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The protein kinases ERK1 and ERK2 are the effector components of the prototypical

ERK1/2 mitogen-activated protein (MAP) kinase pathway. This signaling pathway

regulates cell proliferation, differentiation and survival, and is essential for embryonic

development and cellular homeostasis. ERK1 and ERK2 homologs share similar

biochemical properties but whether they exert specific physiological functions or act

redundantly has been a matter of controversy. However, recent studies now provide

compelling evidence in support of functionally redundant roles of ERK1 and ERK2 in

embryonic development and physiology. In this review, we present a critical assessment

of the evidence for the functional specificity or redundancy of MAP kinase isoforms. We

focus on the ERK1/ERK2 pathway but also discuss the case of JNK and p38 isoforms.
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INTRODUCTION

Mitogen-activated protein (MAP) kinase pathways are evolutionarily conserved signaling modules
that play a key role in transducing extracellular signals into intracellular responses (Meloche,
2012). These signaling modules are found in plants, fungi and animals (Kultz, 1998). In mammals,
14 MAP kinase genes have been identified that define 7 distinct MAP kinase pathways. The
best-characterized MAP kinase pathways are the extracellular signal-regulated kinase 1(ERK1)/2,
cJun NH2-terminal kinase 1 (JNK1)/2/3, and p38α/β/γ/δ pathways. Phylogenetic analysis of the
evolutionary history of MAP kinase genes suggests that vertebrate MAP kinases originated from
3 precursors and have expanded through gene duplication during early vertebrate evolution
(Li et al., 2011). Thus, invertebrate species have less MAP kinases than vertebrate species. For
example, humans express two ERK isoforms, ERK1 and ERK2, whereas Drosophila expresses the
single ortholog Rolled. The expansion of vertebrateMAP kinase genes raises the important question
of whether mammalian MAP kinase isoforms have evolved unique physiological functions or are
used interchangeably to reach a threshold of global kinase activity. The current review addresses
this question.

ERK1 AND ERK2, TWO HOMOLOGOUS KINASES WITH SIMILAR
BIOCHEMICAL PROPERTIES

ERK1 and ERK2 are the effector kinases of the prototypical Ras-ERK1/2 MAP kinase
pathway. This signaling pathway processes information from a wide range of extracellular
stimuli to regulate cell proliferation, differentiation and survival (Pearson et al., 2001). ERK1
and ERK2 isoforms are encoded by distinct genes, which are located on chromosomes
16q11 and 22q11 in human, respectively (Li et al., 1994). They are co-expressed
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in almost all cell types and tissues, although their relative
abundance varies considerably from one tissue to another
(Boulton and Cobb, 1991; Boulton et al., 1991; Fremin et al.,
2015). Of note, some discrete regions of the adult mouse brain
express exclusively Erk1 or Erk2 mRNA, suggesting that a single
ERK isoform mediates cellular responses in these areas (Di
Benedetto et al., 2007). The two ERK proteins display 83%
amino acid identity overall and 100% similarity in residues
involved in catalysis and docking interactions with substrates
(Boulton et al., 1990, 1991; Busca et al., 2015). They share
similar biochemical properties and are activated by the upstream
kinases MEK1/2 with comparable efficiency in vitro (Robbins
et al., 1993). Hydrogen/deuterium exchange mass spectrometry
has revealed distinct patterns of activation-induced changes in
conformational mobility between ERK1 and ERK2 (Ring et al.,
2011). However, these differences in internal protein motions
do not appear to significantly impact protein kinase activity and
selectivity. ERK1 and ERK2 both recognize the same minimal
Ser/Thr-Pro primary sequence determinant on substrates, with
a preference for a proline at P-2 position (Gonzalez et al., 1991),
and have almost identical in vitro intrinsic kinase activity (Lefloch
et al., 2008). They phosphorylate hundreds of substrates (Yoon
and Seger, 2006; Courcelles et al., 2013) and, with the exception
of a few anecdotal reports (Chuang and Ng, 1994; Hanlon et al.,
2001; Hwang et al., 2009), no evidence has been provided for
a difference in substrate specificity between the two isoforms.
Quantitative proteomics analysis of the ERK1 interactome
in agonist-stimulated PC12 cells led to the identification of
284 ERK1-interacting proteins (von Kriegsheim et al., 2009).
Notably, all proteins tested also interacted with ERK2 in co-
immunoprecipitation assays. Thus, the two ERK isoforms display
similar biochemical properties.

EVIDENCE FOR SPECIFIC REGULATORY
MECHANISMS AND FUNCTIONS OF ERK1
AND ERK2

The question of whether ERK1 and ERK2 exerts specific
functions or act redundantly has been a subject of intense
research and controversy over the years. The unavailability
of activated alleles or selective pharmacological inhibitors of
ERK1 and ERK2 has complicated the analysis of their functions.
Expression of phosphorylation-defective or catalytically inactive
mutants of ERK1 or ERK2 has been used to successfully probe
the functions of the kinases, but these mutants exert dominant
interfering effects on both isoforms (Pages et al., 1993). The
development of small molecule pharmacological inhibitors of
MEK1/2, such as PD98059 and U0126, has provided invaluable
tools for dissecting out the role of the ERK1/2 MAP kinase
pathway in numerous cellular responses (Dudley et al., 1995;
Favata et al., 1998; Fremin and Meloche, 2010). However, these
reagents could not be used to discriminate the roles of each
isoform.

A number of studies have reported that ERK1 and ERK2
are regulated differentially in response to specific extracellular
stimuli or cellular contexts (Papkoff et al., 1994; English and
Sweatt, 1996; Kashiwada et al., 1996; Sarbassov et al., 1997;

Matos et al., 2005; Wollmann et al., 2005; Aceves-Luquero et al.,
2009; Chernova et al., 2009). However, these results should
be interpreted with caution as they rest on the use of non-
quantitative immunoblotting assays to monitor the activating
phosphorylation of ERK isoforms. In the vast majority of studies,
ERK1 and ERK2 were found to be co-activated in response to
various extracellular agonists (Lewis et al., 1998). Detailed kinetic
analyses in mouse fibroblasts have revealed that the two ERK
isoforms are coordinately phosphorylated and enzymatically
activated in response to mitogenic factors (Meloche, 1995).
Intriguingly, the scaffold protein MP1 (MEK Partner 1) was
proposed to interact preferentially with MEK1 and ERK1, and
to specifically enhance ERK1 activation (Schaeffer et al., 1998).
MP1 was later shown to form a heterodimeric complex with
the adaptor protein p14, which is required to localize MP1
to late endosomes and promote the endosomal activation of
both ERK1 and ERK2 isoforms (Wunderlich et al., 2001; Teis
et al., 2002). Conditional deletion of the p14 gene in the mouse
epidermis further demonstrated that p14 is required for the
global activation of ERK1 and ERK2 in the epidermis (Teis
et al., 2006), refuting the isoform-specific regulatory function
of the MP1-p14 scaffolding complex. It has also been reported
that the nucleocytoplasmic trafficking of ERK1 is slower than
that of ERK2 because of a unique sequence located in the
N-terminal extremity of ERK1 (Marchi et al., 2008, 2010).
As a consequence, ERK1 would have a reduced capability of
transducing proliferative signals to the nucleus. However, this
model requires rigorous validation by other groups and is
inconsistent with genetic studies of the individual roles of ERK1
and ERK2 in cell proliferation (see below).

The generation of genetically-engineered mouse models
bearing inactivating mutations in the Erk1 and Erk2 genes
and the advent of RNA interference (RNAi) technology has
allowed analysis of the phenotypical consequences of the specific
depletion of ERK1 or ERK2 in animals and cells. Erk1−/−

mice develop normally, are viable and fertile, and display
no observable phenotype (Pages et al., 1999). In contrast,
invalidation of the Erk2 gene in mouse severely compromises the
formation of ectoplacental cone and extra-embryonic ectoderm,
which give rise to mature trophoblast derivatives in the fetus
(Saba-El-Leil et al., 2003). Therefore, Erk2 disruption leads
to embryonic lethality early in mouse development after the
implantation stage at embryonic day (E) 6.5 (Hatano et al., 2003;
Saba-El-Leil et al., 2003; Yao et al., 2003). These observations
suggested for the first time that ERK1 and ERK2 could
exert specific biological functions in vivo. Further analysis of
ERK1- or ERK2-deficient mice has fueled the idea of isoform-
specific functions. Thus, it has been proposed that ERK1
specifically regulates adipocyte differentiation (Bost et al., 2005),
skin homeostasis and carcinogenesis (Bourcier et al., 2006),
cocaine-sensitive long-term depression of excitatory synaptic
transmission (Grueter et al., 2006), splenic erythropoiesis
(Guihard et al., 2010), and osteoclast differentiation (He et al.,
2011; Saulnier et al., 2012). A defect in thymocyte maturation was
originally described in ERK1-deficient mice (Pages et al., 1999)
but subsequent studies failed to confirm this phenotype (Fischer
et al., 2005; Nekrasova et al., 2005). Contradictory findings have
also been reported about the specific role of ERK1 in emotional
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learning and memory (Selcher et al., 2001; Mazzucchelli et al.,
2002). Heterozygous inactivation and conditional deletion of
Erk2 have been used to study the role of the kinase in specific
tissues. These studies have suggested that ERK2 preferentially
regulates cardiac myocytes survival (Lips et al., 2004), CD8 T
cell proliferation and survival (D’Souza et al., 2008), neural
development and associated cognitive functions and memory
(Satoh et al., 2007; Samuels et al., 2008), production of brain
collagen (Heffron et al., 2009), nociceptive sensitization (Alter
et al., 2010), oligodendrocyte differentiation (Fyffe-Maricich
et al., 2011), and social behaviors (Satoh et al., 2011a).

In vitro studies of cells depleted of ERK1 or ERK2 expression
by genetic disruption or RNAi have also contributed to the
idea of isoform-specific functions. For example, ERK1-deficient
keratinocytes show an impaired proliferative response to
mitogenic factors (Bourcier et al., 2006). On the other hand,
depletion of ERK2 was reported to specifically impair terminal
differentiation of skeletal myoblasts (Li and Johnson, 2006),
replication of hepatocytes (Fremin et al., 2007; Bessard et al.,
2008), transforming growth factor-beta-induced collagen
synthesis (Li et al., 2009), Ras-dependent epithelial-to-
mesenchymal transition (Shin et al., 2010), hepatocyte
growth factor-induced lung cancer cell migration (Radtke
et al., 2013), oncogenic Ras-induced senescence (Shin et al.,
2013), and regulation of gp130 expression (Bonito et al., 2014).
However, it should be emphasized that several other studies
have documented that both ERK isoforms similarly contribute
to the cellular response being studied (Liu et al., 2004; Wille
et al., 2007; Lefloch et al., 2008; Dumesic et al., 2009; Voisin
et al., 2010; Wei et al., 2010). Intriguingly, one group even
proposed that ERK1 and ERK2 exert antagonistic effects on
cell proliferation (Vantaggiato et al., 2006). This model was
disproved in subsequent studies (Lefloch et al., 2008; Voisin
et al., 2010).

The ERK1 gene has been reported to undergo alternative
splicing to encode the Erk1b transcript in the rat (Yung et al.,
2000) and ERK1c transcript in human (Aebersold et al., 2004).
A subsequent study proposed that ERK1c specifically regulates
Golgi fragmentation during mitosis in a non-redundant manner
with ERK1 and ERK2 (Shaul and Seger, 2006). Analysis of
ERK1 nucleotide sequences indicates that the Erk1b and ERK1c
transcripts derive from the retention of an intronic sequence
between exon 7 and exon 8 of the gene. Notably, the mouse Erk1
gene contains an intron of 79 nucleotides at this position, but
no evidence has been reported that this intron sequence can be
translated in mouse tissues. The lack of an ERK1b isoform in the
mouse raises doubts about the physiological importance of this
isoform.

FUNCTIONAL REDUNDANCY OF ERK1
AND ERK2: LESSONS FROM GENETIC
STUDIES

The observation that specific ablation of ERK1 or ERK2 causes
distinct phenotypes in cells or mice has been interpreted by many
authors as evidence for isoform-specific functions of the two

kinases. However, these studies did not take into account the
global level of ERK1/2 activity in the analysis of the phenotypes.
This is a crucial point since ERK1 and ERK2 are expressed
at different levels in cell lines and tissues, with ERK2 being
the predominant isoform in most tissues. Accordingly, this
may explain why depletion of ERK2 usually results in stronger
phenotypes than the loss of ERK1. The impact of the total activity
of ERK1 and ERK2 on phenotypic outcomes was analyzed
quantitatively in three in vitro studies. In a first study, Wille
et al. generated an epi-allelic series of stable ERK1 and ERK2
knockdown mouse T cell lines obtained by shRNA lentiviral
infections (Wille et al., 2007). They showed that T-cell receptor-
stimulated interleukin-2 production was dependent on both total
and phosphorylated ERK levels, with a similar contribution
of ERK1 and ERK2. In another study, Lefloch et al. have
used RNAi to silence the expression of ERK1 and ERK2 in
NIH 3T3 fibroblasts and examine their relative roles in cell
proliferation and immediate-early gene expression (Lefloch et al.,
2008). Depletion of ERK2 slowed down the proliferation of
NIH 3T3 cells, whereas reduction of ERK1 expression had no
effect. Interestingly, by clamping the expression of ERK2 to
a limiting level, they showed that depletion of ERK1 further
restrains cell proliferation, demonstrating that both isoforms
positively contributes to cell proliferation. Silencing of either
ERK1 or ERK2 expression was sufficient to inhibit the serum-
dependent transcriptional induction of immediate-early genes in
this model. Importantly, these authors established that ERK1 and
ERK2 have similar intrinsic kinase activity and demonstrated that
the relative expression level of the two ERK proteins correlates
with their ratio of activation state. Our group used a robust
genetic approach to analyze the individual roles of ERK1 and
ERK2 in cell proliferation using primary mouse embryonic
fibroblasts (MEFs) as model (Voisin et al., 2010). We showed
that individual loss of either ERK1 or ERK2 decreases the
proliferation rate of MEFs. The impact of ERK2 deficiency was
more severe, consistent with its higher level of expression in these
cells. Genetic disruption of both Erk1 and Erk2 genes resulted
in complete G1 arrest and premature replicative senescence.
By combining genetic disruption of Erk1 or Erk2 with RNAi
depletion of the alternate isoform, we were able to demonstrate
that the rate of MEF proliferation is strongly correlated with
the global level of phosphorylated ERK1/ERK2, which is dictated
by the relative expression of the two isoforms. Altogether, these
findings provided strong evidence for a redundant role of ERK1
and ERK2 in promoting cell proliferation.

In vivo analyses of genetically-engineered mutant mice also
suggested that ERK1 and ERK2 have redundant functions
in specific tissues. Conditional inactivation of Erk2 in the
developing neural crest leads to craniofacial abnormalities and
conotruncal cardiac defects, which are exacerbated by the
additional deletion of Erk1 (Newbern et al., 2008). Similarly,
Erk1 deficiency enhances the abnormal neurogenesis phenotype
in central nervous system-specific Erk2 conditional knockout
mice (Satoh et al., 2011b). Genetic deletion of Erk1 and Erk2
genes in hematopoietic cells coupled to reconstitution studies
with catalytically active or inactive ERK1 and ERK2 also revealed
that ERK1 and ERK2 play redundant kinase-dependent functions
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in the maintenance of hematopoietic stem cells and adult
hematopoiesis (Chan et al., 2013; Staser et al., 2013).

We have used complementary genetic approaches to
rigorously address the question of ERK1 and ERK2 specificity
or redundancy in embryonic development (Fremin et al., 2015).
In a first approach, we examined the impact of the progressive
deletion of Erk1 and Erk2 alleles on the development of the
placenta and embryo per se. We found that the weight of the
placenta and surface of the labyrinth is strictly correlated with the
total activity of ERK1/2 as monitored by anti-phospho-ERK1/2
immunoblotting analysis. Quantitative analysis of various
embryonic phenotypes (embryo size, weight, digit length) also
revealed a tight relationship between the extent of development
of embryos with different combinations of Erk1 and Erk2 alleles
and total ERK1/2 activity in embryonic tissues. As a second
approach, we asked whether ERK1 can substitute for ERK2
in mouse embryonic development. We found that ubiquitous
expression of an Erk1 transgene fully rescues the placental and
embryonic defects observed in ERK2-deficient embryos. ERK1-
only mice grow normally, are fertile and do not display any
overt phenotype. Expression of transgenic ERK1 also rescued the
proliferation defect of ERK2-deficient MEFs and restored normal
phosphorylation of a panel of ERK1/2 substrates. Our study
provides compelling and definitive evidence for a functionally
redundant role of ERK1 and ERK2 kinases during development
(Fremin et al., 2015). Interestingly, Aiodi et al. recently reported
a similar functional redundancy of the upstream kinases MEK1
and MEK2. Knock-in of Mek2 at the Mek1 locus rescued the
placental phenotype of MEK1-deficient mice (Aoidi et al., 2016).
These observations reinforce the notion that MEK1 and MEK2
isoforms activate ERK1 and ERK2 indiscriminately.

Differences in the phenotypes of Erk1 and Erk2 null mice are
attributable to differences in expression levels, with ERK2 being
the predominant isoform. The higher expression level of Erk2 in
most mammalian tissues can be related to a stronger promoter,
although further regulation by post-transcriptional mechanisms
cannot be ruled out (Busca et al., 2015). Importantly, ERK1 and
ERK2 proteins have a long half-life of over 50 h (Schwanhausser
et al., 2011) and no evidence of stimulus-induced change in
protein levels has been reported, indicating that ERK1/2 protein
expression levels are not subject to regulation by feedback
mechanisms. Furthermore, genetic disruption of a single ERK
isoform does not result in increased expression of the other
isoform as documented by immunoblotting analyses (Saba-El-
Leil et al., 2003; Voisin et al., 2010; Fremin et al., 2015).

The above findings underscore the concept that a threshold
of global ERK1/2 activity determines developmental progression
and phenotypic outcome (Figure 1). ERK1 and ERK2 provide
a pool of functionally interchangeable kinases available for
activation and different thresholds of ERK1/2 activity are
required for executing different developmental decisions in
specific cellular contexts. In most cells or tissues where ERK2
is the predominant isoform, loss of ERK2 results in a greater
decrease of total ERK1/2 activity associated with a broader
spectrum of phenotypic manifestations as observed in many
studies. Overexpression of the non-predominant ERK1 isoform
is sufficient to replenish the pool of ERK kinases, restore global

ERK1/2 activity and rescue the ERK2-associated defects. Thus,
phenotypes resulting from the depletion or genetic deficiency of
a single MAP kinase isoform should be cautiously interpreted in
the context of global MAP kinase activity.

The group of Philippe Lenormand recently reported the most
detailed analysis of the expression and evolution of ERK1 and
ERK2 protein sequences in vertebrates (Busca et al., 2015).
Interestingly, they found that the Erk1 gene has been lost in
all bird lineages and some amphibians, whereas squamates only
express ERK1 isoform, despite the presence of both Erk1 and
Erk2 genes. The finding that tetrapods can live by expressing only
ERK1 or ERK2 provides further demonstration of the functional
redundancy of ERK isoforms in animal physiology.

REDUNDANCY OF MAP KINASES: THE
CASE OF JNK1 AND JNK2

The JNK pathway provides another example where different
groups have reported contradictory conclusions about the
specificity or redundancy of closely relatedMAP kinase isoforms.
JNK1 and JNK2 are ubiquitously expressed in the mouse
although their expression levels vary across tissue types. Mice
deficient in either Jnk1 or Jnk2 gene exhibit distinct phenotypes,
suggesting that individual JNK isoforms may serve different
signaling functions (Davis, 2000). In addition, Jnk1−/− and
Jnk2−/− MEFs proliferate at different rates, a phenotype that
has been related to the expression levels of cJun (Tournier et al.,
2000; Sabapathy et al., 2004). Specifically, JNK1-deficient MEFs
have lower cJun levels and proliferate more slowly than wild type
MEFs as opposed to JNK2-deficient MEFs that express higher
levels of cJun and proliferate faster. These findings have led to
the hypothesis that JNK1 and JNK2 have distinct and opposite
roles in regulating cJun expression and cell proliferation (Ronai,
2004; Sabapathy and Wagner, 2004).

The group of Roger Davis has revisited the proposed negative
regulatory role of JNK2 on cJun expression and cell proliferation
using a chemical genetic approach (Jaeschke et al., 2006). They
introduced the M108G mutation in JNK2 to enlarge the ATP
binding pocket and render the kinase sensitive to the small
molecule inhibitor 1-NM-PP1 (Bishop and Shokat, 1999). The
mutant Jnk2M108G allele was integrated at the endogenous
Jnk2 locus by homologous recombination to generate mice
expressing analog-sensitive JNK2 kinase. Analysis of MEFs
bearing different combination of Jnk1 and Jnk2 alleles revealed
that pharmacological inhibition of JNK2 in JNK1 proficient
cells caused no change in cJun expression or cell proliferation,
contrary to the results obtained in Jnk2−/− cells. However,
both genetic ablation and pharmacological inhibition of JNK2 in
Jnk1−/− cells reduced cJun levels and inhibited cell proliferation.
These results demonstrated that JNK1 and JNK2 act redundantly
to increase cJun expression and promote cell proliferation. The
most likely explanation for the misleading phenotype of Jnk2−/−

cells is that loss of JNK2 leads to increased JNK1 function
by a compensatory adaptation mechanism. This adaptation is
not observed upon acute inhibition of the kinase and/or in
conditions where protein expression is maintained. This study
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FIGURE 1 | Functional redundancy within the MAP kinase family: a model to reconcile biochemical and genetic evidence. The expression levels of MAP

kinase isoforms are shown on the top and the resulting activation levels are illustrated graphically as global MAP kinase activity. A threshold of activity is required for

normal biological output. MAP kinase isoforms are activated by upstream MAP kinase kinases indiscriminately and the resulting global MAP kinase activity depends

on the level of expression of the individual isoforms. (A) In normal physiological conditions, both MAP kinase isoforms are activated with the predominantly expressed

kinase contributing to most activity. (B) Reduced MAP kinase expression results in decreased global MAP kinase activity but the activity remains above threshold

resulting in normal phenotypic outcome as exemplified by compound heterozygotes (ERK1/2, JNK1/2, or p38α/β). (C) Further reduction of MAP kinase expression (by

depletion of the predominant kinase isoform) lowers global MAP kinase kinase activity below the threshold and results in developmental defects (ERK2 or p38α) or

deficient cell proliferation (ERK2, JNK1). (D) Overexpression of the less predominant kinase restores global MAP kinase activity above threshold and rescues the

phenotypes associated with the loss of the predominant kinase (transgenic ERK1). Note that in this model, the maximum level of MAP kinase activity is dictated by

upstream activators such that the same global activity is observed under normal or MAP kinase overexpression conditions.

also highlighted the importance of using multiple experimental
approaches to interpret the phenotypes of mouse mutants, as
discussed above for ERK1 and ERK2.

P38α/β AND P38γ/δ KINASES HAVE
OVERLAPPING ROLES

The p38 MAP kinase pathway regulates numerous cellular
processes including adaptation to environmental stress, innate
immunity; cell cycle progression and cellular differentiation
(Cuenda and Rousseau, 2007; Cuadrado and Nebreda, 2010;
Trempolec et al., 2013). The mammalian p38 kinase family is
composed of four members, p38α, p38β, p38γ, and p38δ, of
which the p38α and p38β isoforms are the closest related isoforms
with 75% amino acid identity (Cuenda and Rousseau, 2007).
The two isoforms are ubiquitously expressed, although p38α is
the predominant isoform in most tissues. p38α and p38β are
commonly activated by a wide variety of environmental stresses
or inflammatory cytokines and share similar substrate specificity,
suggesting overlapping functions. Gene disruption studies have
revealed that p38α and p38β mouse mutants exhibit distinct
phenotypes. Specifically, loss of p38α is embryonic lethal owing
to defects in placenta morphogenesis (Adams et al., 2000; Allen

et al., 2000; Mudgett et al., 2000; Tamura et al., 2000). Conditional
deletion of p38α in the mouse embryo bypasses the embryonic
lethality but mice die shortly after birth as a result of lung
dysfunction (Hui et al., 2007). In contrast, the p38β knockout
is viable with no obvious phenotype (Beardmore et al., 2005).
This suggests, but does not prove, that the two kinases may have
specific roles in certain tissue types.

The group of Angel Nebreda used a combination of genetic
approaches to address the question of the specificity and
redundancy of p38α and p38β isoforms (del Barco Barrantes
et al., 2011). Their work suggested a specific role for p38α
in placental development since the placental defects resulting
from p38α deficiency could not be rescued by expression
of a p38β knock-in allele under transcriptional control of
the endogenous p38α promoter. On the other hand, several
embryonic phenotypes including defects in heart development,
spina bifida, and exencephaly were observed in compound p38α
and p38β deficient embryos but were absent in single gene
knockouts, indicating that that the two isoforms can compensate
for each other with respect to these defects (del Barco Barrantes
et al., 2011). These results demonstrate that p38α and p38β
have overlapping functions suggesting functional redundancy
of the two MAP kinase isoforms. Consistent with this idea,
the phenotypes observed were found to be dependent on the
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dosage of p38α and p38β. Specifically, embryos with a single
p38β knock-in allele in the p38 knockout background developed
to E18.5 and showed rescue of spina bifida and exencephaly
defects, but not heart defects. Upon increased dosage from the
two additional endogenous p38β alleles, the heart anomalies were
rescued and, more importantly, some of the animals survived
to adulthood, thereby overcoming the lung defects observed
in p38α-deficient animals (del Barco Barrantes et al., 2011).
These results are reminiscent of our observations in which
specific tissues requiring high levels of global ERK1/2 activity
showed defective development in absence of the predominantly
expressed ERK2 isoform, which could be completely rescued by
overexpression of ERK1 thus confirming that the two kinases are
interchangeable and that gene dosage is crucial (Fremin et al.,
2015). In the case of p38 isoforms, the possibility also exists that
the placental defects that persist in p38β knock-inmice are simply
the consequence of insufficient p38β expression. The use of a
transgenic approach in which higher ubiquitous expression levels
of p38β can be achieved may rescue this phenotype in which case
this would demonstrate that the two kinases are redundant.

Further evidence that p38α and p38β act redundantly comes
from work demonstrating that embryos lacking both p38α and
p38β genes are deficient in sex determination due to reduced
expression of the testis-determining gene Sry (Warr et al., 2012).
In another study, compound loss of p38α and p38β was shown to
compromiseMet signaling to p53 in the developing liver. The loss
of p53 Ser 389 phosphorylation by p38 MAP kinases in mutant
livers resulted in increased hepatocyte death (Furlan et al., 2012).
In these two studies, the phenotypes associated with the loss of
p38α and p38β were absent in mice deficient in one of the two
isoforms.

The two other members of the p38MAP kinase subfamily also
exhibit overlapping functions. p38γ and p38δ share 70% amino
acid identity (Cuenda and Rousseau, 2007) and mice deficient
for a single p38γ or p38δ isoform show no obvious phenotype
under normal physiological conditions (Sabio et al., 2005, 2010;
Remy et al., 2010; Risco and Cuenda, 2012). However, disruption
of both p38γ and p38δ genes has unveiled key roles of p38γ and
p38δ isoforms in tissue regeneration, innate immune responses,
inflammation, and tumorigenesis (Escós et al., 2016). Analysis
of compound p38γ and p38δ deficient mice revealed that both
kinases are required for physiological and pathological cardiac
hypertrophy (Gonzalez-Teran et al., 2016). The role of p38γ and
p38δ in the inflammatory response was documented in various
experimental mouse models such as lipopolysaccharide-induced
septic shock and acute liver failure (Risco et al., 2012; Gonzalez-
Teran et al., 2013) and collagen-induced arthritis models (Criado
et al., 2014). Similarly, in models of cancer associated with
chronic inflammation, such as colitis-associated cancer (Del
Reino et al., 2014) and the two-step chemical skin carcinogenesis

model (Zur et al., 2015), deficiency in p38γ and p38δ was shown
to decrease cytokine production and immune cell infiltration,
resulting in decreased tumor burden. Together, these studies
suggest that p38γ and p38δ isoforms may exert functionally
redundant roles. More rigorous genetic approaches similar to
those used to demonstrate functional redundancy of the ERK1/2,

JNK1/2, or p38α/β should be used to formally address this
question for p38γ and p38δ.

CONCLUDING REMARKS

We have used a combination of genetic approaches together with
quantitative analysis of embryonic phenotypes and ERK1/ERK2
activity to demonstrate that ERK1 and ERK2 isoforms are
functionally redundant in mouse development and physiology.
This conclusion is consistent with the discovery of animal species
that express only ERK1 or ERK2 and with studies showing
that the two isoforms share similar biochemical properties
and substrate specificity. Similarly, by combining multiple
experimental approaches, other studies have revealed that JNK
and p38MAP kinase isoforms exert functionally redundant roles.
These findings clearly illustrate the importance of using multiple
genetic, pharmacological and phylogenetic analyses to define the
physiological functions of related signaling proteins.

The question of MAP kinases redundancy has far-reaching
implications. Dysregulation of the ERK1/2, JNK1/2/3,
and p38α/β/γ/δ pathways has been causally linked to
human congenital syndromes and to a variety of diseases
including cancer, arthritis, fibrosis, cardiomyopathies, and
neurodegenerative diseases. Small molecule inhibitors of the
ERK1/2 pathway have been approved for the treatment of
BRAFV600E metastatic melanoma and other inhibitors of MAP
kinase pathways are undergoing clinical evaluation. It is therefore
crucial to determine whether the direct or downstream targets of
these inhibitors have specific or redundant functions.
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