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Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor
endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing
therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood
vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic
effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell
surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used
to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of
various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer
therapy.

1. Introduction

One of the primary goals of a successful cancer treatment
regimen is to deliver sufficient amounts of drug to tumors
while minimizing damage to normal tissues. Most chemo-
therapeutic agents enter normal tissues in the body with ind-
iscriminate cytotoxicity and do not preferentially accumulate
at tumor sites. At times the dose reaching the tumor may be
as little as 5% to 10% of the doses accumulating in normal
organs [1, 2]. One reason for the inability for drugs to
accumulate at target sites is that the interstitial fluid pressure
(IFP) in solid tumors is higher than in normal tissues, that
blocking transcapillary transport of chemotherapeutic drugs
or antibodies [3–5]. In this way, the anticancer effect is
decreased and toxic effect to normal cells is increased. Fear
of severely harming the patients often limits the dose of
anticancer drugs that can be given to a patient. These lower
than optimal doses elicit incomplete tumor responses which
leads to disease relapse and drug resistance. Therefore, most
cancer drugs fail in clinical studies not because they are
ineffective in killing cancer cells but because they cannot be

administered in doses high enough to eradicate the tumor
without severely harming the patient.

Several approaches have been developed to improve the
ability of anticancer drug to more specifically target tumors
and avoid normal organs. One of the most effective strategies
is to encapsulate drugs in particles that deliver them
preferentially to tumor sites. For example, liposome particles
have been found able to deliver radionuclides, genes, and
chemotherapeutic agents to tumor sites. [6–10]. Another
promising strategy is to encapsulate anticancer drugs in
liposomes conjugated with moieties, such as antibodies and
peptides, that target particular types of target tumor cells or
tumor vasculatures [11–13]. Use of internalizing ligands for
targeting liposomes conjugated with such moieties makes it
possible to deliver the chemotherapeutic drugs encapsulated
within them to the cytosol through the receptor-mediated
endocytosis [14–17]. This article reviews the current research
in developing liposomal drug delivery systems that use
peptide ligands to target blood vessels in solid tumors. We
discuss the identification of peptides that can target tumor
blood vessels and the use of targeting and nontargeting
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Figure 1: Selection of peptides that target tumor blood vessels using in vivo phage display. Peptide or antibody libraries are expressed as
fusion proteins with a coat protein (pIII) of a bacteriophage, and the fused proteins are displayed on the surface of the virion. A phage-
displayed peptide library was injected through the tail vein of tumor-bearing mice. Eight minutes after injection, the mice were perfused
through the heart. Phage recovered from the tumor was amplified and reinjected in mice for another four rounds. Tumor-targeting phages
were further identified by in vivo tumor-homing assay, synthetic peptide binding and competition assay, and immunohistochemical staining.
The identified peptides can be used as ligands to recognize cell surface markers or tumor antigens to develop targeted therapy. SCID mice
bearing human cancer xenografts were successfully treated with ligand-conjugated antiangiogenic targeting liposomes.

liposomes to encapsulate and deliver chemotherapeutic
drugs to tumor sites.

2. Inhibiting Angiogenesis

Virtually every conventional cytotoxic drug has been found
to be antiangiogenic in in vitro and in vivo models [18].
One treatment approach known as metronomic therapy
uses frequent administrations of low-dose antiangiogenic
agents to destroy vessels in tumors while decreasing the
toxicity to normal tissues [19–21]. For example, it has been
found in mice that frequent administration of relatively low,
noncytotoxic doses of liposome-encapsulated doxorubicin
can shrink various solid tumor xenografts [13, 16]. The
antiangiogenic agent bevacizumab (Avastin), a humanized
monoclonal antibody against vascular endothelial growth
factor (VEGF), has been used with some success to treat
advanced colon cancer. One study compared the effect
using three chemotherapeutic agents alone to treat advanced
colon cancer with using the three agents combined with
bevacizumab [22]. They found that the combined use of
chemotherapeutic agents and bevacizumab extended overall
survival by approximately 4.7 months compared to the use
of chemotherapeutic agents alone [22]. Other angiogenesis
inhibitors, including sunitinib and sorafenib, have also been

found to improve clinical outcomes when used to treat
various cancer types [23, 24].

The targeting of proliferating endothelial cells in the
blood vessels of tumors has several advantages. First,
endothelial cells in malignant tumors are genetically stable,
nonmalignant, and rarely drug resistant, compared to the
cancer cells [19, 21]. However, some recent studies show that
tumor-associated endothelial cells can acquire cytogenetic
abnormalities while they are in the tumor microenvironment
[25, 26]. Second, the destruction of endothelial cells using
this method amplifies the drugs antitumor effect. It has been
reported that the elimination of one endothelial cell can
inhibit the growth of as many as a hundred tumor cells
[27, 28]. Third, antiangiogenic therapy decreases IFP within
the tumor allowing better penetration by chemotherapeutic
agents [29–32]. For example, Jain found that bevacizumab
could decrease IFP by normalizing tumor vasculature and
decreasing vascular leakage [29, 33]. Fourth, antiangiogenic
therapy is known to inhibit the growth of both primary
and metastatic solid tumors. Finally, intravenously injected
angiogenesis inhibitors can directly reach endothelial cells.

In addition, we can take advantage of the differences
between endothelial cell plasma membrane proteins (i.e.,
vascular zip codes) to develop drug delivery systems capable
of guiding therapeutic or imaging agents to a particular
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Figure 2: Generation of peptide-conjugated liposomes targeting tumor blood vessels. A single lipid bilayer membrane separates an internal
aqueous compartment from the external medium. Doxorubicin was encapsulated in the internal compartment. Drug molecules are tightly
packed (10,000 to 15,000 molecules per liposome) in a gel phase. Tumor-homing peptide ligands were coupled to NHS-PEG-DSPE [N-
hydroxysuccinimido-carboxyl-polyethylene glycol-derived distearoylphosphatidylethanolamine] in a 1 : 1.5 molar ratio [13, 14, 50]. The
reaction was completed and confirmed by quantifying the remaining amino groups using TNBS (Trinitrobenzenesulfonate) reagent [51].
Peptidyl-PEG-DSPE was transferred to preformed liposomes after coincubation at a temperature above the transition temperature of the
lipid bilayer [52]. There were 500 peptide molecules per liposome [53]. The mean diameter of the targeting liposome is approximately 75 nm
[2, 13].

organ or tumor [34, 35]. Endothelial cells of blood vessels
within solid tumors express certain molecular structures that
are absent or minimally detectable in normal blood vessels
[13, 36, 37]. These structures can be used as molecular targets
for antitumor treatment.

3. Identifying Peptides That Target
Tumor Blood Vessels

The key to delivering drugs specifically to these targets is to
identify and use ligands that specifically bind to and that can
be internalized by endothelial cells in tumors. Combinatorial
peptide libraries displayed on microorganisms have become
a research tool for identifying cell surface-binding peptides
that can become targets for antitumor treatment. Of the
many molecular display techniques, phage display has been
the most popular approach. Phage display is a selection
technique in which a peptide or protein is fused with a coat
protein of bacteriophage and displayed on the surface of
the virion. Phage-displayed random peptide libraries have
helped researchers map B-cell epitopes [38–40], discover
protein-protein contacts [41, 42], and identify bioactive pep-
tides bound to receptors [43, 44] or proteins [45, 46]. Peptide
libraries can be used to find disease-specific antigens [47, 48]
and cell- [2, 49] and organ-specific peptides [16, 35, 36].

Recently, using affinity selection (biopanning) of phage-
displayed peptide libraries, researchers have discovered
molecules that are expressed on tumor blood vessels exclu-
sively [16, 34–36]. The strategy for identifying tumor-
targeting ligands and developing ligand-mediated targeted
therapy is shown in Figure 1. Researchers have used in

vivo affinity selection of phage libraries to identify peptides
that interact with the molecules found on endothelia in
tumors [34, 36]. The NGR peptide motif targets angio-
genic blood vessels [36] and the tumor-homing property
of NGR motif relies on recognition of a CD13 isoform
selectively expressed within tumor blood vessels [54]. Com-
pared with the nontargeting liposomal doxorubicin (Caelyx),
NGR peptide-conjugated Caelyx significant improvements
in survival was seen in clinically relevant animal models
of neuroblastoma, ovarian, and lung cancers [17]. Another
peptide, SP5-52, has been found to recognize blood vessels
created in tumors but not normal blood vessels in severe
combined immunodeficiency (SCID) mice bearing solid
tumors. Several selected phage clones display Pro-Ser-Pro,
a motif crucial to peptide binding to tumor neovasculature
[13]. Several tumor homing peptides have been found to
bind to blood vessels in surgical specimens of human cancer
and they have also been found to home to tumor tissues of
different human tumor xenografts as confirmed by in vivo
homing assays [16]. These studies found a greater correlation
between increased tumoral accumulation of the targeting
liposomes and antitumor efficacy than the accumulation of
free drugs or drugs formulated in the nontargeting liposomes
[2, 13, 16].

4. Drug-Encapsulated Liposomes

Most of the drug delivery systems approved for marketing
are liposomal- or lipid-based formulations or therapeutic
molecules linked to polyethylene glycol (PEG) [6, 10, 55,
56]. One such product is PEGylated liposomal doxorubicin,
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Figure 3: Diagram of the molecular mechanism of peptide-conjugated liposomes on cancer therapy. These liposomes prolong circulation
time in blood and improve pharmacokinetic and biodistribution of their encapsulated drugs. After intravenous administration, liposomes
are large enough to be excluded from normal endothelium. In solid tumors, the angiogenic tumor vasculature becomes leakiness that
particulate liposomes can extravasate and localize in the tissue interstitial space making it possible for more drug delivering liposomes to
accumulate within the tumor by EPR effect. Coupling liposomes with peptides targeted to tumor cells or tumor vasculature further enhances
the specificity and accumulation of liposomes in the tumor. On arrival in the tumor tissues, the liposomes are bound and internalized
by tumor cells or tumor-associated endothelial cells through receptor-mediated endocytosis, fused with the low pH compartments of the
endosomes, and subsequently broken down the liposomes and to release encapsulated drugs into the intracellular space of the cells.

which is known as Doxil in the US and Caelyx in Europe
[57]. It is currently approved for the treatment of AIDS-
related Kaposi’s sarcoma and recurrent ovarian cancer
in North America, Europe, and other countries, and for
metastatic breast cancer in Europe. Liposome-encapsulated
doxorubicin has been found to significantly improve the
therapeutic index of doxorubicin both in preclinical [58–60]
and in clinical studies [61–64]. An important advantage of
PEGylated liposomal doxorubicin is that the heart muscle
uptakes much less of it than free doxorubicin [58, 65].
One study found no cardiotoxicity in 40 patients receiving
cumulative doses of 500–1500 mg/m2 of doxorubicin [62].
Free doxorubicin, on the other hand, is limited to a max-
imum recommended cumulative dose of 450–550 mg/m2.
Colbern et al. found that the activity of PEGylated liposomal
doxorubicin 1-2 mg/kg was almost equivalent to that of free
doxorubicin 9 mg/kg in mouse Lewis lung carcinoma [59].
One clinical study reported that most (>98%) of the drug
circulating in the blood stream remains in encapsulated in

liposomes [61], suggesting that little of the liposomal drugs
will be leaked to the circulation system during its journey to
the tumor tissues.

The hyperpermeability of tumor vasculature is a key
factor for the success of liposome-delivered chemotherapy
agents. The “leakiness” of the angiogenic tumor vasculature
is estimated to have an average pore size of 100–600 nm [66].
These pores are significantly larger than the gap junction
found in normal endothelium, which are typically <6 nm
wide [67]. Liposomes with diameters of approximately 65–
75 nm [13, 14, 50] are small enough to passively infiltrate
tumor endothelium but large enough to be excluded from
normal endothelium. Hence, they selectively extravasate into
the tumor interstitial space. In the tissue of solid tumors,
vasculature becomes so permeable that particulate liposomes
can extravasate and localize in the tissue interstitial space
[6, 10]. In addition, tumor tissues frequently lack effective
lymphatic drainage [3], which means that the liposomes
can be retained longer. Together, these factors increase the
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accumulation of the drug within the tumor, which has been
referred to as the “enhanced permeability and retention
(EPR) effect” by Maeda et al. [68, 69]. EPR-mediated passive
tumor targeting by liposomes can increase the concentration
of drugs in solid tumors by as much as ten times, compared
to free drugs [70].

Passively targeted liposomal drug delivery systems have
some disadvantages. Normal organ uptake of liposomes leads
to accumulation of the encapsulated drug in mononuclear
phagocytic system cells in the liver, spleen, and bone marrow
[63], which may present hazards to these tissues. For
example, with increased circulation time of these drugs may
come increased toxicity inducing such problems as hand-
foot syndrome, mucositis, and hematological toxicities such
as neutropenia, thrombocytopenia, and leucopenia [71–74].
Therefore, ongoing research aims at enhancing the tumor
site-specific action of the liposomes by attaching ligands to
surface molecules of tumor cells and tumor vasculature, a
process called active or ligand-mediated targeting liposomes
[5, 6, 13, 75].

5. Peptide-Mediated Targeting Liposomes

The disadvantage of the passive PEGylated liposomes can be
overcome by creating ligand-mediated targeting liposomes
with more selective anticancer activity. The activity of anti-
cancer drugs can be enhanced by coupling targeting moieties
to the surface of liposomes to promote selective binding
to tumor-associated antigens and facilitate the delivery of
drug-containing liposomes to the intended cellular sites. This
drug delivery system has a higher drug-to-carrier ratio than
immunoconjugates and multivalent presentation of ligands,
which increases their binding avidity [11].

Antibodies that bind to tumor-specific antigens have
so far yielded little success as a drug delivery system
for solid tumors, which make up more than 90% of all
cancers in humans. Although monoclonal antibodies have
shown clinical potential as tumor targeting agents, they
are limited by their large molecular size and poor tumor
penetration [76], by the immunogenicity associated with
immunoliposomes, and by their toxicity to liver and bone
marrow from nonspecific antibody uptake. These limitations
can be overcome by using peptide ligands, which are smaller,
less immunogenic molecules, and easier to produce and
manipulate. Furthermore, peptide ligands have moderate
affinity to antigens, which is beneficial because extremely
high affinity of antibody-binding can impair tumor pen-
etration [77]. Compared with antibody ligands, peptide
ligands can improve tumor penetration and decrease MPS
clearance of conjugated liposomes [50, 78]. The increasing
use of peptides as targeting ligands has been aided by the
use of phage display to identify novel ligands (Figure 1).
Researchers have already produced liposomes conjugated
with ligands that specifically target tumor cells or tumor
vasculature [5, 16, 17].

Peptide-conjugated liposomes have three main compo-
nents: anticancer drug, a liposome carrier, and targeting
peptide (Figure 2). Remote loading methods such as the
ammonium sulfate method [13, 79] and the pH gradient

method [80] can encapsulate weak bases such as doxorubicin
or vinorelbine into the liposomes with more than 95%
efficiency. Schedule-dependent drugs such as vinca alkaloids,
topotecan, and 5-fluorouracil are also potential candidates
for liposomal delivery because they can extend the time when
cancer cells are exposed to therapeutic levels of the drug.

The bioavailability and pharmacodynamics of liposome-
encapsulated chemotherapeutic drugs must be considered
in developing these delivery systems. To take advantage of
the EPR effect, liposomes need to have long half-lives so
that the drug stays within the carrier as long as possible
in blood circulation until it accumulates in diseased tissues
[81]. Once liposomes are localized to a solid tumor, the
drug they contain must be released and become bioavailable
at a rate remains therapeutically effective for a period of
time. The rate of active drug’s release into tumor cells, not
the total drug concentration in the tumor tissues, is critical
for measuring the actual bioavailability of the liposomal
drug [16]. Some targeting liposomes have not been found
to have greater therapeutic efficacy than passive liposomal
drugs, possibly because the lack of internalizing ligands
does not give the drug greater access inside tumor cells
[82, 83]. Drug delivery can be further enhanced if the
liposome-attached ligands bind selectively to internalizing
antigens which would help increase the concentration of
drugs inside tumor or tumor-associated endothelial cells
resulting in higher drug concentration inside the cells [13,
15, 84, 85]. This binding to internalizing antigens by ligands
can induce receptor-mediated endocytosis of liposomes into
endosome compartments with low pH, where the liposomes
break down and release the encapsulated drug into the
intracellular space (Figure 3). These steps lead to higher
intracellular drug concentration and greater destruction or
inhibition of tumor cells. Studies have confirmed greater
cytotoxic effects produced by liposomes with peptides that
target internalizing antigens through enhanced specificity
and improved drug bioavailability [2, 16].

The use of drug-encapsulated liposomes with ligands
to target tumor blood vessels allows us to destroy both
tumor blood vessels and tumor cells. In mice bearing
human cancer xenograft, low dose of peptide-conjugated
liposomal doxorubicin has been found to markedly inhibit
vascularization and reduce total volume and weight of
tumors [13, 16, 17]. The immunofluorescent analysis of the
tumors in several studies has revealed an association between
significant decreases in microvessel density and increases in
the apoptosis of tumor cells and tumor-associated endothe-
lial cells. The severe damage to tumor vasculature caused
by peptide-conjugated liposomal doxorubicin throughout
the tumors suggested an improvement in chemotherapeutic
efficacy over nontargeting liposomes and conventional drugs
[13, 16, 17]. This dual action may produce a greater, more
durable anticancer effect than is found with the use of simple
antiangiogenic therapy.

One peptide-conjugated liposome can deliver over ten
thousand anticancer drug molecules directly into target
tumor cells efficiently and effectively. The targeted and
sustained release of the drug molecules can increase the
maximum tolerated dose (MTD) of the cytotoxic drugs
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and dramatically lower dose-limiting toxicities, and in turn
prevent treatment delay or discontinuation. The affinity of
targeting ligands may allow the liposomes to move past the
high IFP barrier within tumors [4, 5, 13, 16].

Advances in nanotechnology and molecular biology are
moving us closer to developing an ideal “multifunctional
smart nanodrug delivery system” using various types of lig-
ands and drugs based on the kinds of diagnosis, imaging, or
therapy needed. Such smart nanodrug delivery systems will
allow accurate, specific, and noninvasive disease treatment,
early diagnosis, and monitoring. In the future, combining
ligands that specifically bind to cancer cells (including cancer
stem cells) and tumor blood vessels with multifunctional
liposomal drug delivery systems may help improve the
effectiveness of cancer treatment and minimize the side
effects traditionally associated with chemotherapy.

6. Conclusions

The development of highly selective anticancer drugs that
can discriminate between tumor cells and normal cells is
the most important goal of current oncology research. The
potential use of ligand-conjugated liposome-encapsulated
drugs to target tumor cells and vasculature is very promising.
Peptides that specifically bind to tumor targets can be cou-
pled to the PEG terminus of sterically stabilized liposomes
and subsequently precisely deliver chemotherapeutic agents
to tumor cells or blood vessels. Peptide-mediated liposomes
that target vasculature are a new generation of chemotherapy
delivery systems with superior pharmacokinetics, controlled
biodistribution, efficacy, and safety profiles.
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