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can vary significantly due to factors like geographic loca-
tion, hospital pricing policies, and payer agreements. 
On the other hand, in-hospital length of stay (LOS)-the 
duration between a patient’s admission and discharge-is 
a straightforward metric that can be uniformly applied 
across different healthcare systems to assess the quality 
and effectiveness of healthcare services. Analyzing LOS 
across different demographic and socioeconomic groups 
can also reveal disparities in quality of care and access 
to services, ultimately contributing to improved health 
equity.

Predicting LOS can be formulated as a survival analy-
sis problem, which aims to predict the time to a specific 
event-of-interest [1]. In our study, the event-of-interest 
is discharge to home. The dataset used in the research is 
the General Medicine Inpatient Initiative (GEMINI) data 
repository. The GEMINI repository contains detailed 
clinical and administrative data from more than 30 par-
ticipating hospitals across Ontario, Canada. The GEMINI 
data that we used covered six discharge categories: home, 
death, acute care institution, transfer to another facility, 

Introduction
Analyzing data from large healthcare repositories may 
offer valuable insights into the sources of inefficien-
cies and inequities within healthcare systems. One of 
the key challenges in healthcare is the diverse ways in 
which quality can be measured. While cost, in terms of 
dollars, is a relatively accessible indicator of efficiency, it 
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Abstract
Accurate in-hospital length of stay prediction is a vital quality metric for hospital leaders and health policy decision-
makers. It assists with decision-making and informs hospital operations involving factors such as patient flow, 
elective cases, and human resources allocation, while also informing quality of care and risk considerations. The aim 
of the research reported in this paper is to use survival analysis to model General Internal Medicine (GIM) length 
of stay, and to use Shapley value to support interpretation of the resulting model. Survival analysis aims to predict 
the time until a specific event occurs. In our study, we predict the duration from patient admission to discharge to 
home, i.e., in-hospital length of stay. In addition to discussing the modeling results, we also talk about how survival 
analysis of hospital length of stay can be used to guide improvements in the efficiency of hospital operations and 
support the development of quality metrics.
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discharge against medical advice, and other, as shown 
in Fig. 1a. We chose discharge to home as the event-of-
interest because it indicates that a patient’s condition 
has sufficiently improved, or been resolved, to the point 
that inpatient care is no longer needed. Other discharge 
types are inappropriate for assessing quality and effec-
tiveness of healthcare services because they are less suc-
cessful outcomes which may reflect increased frailty or 
death after treatment (e.g., death, acute care institution, 
transfer to another facility, left against medical advice), or 
loss of tracking (e.g. other). Thus patients who died in the 
hospital or were discharged under any of the other four 
discharge types were considered as censored instances.

Because of the presence of censoring, conventional sta-
tistical and machine learning predictive models are not 
directly applicable for analyzing survival data. Survival 
analysis enhances conventional regression models by tak-
ing into account both instances where target events are 
observed (uncensored instances) and instances that are 
not observed (censored instances). This approach utilizes 
more information than standard regression models, lead-
ing to more robust predictions.

In this research, we focus on predicting the LOS for 
patients with conditions commonly addressed in the 
General Internal Medicine (GIM) specialty. Specifi-
cally, we examine ten frequently observed diseases that 
are covered by the discipline of internal medicine. The 
ten diseases examined were: cerebral infarction, chronic 
obstructive pulmonary disease and bronchiectasis, 
fluid and electrolyte disorders, gastrointestinal hemor-
rhage, heart failure, intestinal infection, neurocogni-
tive disorders, pneumonia, septicemia, and urinary tract 
infections, with the proportions of each disease type 
appearing in the data set used in our analyses shown in 
the middle panel of Fig. 1a. After showing how survival 
analysis can be used to predict LOS, we will then discuss 

how the interpretation method can be used to improve 
the model’s explainability by identifying the most impor-
tant predictors for the LOS prediction. Model explain-
ability is important to healthcare providers because it 
provides interpretability, and if the interpretation is con-
sistent with expectations and background knowledge, 
then the model will be seen to be more trustworthy and 
there will be great confidence in the predicted results.

In our study, we began with a descriptive analysis using 
Kaplan-Meier curves [2] to examine the survival curves 
for each disease in the dataset. This analysis allowed us to 
assess the variability in-hospital LOS across different dis-
eases. The results of this analysis provided insights into 
whether 1) a single model for all diseases was adequate 
(if variability was minimal) or 2) tailored models for each 
disease were required (if variability was substantial). 
We then implemented five methods to predict LOS for 
each patient: the Standard Cox model [3], the XGBoost-
enhanced Cox model [4], the Random Survival Forest 
(RSF) [5], DeepSurv [6], and CoxTime [7]. The Standard 
Cox proportional hazards model was included as it is a 
standard method for survival analysis. The XGBoost-
enhanced Cox model and RSF are tree-based ensemble 
methods known for their ability to model non-linearities 
and generally perform well with tabular data [8]. Deep-
Surv and CoxTime are newer deep learning models that 
extend the Cox model to better handle non-linear rela-
tionships between input features and the outcome vari-
able. The concordance index (C-index) was used to 
evaluate the performance of the survival analysis models 
[9]. Finally, the Shapley Additive Explanations (SHAP) 
[10] method was employed to interpret the best perform-
ing model (which was the XGBoost-enhanced Cox model 
in our analysis) in terms of feature importance.

The research reported in this paper shows how sur-
vival analysis can support hospital leaders and health 

Fig. 1  The distribution of GEMINI data with regard to (w.r.t.) the discharge type (a), disease (b), and race (c) respectively
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policy decision-makers with modeling LOS. Besides LOS 
prediction, survival analysis has been widely applied to 
various healthcare problems, including modeling disease 
progression, identifying prognostic factors, and assess-
ing health risks. In the discussion section, we will also 
explore how survival analysis can guide projects aimed at 
improving hospital efficiency or identifying health equity 
concerns.

Methods
This section introduces the fundamental concepts of sur-
vival analysis, followed by a brief discussion of the meth-
ods used in this paper.

Overview and notations
In survival analysis, for each data instance (such as a 
patient), we can observe either a survival time(Oi) or 
a censored time(Ci). In non-recurrent event survival 
analysis, an instance is typically represented as a trip-
let (Xi, Ti, δi), where Xi ∈ R1×p denotes the feature 
vector and δi is the censoring indicator, which equals 
1 for an uncensored instance and 0 for a censored one. 
The dataset is right-censored if and only if the observed 
timeTi = min(Oi, Ci) is recorded during the study.

The main objective of survival analysis is to develop 
a predictive function fΘ(·) parameterized by Θ, such 
that the predicted survival time closely aligns with 
the actual survival time. To achieve this, the learn-
ing process involves estimating the parameter Θ by 
minimizing the empirical expectation of a loss func-
tion L(Θ; X, T, δ) =

∑N
i=1 ℓsur(fΘ(Xi), Ti, δi)), where 

N is the number of training instances. The loss function 
ℓsur(·) is specifically designed for survival analysis, utiliz-
ing both uncensored instances (where true survival times 
are known) and censored instances (where true survival 
times are unknown but must exceed the corresponding 
censored times).

The survival function and hazard function are the two 
primary functions used in survival analysis. The survival 
function represents the probability that the time to the 
event of interest is at least t, and is formally defined as 
S(t) = Pr(O ≥ t). It is a monotonic non-increasing 
function, as can be seen in the Kaplan-Meier curve pre-
sented in the results section. The hazard function, on the 
other hand, represents the rate at which events occur at 
time t, given that no event has happened before that time. 
It is formally defined as:

	
h(t) = lim

∆t→0

Pr(t ≤ O ≤ t + ∆t|O ≥ t)
∆t

.� (1)

Kaplan-Meier method
The Kaplan-Meier (KM) method is the most widely used 
nonparametric method for estimating survival functions 
[2]. Let O1 < O2 < · · · < OK(K ≤ N) represent a set of 
distinct ordered survival times for N(K ≤ N) instances. 
This ordered list indicates the moments at which events 
of interest occur among the N instances. In addition to 
these ordered survival times, there are also censoring 
times for instances where the events of interest have not 
been observed. At a specific time Oj (j = 1, 2, · · · , K), 
dj ≥ 1 denotes the number of observed events of interest, 
and rj  represents number of instances “at risk”, including 
those whose event or censoring times are greater than or 
equal to Oj . It is important to note that, due to the pres-
ence of censoring, rj ̸= rj−1 − dj−1. Instead the correct 
calculation is rj = rj−1 − dj−1 − cj−1, where cj−1 is the 
number of censored cases between Oj−1 and Oj . The 
conditional probability of surviving at time Oj  can then 
be defined as:

	
p(Oj) = rj − dj

rj
.� (2)

Based on this conditional probability, the product-limit 
estimate of survival function S(t) = P (O ≥ t) can be 
expressed as follows:

	
Ŝ(t) =

∏
j:Oj<t

p(Oj) =
∏

j:Oj<t

(1 − dj

rj
).� (3)

Alternatively, this can be represented using a recursive 
formula:

	
Ŝ(tj) = Ŝ(tj−1)(1 − dj

rj
),� (4)

where Ŝ(tj) and Ŝ(tj−1) are the survival probabilities at 
time tj  and tj−1, respectively.

Survival prediction methods
The standard Cox model
The Cox proportional hazards model is a widely used 
semi-parametric method for survival prediction [3]. 
For instance i, represented as (Xi, yi, δi), the hazard 
function h(t, Xi) in the Cox model is formulated as:

	 h(t, Xi) = h0(t)exp(Xiβ),� (5)

where h0(t) is the baseline hazard function which can 
be an arbitrary non-negative function of time. Xi ∈ Rp 
is the feature vector, and βT ∈ Rp  is the coefficient 
vector. The Cox model is a semi-parametric model 
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since the baseline hazard h0(t) is unspecified. For two 
instances X1  and X2 , the hazard ratio is

	
h(t, X1)
h(t, X2)

= h0(t)exp(X1β)
h0(t)exp(X2β)

= exp(X1β)
exp(X2β)

= exp[(X1 − X2)β],� (6)

which is independent of the baseline hazard function. 
Since the hazard ratio is time-invariant and all subjects 
share the same baseline hazard, the Cox model is a 
proportional hazards model.

Since the baseline hazard function h0(t) is unspecified, 
the coefficient β vector cannot be fitted using the stan-
dard likelihood function. To estimate β, a partial likeli-
hood estimator [3, 11] is applied. Let Xj  be the feature 
vector for the j-th instance whose event of interest occurs 
at time Oj , and let Rj  be the set of instances “at risk” at 
that time. The hazard ratio between the j-th instance and 
all “at risk” instances is formulated as:

	
h(Oj , Xj)∑

i∈Rj
h(Oj , Xi)

= h0(Oj)exp(Xjβ)∑
i∈Rj

h0(Oj)exp(Xiβ)
= exp(Xjβ)∑

i∈Rj
exp(Xiβ)

.� (7)

Given the fact that the event or censoring times of all “at 
risk” instances are greater than Oj , the above hazard ratio 
should be maximized. This maximization indicates that 
the j-th instance has a relatively higher risk of the event 
occurring compared to the risk among the instances that 
are still at risk. Considering all N instances the partial 
likelihood is defined as:

	
L(β) =

N∏
j=1

[
exp(Xjβ)∑

i∈Rj
exp(Xiβ)

]δj

.� (8)

It should be noted that if δj = 1, the j-th term in the 
product is the hazard ratio, when δj = 0, the correspond-
ing term is 1 and has no effect on the result. The coef-
ficient vector β̂ is estimated by maximizing the partial 
likelihood, or more efficiently, by minimizing the log-par-
tial likelihood

	
LL(β) = −

N∑
j=1

δj ·


Xjβ − log[

∑
i∈Rj

exp(Xiβ)]


 .� (9)

The XGBoost enhanced Cox model
The standard Cox model can only handle linear rela-
tionships between features and the targets, which fails 
to model nonlinear relationships. In this analysis, we 
employed a scalable and distributed gradient boosting 
library, i.e., XGBoost [4], to handle nonlinearities and 
provide more flexibility in survival analysis. More spe-
cifically, an ensemble tree based non-parametric model 

f̂(Xi) was used to model the hazard function, rather 
than a linear model Xiβ,

	 h(t, Xi) = h0(t)exp[f̂(Xi)],� (10)

and hence the log-partial likelihood of the XGBoost 
enhanced Cox model was

	
LLf̂ = −

N∑
j=1

δj ·


f̂(Xj) − log[

∑
i∈Rj

e(f̂(Xi)]


 .�(11)

DeepSurv
Recent advance in deep learning has led to its widespread 
applications in many domains including survival analy-
sis. In [6], the DeepSurv model was proposed to enhance 
standard Cox propotional hazard model by introducing 
a neural network (i.e., multi-layer perceptron) to model 
the non-linear relations between features and target. As 
in the previously mentioned XGBoost enhanced Cox 
model, the log-partial likelihood of the DeepSurv model 
can be formulated as Eq. (11); while, in DeepSurv model 
the f̂(Xi) is a neural network.

CoxTime
The above-mentioned standard Cox model and two 
Cox-based extension models all follow the proportional 
hazard assumption, i.e., hazard ratio between any two 
individuals remains constant over time. This assumption 
simplifies the problem but also provides restrictions. To 
alleviate this, in [7] the CoxTime model proposed a time-
dependent formulation for hazard function:

	 h(t, Xi) = h0(t)exp[f(t, Xi)].� (12)

The model in Eq. (12) is no longer a proportional hazards 
model, while its partial likelihood still follows a similar 
pattern:

	
LLf̂ = −

N∑
j=1

δj ·


f̂(Tj , Xj) − log[

∑
i∈Rj

e(f̂(Tj ,Xi)]


 ,�(13)

where Tj  is the event time of j-th instance.

Random survival forest
The random survival forest method extended the ran-
dom forest method by using a forest of survival trees 
for survival prediction [5]. The final survival estimation 
is derived from the ensemble cumulative hazard func-
tion (CHF) of the out-of-bag data from each tree. For a 
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specific leaf node l, the CHF is calculated by the Nelson-
Aalen estimator [12]

	
Ĥl(t) =

∑
ti,l<t

di,l

ri,l
,� (14)

where di,l and ri,l are the number of deaths and individu-
als at risk at time ti,l in the leaf node l, respectively.

Interpretation method
The Shapley Additive Explanations (SHAP) method is 
based on game theory, where each feature is treated as a 
player and the Shapley value measures each player’s con-
tribution to the final outcome [10]. The interpretation of 
the Shapley value for the j-th feature is defined as its con-
tribution Φj  to the prediction of this particular instance 
compared to the average prediction for the dataset. More 
specifically, let val( ) be the value function of features, i.e., 
the likelihood or negative Root-Mean-Square Difference 
(RMSE), in machine learning models, Φj  is calculated as:

	
ϕj =

∑
S⊆{1,...,p}\{j}

|S|!(p − |S| − 1)!
p!

[val(S ∪ j) − val(S)],�(15)

where S is a subset of the features used in the model 
and p is the number of features. We can see that 
val(S ∪ j) − val(S) assesses the gain resulting from add-
ing the jth feature in S. The order of adding the jth fea-
tures influences the gain. For example, if S is an empty set 
then the jth feature may dramatically reduce the RMSE 
of the prediction, but when S already contains a lot of fea-
tures then the jth feature may only reduce RMSE slightly. 
To overcome this issue, the Shapley value is calculated as 
the average gain for all possible orders. Therefore, it can 
provide an unbiased estimation of feature importance.

Dataset, experiments and results
Dataset
The dataset used in the research was selected from the 
GEMINI repository. The complete GEMINI data set is 

accessible at the following link: ​h​t​t​p​​s​:​/​​/​g​e​m​​i​n​​i​m​e​​d​i​c​​i​n​
e​.​​c​a​​/​t​h​​e​-​g​​e​m​i​n​​i​-​​d​a​t​a​b​a​s​e​/. Note that the GEMINI data 
is publicly available but restricted to authorized users. 
Access requires an application, completion of required 
training, and signing a Data Use Agreement.

We first conducted a brief data exploration to examine 
the basic characteristics of our selected GEMINI data. As 
shown in Fig. 1a, 69.1% of patients were discharged with 
the desired medical outcomes and returned home, 6.7% 
died during hospitalization, and the remaining 24.2% 
were either transferred for additional rehabilitation (e.g., 
to another hospital or acute care facility), discharged 
against medical advice, or lost to follow-up (labeled as 
‘other’). In our study, 69.1% of patients are considered as 
uncensored instances (those who were successfully dis-
charged to their residences), while the remaining 30.9% 
were censored instances, as they did not achieve the 
ideal outcome. The censored ratio for each disease is 
listed under the “Censored ratio” column in the Table 1. 
According to an annual report from the Auditor General 
of Ontario, 74% of inpatients in Ontario are discharged to 
home [13], and the Canadian Institute for Health Infor-
mation reports that 5.8% of inpatients across Canada are 
discharged to acute care institutions [14].

The dataset that we used contained 118,357 unique 
admissions (samples), encompassing ten distinct types 
of diseases within General Internal Medicine: cerebral 
infarction, chronic obstructive pulmonary disease and 
bronchiectasis, fluid and electrolyte disorders, gastroin-
testinal hemorrhage, heart failure, intestinal infections, 
neurocognitive disorders, pneumonia, septicemia, and 
urinary tract infections. The number of admissions (sam-
ples) for each disease is listed under the “No. of samples” 
in Table 1, with the corresponding distribution illustrated 
in Fig. 1b.

In Fig. 2, we show the KM curves of each disease type. 
Approximately 90% of patients were discharged within 
30 days. Patients who suffered from cerebral infarction, 
neurocognitive disorders, and septicemia stayed in hospi-
tal dramatically longer than patients with the other seven 
types of disease. This reflects the fact that the average in-
hospital LOS differs widely between diseases, and hence 
disease type is a strong predictor for in-hospital LOS.

Since this study focused on analyzing potential LOS 
during patient admission, we excluded variables that 
were only accessible during or at the end of the inpatient 
stay. The preprocessed data included 30 variables from 
admission data: 

1.	 Ten one-hot-encoded variables were derived from 
the admission diagnosis disease type, with the 
corresponding distribution illustrated in Fig. 1b.

2.	 Nine demographic variables include age (distribution 
in Fig. 3a), gender (50.83% Female, 49.17% Male), and 

Table 1  Descriptions of dataset with respect to each disease
Diseases No. of samples Censored ratio
Cerebral infarction 12079 0.536
Chronic obstructive pulmonary 14446 0.219
Fluid & electrolyte disorders 7417 0.226
Gastrointestinal hemorrhage 8703 0.188
Heart failure 17310 0.251
Intestinal infection 7728 0.147
Neurocognitive disorders 10236 0.399
Pneumonia 17138 0.286
Septicemia 8935 0.548
Urinary tract infections 14365 0.28

https://geminimedicine.ca/the-gemini-database/
https://geminimedicine.ca/the-gemini-database/


Page 6 of 12Li et al. BMC Health Services Research          (2025) 25:741 

seven one-hot-encoded race variables: Indigenous, 
White, Black, Asian, Latin American, Arab, and 
Other. The racial distribution is shown in Fig. 1c. 
Since the data were collected from urban hospitals, 
the race distribution differs from the 2021 Canada 
census data, which reports 5.0% Indigenous, 
69.8% White, 4.2% Black, 14.6% Asian, 1.4% Latin 
American, 1.8% Arab, and 3.2% Other [15].

3.	 Five basic vital signs were collected at the 
time of patient admission: body temperature 
(36.87 ± 0.64 ◦C), heart rate (68.39 ± 13.74 
beats per minute (BPM)), systolic blood pressure 
(130.05 ± 23.67 millimeters of mercury (mmHg)), 
diastolic blood pressure (86.83 ± 16.09 mmHg), and 
pain level (ranging from 0 to 10, with an average of 
2.08 ± 2.91).

4.	 Two pre-admission variables: 

(a)	“duration_er_stay_hours” stands for the length 
of stay (in hours) in emergency room, and its 
distribution in the experimental data is shown in 
Fig. 3b.

(b)	“prev_admission_gim_30 d” is the indicator of 
whether the patient was admitted within 30 days 
before the current admission. In the dataset, 
11.14% of patients had a prior admission within 
this timeframe.

5.	 Four commonly used derived healthcare scores and 
indexes: 

(a)	“admit_frailty_score” is a hospital frailty risk 
score derived from pre-admission, transfer, 
and emergency room diagnoses. It screens for 
frailty and identifies patients at higher risk of 
adverse outcomes [16]. The distribution in the 
experimental data is shown in Fig. 3c.

(b)	“modified_laps” is a modification of the standard 
Laboratory-based Acute Physiology Score 
(LAPS). Standard LAPS integrates information 
from following 14 pre-admission (i.e., emergency 
department) blood tests: serum albumin, anion 
gap, arterial pH, PaCO2, PaO2, bicarbonate, 
total serum bilirubin, blood urea nitrogen, serum 
creatinine, serum glucose, serum sodium, serum 
troponin I, hematocrit, and total white blood cell 
count in thousands [17]. In “modified_laps” the 
test “serum troponin I” is excluded as it is very 
sensitive. The distribution of the variable in the 
experiment is shown in Fig. 3d.

(c)	“admit_elixhauser_index” is derived from the 
Elixhauser Comorbidity Index (ECI), calculated 
using inpatient pre-admission, transfer, and 
emergency room diagnoses. The ECI categorizes 
patient comorbidities based on International 
Classification of Diseases (ICD) codes [18]. A 

Fig. 2  Kaplan-Meier (KM) curves for all patients with different disease types. Patients whose discharge type is not “Home” are considered as censored. 
Note that as more than 99.5% of patients’ survival time or censored time are less than or equal to half year (183 days), so in this plot the KM curves are 
truncated at 183 days
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higher score indicates a greater likelihood of 
mortality or increased resource utilization. In 
the experimental dataset, the distribution of this 
variable is shown in Fig. 3e.

(d)	“admit_charlson_index” is derived from the 
Charlson Comorbidity Index (CCI), calculated 
based solely on inpatient pre-admission, transfer, 
and emergency room diagnoses. Developed 
in 1987 by Charlson et al., the CCI classifies 
comorbid conditions that may affect mortality risk 
[19]. It is the most widely used comorbidity index 
for assessing survival rates (1-year and 10-year) 
in patients with multiple comorbidities. The 
distribution of the “admit_charlson_index” in our 
experimental data is shown in Fig. 3f.

Additionally, based on the patient’s home address, we 
linked the admission records with detailed census data 
to derive 93 variables that reflect the socioeconomic sta-
tus of the corresponding neighborhood, including factors 

such as income, education, and employment rates [15]. 
The distribution of two key socioeconomic variables, 
“census_dependency” (average number of dependents) 
and “census_lab_part_rate” (employment rate) in the 
patient’s residential neighborhood, is shown in Fig. 3g 
and h, respectively. In summary, after data preprocessing, 
a total of 123 features were derived.

Experimental setup
We conducted experiments with the five models listed in 
“Methods” section. Note that as our target variable (i.e., 
hospital length of stay) was a continuous variable in the 
GEMINI dataset, we did not include the discrete-time 
survival analysis methods such as DeepHit  [20], Multi-
Task Logistic Regression (MTLR)  [21] and MTLSA [22] 
in our experiments. For each method, the experiments 
were conducted under two settings: 1) building a disease 
specific (Local) model for each disease, 2) building a one-
size-fits-all (Global) model for all ten diseases. Note that, 

Fig. 3  Distribution of eight important non-binary features
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in all one-size-fits-all models, the disease types are one-
hot encoded and the derived features are concatenated to 
the original feature matrix.

In our experiments, the Standard Cox propotional 
hazard model was trained using the coxph function in 
the survival package1  [23]. The XGBoost enhanced Cox 
Model was implemented in the XGBoost package2  [4]. 
The Pytorch implementation of DeepSurv and CoxTime 
models is available in the pycox package3  [7]. Note that 
these two deep learning methods use the same neu-
ral network architectures i.e., local models are multi-
layer perceptron (MLP) with two 32-node hidden layers 
and global models are MLP with one 64-node and one 
32-node hidden layers, and the dropout rate for all mod-
els were 0.2. The implementation of the random survival 
forest method can be found in the R package random-
ForestSRC4  [5]. All data pre-processing and experiments 
were carried out on a PC equipped with a 2.6 GHz 
6-Core Intel i7 CPU, 16GB DDR4 2667 MHz RAM, and 
512GB SSD storage, which was found to be sufficient to 
handle the size of data set (around 120k cases) used in 
this study.

Evaluation metric
Because of censoring, conventional regression evaluation 
metrics like R2 and Mean squared error (MSE) were not 
well-suited for survival analysis. To deal with this issue, 
the concordance index (C-index), or concordance prob-
ability, is commonly used in survival analysis to evalu-
ate the agreement between predictions and observations 
for pairs of instances [9]. For two instances (O1, Ô1) and 
(O2, Ô2), the concordance probability is defined as:

	 c = Pr(Ô1 > Ô2|O1 ≥ O2),

where Oi represents the actual survival time, and Ôi 
denotes the predicted survival time. In practice, this 
probability is calculated as the proportion of correctly 
ordered pairs among all comparable pairs. In the Cox 
model and its extensions, the hazard ratio is predicted. 
Instances with lower hazard rates are associated with 
longer survival; thus, the C-index is calculated as follows:

	

c =

∑
i∈{1···N |δi=1}

∑
Tj>Ti

I[Xiβ̂ > Xj β̂]
∑

i∈{1···N |δi=1}

∑
Tj>Ti

1
,� (16)

1 ​h​t​t​p​​s​:​/​​/​c​r​a​​n​.​​r​-​p​​r​o​j​​e​c​t​.​​o​r​​g​/​w​​e​b​/​​p​a​c​k​​a​g​​e​s​/​​s​u​r​​v​i​v​a​​l​/​​i​n​d​e​x​.​h​t​m​l
2 ​h​t​t​p​​s​:​/​​/​x​g​b​​o​o​​s​t​.​​r​e​a​​d​t​h​e​​d​o​​c​s​.​i​o​/​e​n​/​s​t​a​b​l​e​/
3 ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​h​a​v​a​​k​v​​/​p​y​c​o​x
4 ​h​t​t​p​s​:​​​/​​/​c​r​a​​n​​.​​r​-​​p​r​o​​j​e​​c​​t​.​​o​​r​g​​/​​w​e​​b​/​p​​a​c​​k​a​​g​​e​s​/​​r​a​n​d​​o​m​​F​o​r​e​s​​t​S​R​C​/​i​​n​d​e​x​.​h​t​m​l

where I[·] is the indicator function. Note that in the equa-
tion, Ti is the survival time of an uncensored instance, 
while Tj  can be either a survival time or a censored time. 
Thus, in addition to evaluating the concordance of pairs 
of uncensored instances, the C-index can also assess 
pairs that include one censored instance with a longer 
censoring time, making it robust for model evaluation in 
the presence of censoring.

Results
Table 2 summarizes the experiment results of four mod-
els under the aforementioned two settings, and all the 
results shown are the average of 10-fold cross validation. 
As shown in Table 2, the XGBoost enhanced Cox models 
outperformed the other three models on all 10 diseases. 
This was an expected result since the XGBoost enhanced 
Cox model is built based on the gradient boosting 
method, which is able to handle nonlinearities and hence 
is more powerful than linear models, and tree ensemble 
models usually outperform deep learning models in tabu-
lar data especially with the existence of categorical fea-
tures [8]. We can also observe that the disease specific 
XGBoost enhanced Cox models (XGBoost-Cox Local) 
outperformed the one-size-fits-all XGBoost enhanced 
model (XGBoost-Cox Global) on 9 out of the 10 diseases. 
This indicates that the heterogeneity among these 10 dis-
eases is too great to be handled by indicator variables (i.e., 
one-hot encoder vectors of disease type) in XGBoost. 
The average concordance index value across the diseases 
is around 0.7, which indicates that if we randomly choose 
a pair of patients the model will give us a correct order of 
their time to discharge and go back home with 70 percent 
accuracy. The C-index is a measure of how well a model 
ranks patients in terms of their risk, with higher values 
indicating better discriminatory power. An improvement 
in the C-index means the model can more accurately dif-
ferentiate between patients at high risk and those at low 
risk. This enhanced stratification should help healthcare 
providers prioritize interventions for high-risk patients, 
potentially reducing adverse outcomes.

To understand which feature contributed more to 
prediction, in Fig. 4, we plotted the summary of the 
Shapley values for all patients of the one-size-fits-all 
XGBoost enhanced Cox model. Figure 4 displays the top 
15 features, ranked by their contribution to the predic-
tion result. Among these 15 features: i) Six are disease 
diagnosis indicators: “cerebral infarction”, “urinary tract 
infection”, “fluid and electrolyte disorders”, “intestinal 
infection”, “heart failure”, and “Gastrointestinal hemor-
rhage”. ii) There is also one demographic variable: “age”. 
iii) Two socioeconomic variables: “census_dependency” 
and “census_lab_part_rate” were also shown to be rel-
evant iv) There were also four commonly used derived 
healthcare scores and indexes: “admit_charlson_index”, 

https://cran.r-project.org/web/packages/survival/index.html
https://xgboost.readthedocs.io/en/stable/
https://github.com/havakv/pycox
https://cran.r-project.org/web/packages/randomForestSRC/index.html
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“admit_elixhauser_index”, “admit_frailty_score”, and 
“modified_laps”. and v) two pre-admission variables 
“duration_er_stay_hours” and “prev_admission_gim_30 
d”. Figure  3 shows the distribution of eight non-binary 
features among the top 15 features.

In Fig. 4, we observe that most of the top 15 selected 
features are related to disease type, commonly used 

healthcare scores/indexes, and pre-admission variables. 
These factors align with both established medical domain 
knowledge and our descriptive analysis in Fig. 2, indi-
cating that the model can effectively identify key factors 
through data-driven learning. As a result, the learned 
knowledge is trustworthy, and the model is suitable for 
practical application. Moreover, as shown in Fig. 4, two 

Table 2  Performance comparison between standard Cox proportional hazard model, XGBoost enhanced Cox model, Deepsurv, 
CoxTime, and RSF using Harrell’s C-index (along with their corresponding standard deviations)
Diseases Standard-Cox Deepsurv CoxTime RSF XGBoost-Cox

Local Global Local Global Local Global Local Global Local Global
Cerebral infarction 0.678 0.662 0.694 0.701 0.729 0.713 0.701 0.704 0.739 0.714

(0.031) (0.031) (0.035) (0.034) (0.039) (0.037) (0.044) (0.046) (0.041) (0.043)
Chronic obstructive pulmonary 0.645 0.653 0.672 0.669 0.686 0.685 0.667 0.663 0.707 0.705

(0.013) (0.015) (0.021) (0.023) (0.015) (0.018) (0.021) (0.022) (0.025) (0.025)
Fluid & electrolyte disorders 0.626 0.622 0.669 0.666 0.669 0.664 0.661 0.663 0.686 0.696

(0.024) (0.024) (0.025) (0.025) (0.020) (0.024) (0.026) (0.029) (0.028) (0.031)
Gastrointestinal hemorrhage 0.663 0.651 0.684 0.679 0.687 0.67 0.671 0.669 0.692 0.675

(0.017) (0.019) (0.016) (0.016) (0.016) (0.018) (0.019) (0.016) (0.015) (0.016)
Heart failure 0.656 0.654 0.689 0.681 0.688 0.678 0.67 0.651 0.702 0.699

(0.008) (0.008) (0.008) (0.009) (0.006) (0.009) (0.009) (0.010) (0.009) (0.009)
Intestinal infection 0.596 0.615 0.646 0.646 0.657 0.66 0.652 0.653 0.675 0.646

(0.018) (0.020) (0.018) (0.021) (0.019) (0.019) (0.018) (0.016) (0.015) (0.014)
Neurocognitive disorders 0.645 0.634 0.643 0.653 0.656 0.66 0.643 0.652 0.685 0.664

(0.023) (0.025) (0.028) (0.022) (0.027) (0.028) (0.028) (0.031) (0.031) (0.025)
Pneumonia 0.672 0.662 0.676 0.661 0.677 0.675 0.663 0.659 0.678 0.675

(0.023) (0.029) (0.025) (0.027) (0.025) (0.030) (0.025) (0.026) (0.024) (0.025)
Septicemia 0.682 0.652 0.702 0.694 0.715 0.694 0.695 0.665 0.726 0.709

(0.027) (0.027) (0.027) (0.027) (0.027) (0.029) (0.027) (0.027) (0.027) (0.027)
Urinary tract infections 0.662 0.656 0.695 0.693 0.698 0.695 0.681 0.681 0.712 0.705

(0.015) (0.015) (0.016) (0.015) (0.014) (0.015) (0.019) (0.019) (0.014) (0.015)

Fig. 4  Model explanation via Shapley value to present feature attributions of top 15 features
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socioeconomic variables play a key role in LOS predic-
tion, demonstrating that factors like family financial bur-
den and employment status can significantly influence 
the length of a patient’s hospital stay. This also suggests 
that addressing these socioeconomic determinants could 
help reduce disparities in hospital care and improve 
patient outcomes. Note that besides the summary plot, 
we can also generate a detailed plot to visualize the con-
tribution of each feature for an individual patient, as 
shown in Fig. 5.

Discussion
Leveraging survival analysis and explainable artificial 
intelligence (XAI) techniques for predicting in-hospital 
length of stay (LOS) offers numerous practical applica-
tions in healthcare, with the potential to significantly 
improve both patient care and clinical operations. Below 
are some practical applications: 

1.	 Personalized Patient Care and Early Intervention: 
Combining survival analysis with XAI offers valuable 
insights into patient characteristics and treatment 
factors that influence length of stay (LOS). By 
identifying patients at high risk for extended stays, 
clinicians can implement early interventions to 
prevent complications that may otherwise delay 
recovery.

2.	 Enhancing Clinical Research: XAI models provide 
transparency in prediction models by explaining 
the factors driving the prediction of a patient’s 
LOS. By leveraging XAI techniques, healthcare 
professionals can gain insights into the underlying 
data and the rationale behind model predictions. 
This understanding not only aids in refining clinical 
reasoning and decision-making but also fosters 
clinical research into how to reduce the impact of 
factors that tend to increase LOS.

3.	 Improving Patient Engagement and Satisfaction: 
By providing patients and their families with more 
accurate expectations about treatment outcomes 
and the duration of their hospital stay, hospitals 
can reduce uncertainty and help patients feel more 
informed and in control of their care. Meanwhile, 
this enables better planning for patient discharge, 
including home care, follow-up appointments, and 

rehabilitation, which contributes to improved post-
discharge outcomes.

4.	 Improving Hospital Operations and Resource 
Allocation: By accurately forecasting patient LOS, 
hospitals can better manage patient flow, reducing 
overcrowding and avoiding delays in the admission of 
new patients. Specifically, accurate LOS predictions 
enable more effective planning in areas such as 
staffing, bed availability, and medical supplies.

5.	 Improving healthcare equity and Resource 
Allocation: Using survival analysis combined with 
explainable artificial intelligence (XAI) in predicting 
in-hospital length of stay (LOS) has the potential to 
significantly improve healthcare equity by ensuring 
that all patients, regardless of their background, 
receive timely and appropriate care. For example, 
using survival analysis and XAI techniques we can 
address questions relating to the fairness of hospital 
interventions, as in the following example questions. 
Do racialized or economically disadvantaged patients 
presenting with urinary tract infections experience 
longer hospital stays? Do women who are frail suffer 
more in-hospital events that delay their discharge 
more than frail men experience?

Conclusion and future work
In this paper we show how survival analysis can be used 
to predict LOS, and how Shapley values can be used to 
interpret results with respect to key predictors. The 
methods and analytical techniques presented in this 
paper can be readily applied to other datasets. Future 
research on prediction of LOS and other healthcare out-
comes amenable to survival analysis may be carried out 
on a wide range of data. The analyses presented in this 
paper could also be extended in future research in the 
form of predictive tools for GIM LOS that could sup-
port healthcare leaders in decision-making surround-
ing health equity and operational considerations such as 
access to care, patient flow, healthcare human resources, 
etc. Ideally, findings concerning risk factors for disease, 
and for prolonged hospital stays, would then be paired 
with prevention and treatment strategies that can miti-
gate those risks, and that can be implemented in clinical 
decision support systems so that they can become part of 
clinical workflow.

Fig. 5  Shapley value of a certain patient
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