eye’s fixation was always in
the center of the stimulus, making it unable to detect the
surrounding environment. They reported that the amplitude
and SNR of the SSVEPs decreased during the subject’s head
movement, which were in accordance with our study’s results,
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FIGURE 7

The decoding accuracy of steady-state visual evoked potential (SSVEP) using the canonical correlation analysis (CCA) approach in each stimulus
frequency and moving pattern.

as Figures 5, 6 showed. However, no significant differences
were found between the yaw and pitch pattern after applying
pairwise post hoc analysis in all of our results. The trend of
SNR change agreed with the classification results, which meant
that the higher SNR it was, the higher accuracy it yielded.
Tracking a moving stimulus might be necessary for many
practical BCI applications. The paradigm in this paper solved
this problem by combing gazing at one of the four stimuli and
tracking a ball together in a VR environment, which could give
guidance in practical BCI applications like driving a wheelchair
or controlling a robot arm.

Three popular training-free SSVEP classification methods,
i.e., PSDA, MEC, and CCA, were adopted to compare decoding
performance in different conditions. For each algorithm, the
performance change due to head movements and gaze fixation
switch showed consistency. The results showed that CCA
and FBCCA outperformed the other two approaches in all
experimental conditions and decoding window lengths. This
was consistent with Lin’s (Lin et al., 2006) and Nan’s studies
(Nan et al., 2011) in the static state. Moreover, Figure 8 and the
statistical test also showed that CCA and FBCCA was better than
PSDA and MEC under moving conditions, no matter whether
the subjects tracked the ball or not. That was probably because
CCA took advantage of the second harmonic. As shown in
Figures 4, 5, the amplitude of the second harmonic was greater
at 6.67 Hz and 8.57 Hz. However, the third harmonics were not
higher enough and didn’t show better performance compared to
the 2 harmonics in our pre-experiment. This might suggest that
CCA was a more robust decoding algorithm for applications
with inevitable head movement. Besides, the performance of

FBCCA, one of the most popular SSVEP decoding algorithms,
had been tested in this study. Although the mean numeric
accuracy of FBCCA outperformed that of CCA, the pairwise

TABLE 1 The canonical correlation analysis classification accuracy of
sixteen subjects under all the conditions in using the 2 s epoch length.

Subject Task free Task following

Static Yaw Pitch Static Yaw Pitch

S1 91.06 74.98 72.34 75.75 71.66 70.86

S2 84.81 57.67 54.21 79.80 65.73 56.90

S3 54.42 37.72 48.81 60.88 36.42 42.13

S4 82.00 73.81 77.16 83.84 74.40 84.96

S5 86.21 83.41 74.43 73.28 68.43 60.13

S6 75.75 79.63 81.36 73.28 67.46 67.13

S7 84.59 39.53 48.28 80.93 35.87 50.94

S8 97.52 90.84 85.99 97.52 75.00 74.46

S9 95.04 90.35 85.54 90.84 95.37 88.36

S10 99.89 98.49 95.37 98.60 97.74 91.70

S11 97.20 98.10 98.13 94.94 94.40 97.08

S12 89.22 89.69 87.42 88.79 82.10 80.82

S13 49.25 33.08 42.93 49.89 49.25 40.63

S14 100.00 99.39 96.29 99.46 98.28 95.69

S15 70.83 72.83 54.30 65.30 70.26 60.92

S16 95.91 97.00 81.90 99.46 92.67 85.24

Mean 84.61 76.03 74.03 82.04 73.44 71.75

78.22 75.74

The bold values represent the highest value in each main class for each subject.
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FIGURE 8

The decoding accuracies with SEM as varying the window lengths in both moving tasks for each algorithm.

post hoc analysis showed no significance between these two
methods (p = 0.102). The reason could be that FBCCA was
not more effective than CCA with a small number of stimuli
and a large stimulus frequency interval. The first two harmonics
could determine the final results mostly, thus Nh was selected
2 in the preliminary experiments. Besides, the high frequency
noise over 30 Hz brought by head movement, could also affect
the performance of FBCCA. Although FBCCA could be used as

an unsupervised SSVEP decoding algorithm, in most cases, it
still needs some calibration data for parameter optimization to
get better performance in a specific system. Therefore, FBCCA
could be took as an extension of CCA and might be useful in
complex BCI with many stimuli.

During the process of one trial, the classification accuracy
significantly dropped in pitch pattern. This could be caused
by the complex force generation in pitch movement. Besides
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FIGURE 9

The change of classification accuracy across different time periods within one trial.

the visual fatigue caused by a long period of visual stimuli,
subjects needed to activate their Sternocleidomastoid (SCM)
more to overcome the influence of gravity during pitch
movement, which meant that the SCM force to maintain
the constant speed at different pitch angles was different.
However, the head movement in the yaw pattern was
perpendicular to the gravity, which meant that the SCM
force to maintain the constant speed at different yaw angles
was almost the same. As the experiment proceeded, subjects’
motion control became more and more difficult and could
reduce their attention on the stimulus. Thus, the classification
accuracy dropped.

Gaze fixation switch occurred when the gazed stimulus
was not at the location of the tracked ball. Previous studies
found a decreased trend when increasing the gaze distance
from the stimulus center (Zhang et al., 2019). Gaze fixation
switch happened when subjects gazed at the stimulus and
tracked a target ball simultaneously; however, subjects could
gaze at the stimulus directly in a free moving task. A primary
objective of this study was to explore the effects of gaze fixation
switch on the SSVEP response and classification accuracy;
thus, the comparison between the two moving tasks was
designed. The statistical significance test of all the amplitude
spectrum, wide-band SNR, and offline accuracy showed no
significant difference between the two moving tasks, which
did not match our hypothesis. This might be due to a
limited attention absence when subjects gazed at the stimulus
most of the time and occasionally spared covert attention
on the ball. The test results revealed that the gaze fixation
switch caused by observing surroundings was not strong
enough to deteriorate SSVEP-BCI performance significantly.
Furthermore, a recent study (Meng et al., 2021) in our
group also demonstrated a minimal influence of gaze fixation
point for traditional motor imagery-based BCI. Therefore, it
is feasible to design a realistic BCI application that requires
more interaction with the environment than the conventional
ones.

Notably, the background noise in the stimulus frequencies
band showed no difference between the three moving
conditions, as Figure 4 showed. This was not consistent with
our proposed hypothesis. It might be because the spectrum
of moving artifacts caused by the head movement was mainly
distributed in frequencies higher than 30 Hz or lower than 3 Hz
(Lin et al., 2013), which had been filtered out substantially in
the preprocessing step. Besides artifacts, subjects have different
mental workloads when performing these different moving
patterns. Tracking a ball by moving the head required more
cognitive effort and sensory engagement in processing the
changing visual scene. A former study showed that the SSVEP
accompanied by a simultaneous memory task could induce
performance deterioration (Zhao et al., 2018). Lin et al. (2014)
found that the alpha-rhythm could be inhibited by increasing
visual processing during walking. The alpha-rhythm attenuation
modulated by engaged cognitive and sensory tasks was known as
alpha suppression (Williamson et al., 1997). In our experiment,
the stimuli frequencies (6.67 Hz, 8.57 Hz, 10.0 Hz, and 12.0 Hz)
were all located within the alpha-band. Because SSVEP could
be regarded as phase and frequency locked EEG oscillations,
it is reasonable to suppose that the decreased SSVEP was
caused by reduced alpha rhythm. The amplitude spectra in
Figure 4 could also explain that the alpha-band amplitude in
the static moving pattern is distinctly higher than in the other
two patterns. Therefore, the decreased SSVEP performance with
the different head movement patterns might not be caused
by additional artifacts but by additional mental workload and
induced alpha suppression. However, whether training could
reduce this detrimental effect on SSVEP might be worth further
investigation (Wan et al., 2016; Meng and He, 2019).

Although this study tried to design an experimental
paradigm that was as close to the actual application as possible,
there were still some limitations. First, the head movement
was simplified to two moving directions and one set of several
representative speeds. The roll movement was eliminated
because this moving pattern occurred less commonly when a
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person tried to expand the view and explore the surrounding
environment. The speed was compromised to one gear to
control the number of trials. Therefore, there were still some
gaps between the experimental design and the actual application
scenarios. But since the complicated movements could be
considered a combination of yaw and pitch movements, this
study was still instructive for the practical movements to a
certain extent. Second, gaze fixation switching happened in
this experiment which caused variation in visual attention,
but there was no objective measurement of selective attention
in this study. Thus, selective attention was not quantitatively
controlled. In this sense, it was possible that even when the
stimulus is not moving and people gaze at a stimulus, subjects
did not necessarily pay overt attention to the stimulus although
they were instructed to do so. Therefore, some kinds of objective
measurements are needed to investigate the effect of visual
selective attention. For example, in Xu et al. (2016) subjects
were asked to press a button when they realized the changes
in stimulus where they were paying covert attention. In future
research, we would like to test the influence of visual selective
attention in a rigorous way. Third, this experiment mainly
focused on offline data analysis, and the online experiment was
not performed. Therefore, it is worth further assessing the online
decoding performance of the SSVEP-based BCI applications
with inevitable head movements such as wheelchair control.

Conclusion

This study proposed a novel ball tracking paradigm to
investigate the influence of head movement and gaze fixation
switch on SSVEP responses and classification accuracy. Sixteen
subjects were recruited for this experiment. The offline data
analysis indicated that only the head movement could decrease
the performance of the SSVEP-based BCI while the changed
visual gaze fixation did not. Furthermore, the CCA and FBCCA
decoding method showed more robustness than PSDA and
MEC. This study suggested that head movement was one of the
critical influencing factors on the SSVEP-based BCI, and further
improvement has to be made in future applications.
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