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Migratory birds are recently recognized as Vibrio disease vectors, but may be widespread

transporters of Vibrio strains. We isolated Vibrio cholerae (V. cholerae) and Vibrio

metschnikovii (V. metschnikovii) strains from migratory bird epidemic samples from 2017

to 2018 and isolated V. metschnikovii frommigratory bird feces in 2019 from bird samples

taken from the Inner Mongolia autonomous region of China. To investigate the evolution

of these two Vibrio species, we sequenced the genomes of 40 V. cholerae strains and

34 V. metschnikovii strains isolated from the bird samples and compared these genomes

with reference strain genomes. The pan-genome of all V. cholerae and V. metschnikovii

genomes was large, with strains exhibiting considerable individual differences. A total

of 2,130 and 1,352 core genes were identified in the V. cholerae and V. metschnikovii

genomes, respectively, while dispensable genes accounted for 16,180 and 9,178 of all

genes for the two strains, respectively. All V. cholerae strains isolated from the migratory

birds that encoded T6SS and hlyA were non-O1/O139 serotypes without the ability to

produce CTX. These strains also lacked the ability to produce the TCP fimbriae nor

the extracellular matrix protein RbmA and could not metabolize trimetlylamine oxide

(TMAO). Thus, these characteristics render them unlikely to be pandemic-inducing

strains. However, a V. metschnikovii isolate encoding the complete T6SS system was

isolated for the first time. These data provide new molecular insights into the diversity of

V. cholerae and V. metschnikovii isolates recovered from migratory birds.

Keywords: Vibrio cholerae, Vibrio metschnikovii, comparative genomics, migratory bird, pathogenic

INTRODUCTION

Vibrio is an abundant bacterial genus in oceans and comprises numerous species including
pathogenic types such as Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio metschnikovii. They
are often observed in high abundance in marine products.Vibrio are halophilic and naturally found
ubiquitously in marine settings, and thus raw seafood naturally harbors these microorganisms
and is the main food source responsible for gastroenteritis caused by Vibrio spp. (1). Cholera is
caused by V. cholerae that carry the cholera toxin and has resulted in seven pandemics throughout
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human history. The seventh V. cholerae pandemic continues
to present day, and exhibits evolved characteristics compared
to previous pandemics, rendering it difficult to treat cholera
disease outbreaks (2, 3). One commonality between the sixth
and seventh pandemics has been observed to be associated
with the CTX8 bacteriophage that may have introduced the
CTX toxin to V. cholerae. Nevertheless, the strains underlying
the seventh pandemic did not directly evolve from those
underlying the sixth pandemic (2). In contrast to V. cholerae,
few reports have described characterizations of V. metschnikovii,
with only some studies focused on detection and no reports on
their pathogenicity.

Migratory birds have been considered potential vectors
of V. cholerae, wherein colonization of their intestines may
occur by ingesting water and marine animals infected with V.
cholerae (4). Migratory birds travel over long distances and
could carry pathogenic microorganisms from one region to
another, spreading pathogenic microorganisms by excretion (5,
6). Therefore, migratory birds have been considered as important
reservoirs of Vibrio, forming a fecal-food-mouth transmission
route (3). Within intestinal environments, Vibrio are induced to
evolve into treatment-resistant bacteria or pandemic strains due
to stresses they are exposed to. Consequently, increased risk of
bacterial spread and difficulty of bacterial source tracking occur
due to the long migration distances of vector birds.

Consequently, it is important to analyze the pathogenicity
of V. cholerae strains and whether they exhibit the potential to
evolve into pandemic strains. The concept of a pan-genome was
first proposed in 2005 and is a term that encompasses the sum of
all genes of a species, including their core-genome, dispensable
genome, and unique genome components (7). Importantly, the
population-level evolutionary trends of a species can be evaluated
by analyzing their pan-genome.

Migratory birds exhibiting malnutrition, wasting, diarrhea,
and high mortality were observed in the Inner Mongolia
region of China between 2017 and 2018. Dead birds comprised
individuals from several species including Larus ridibundus,
Pluvialis squatarola, Tadorna ferrgina, Anas poecilorhyncha,
and Aix galericulata, in addition to other migratory birds.
Moreover, 40 V. cholerae strains and 34 V. metschnikovii strains
were isolated from the migratory bird epidemic materials and
water environments. The V. cholerae strains were non-O1/O139
strains without the ctxA/B toxin, based on serotyping and PCR
identification. To further investigate this die-off, we conducted
a bacteriological examination again on migratory bird feces in
Inner Mongolia, China, in 2019. However, V. cholerae strains
were again not present in the samples, while onlyV.metschnikovii
was present. In this study, we analyzed the core-/pan- genomes of
V. cholerae/V. metschnikovii and compared them with previously
sequenced strains to evaluate whether migratory birds harbor

Abbreviations: PCR, Polymerase chain reaction; MLST, Multilocus sequence

typing; ARDB, Antibiotic Resistance Genes Database; VFDB, virulence factor

database; CARD, Comprehensive Antibiotic Research Database; COG, Cluster of

Orthologous Groups of proteins; GO, Gene Ontology; KEGG, Kyoto Encyclopedia

of Genes and Genomes; NR, Non-Redundant Protein Database. T6SS, Type VI

secretory system; T3SS, Type III secretory system; CTX, cholera toxin.

Vibrio spp. that have the potential to evolve into pandemic or
drug-resistant strains. These analyses thus provide important
data to inform the prevention and treatment of V. cholerae and
V. metschnikovii infections and/or outbreaks.

MATERIALS AND METHODS

Sampling
Thirty-six samples (including 10 water samples, 2 aquatic plant
samples, 19 epidemic material samples, and 24 feace samples)
were taken from birds in 2018 and 2019. DNA was obtained
from each fecal sample by stool DNA kit, and molecular method
to determine the host source of feaces (8). The visceral organ
and intestinal tract samples used for this study were collected
aseptically from 19 freshly dead migratory birds (not corrupt).
Samples were cultivated via spread plates in triplicate and directly
cultivated onto selective thiosulfate citrate bile salts sucrose
(TCBS) agar plates and incubated for 24 h at 37◦C. Isolates
were identified using PCR amplification of ompW, infC, ctxA,
hlyA, and chxA genes (9–13). The primers and conditions used
for PCR amplification are described in Supplementary Table 1.
In addition, V. cholerae isolates were subjected to O1/O139
antigen serotyping using V. cholerae O antisera (Tianjin Biochip
Corporation). Isolates were sub-cultured at 37◦C in brain heart
liquid (Qingdao Haibo, China) or on CHROM agar Vibrio
plates (CHROM, Paris, France) unless otherwise specified. Green
colonies were again confirmed using serology and PCR assays
(see Supplementary Table 1 for primer sequences and PCR
conditions). Isolates identified as Vibrio were then stored in a
−80◦C freezer.

Extraction of Genomic DNA and Library
Construction
Genomic DNA was extracted from isolates using the Bacterial
Genomic DNA Extraction Kit (Omega). Harvested DNA was
then quantified using a Qubit R© 2.0 Fluorometer (Thermo
Scientific). A total of 1 µg of DNA per sample was used as
inputmaterial for DNA library preparations. Sequencing libraries
were generated using the NEBNext R© UltraTM DNA Library
Prep Kit for Illumina (NEB, USA) following manufacturer’s
recommendations. In addition, indexing oligonucleotides were
added to sequences to identify each sample. Briefly, DNA samples
were fragmented by sonication to a size of 350 bp, followed
by DNA fragment end-polishing, addition of poly A-tails,
and ligation with full-length adaptors for Illumina sequencing,
followed by additional PCR amplification. Finally, PCR products
were purified (AMPure XP system), and the size distribution of
the libraries was analyzed using an Agilent 2100 Bioanalyzer and
quantified using real-time PCR. The whole-genomes of strains
were sequenced using an Illumina NovaSeq PE150 platform at
the Beijing Novogene Bioinformatics Technology Co., Ltd.

Genome Assembly
Reads containing Illumina PCR adapters and low-quality reads
were filtered from the dataset using readfq (vision 10). The
remaining good quality paired reads were assembled into
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scaffolds using the SOAP denovo (https://sourceforge.net/
projects/soapdenovo2/files/SOAPdenovo2/), SPAdes (http://
cab.spbu.ru/software/spades/), and ABySS (http://www.bcgsc.
ca/platform/bioinfo/software/abyss) assemblers (14–17). The
filtered reads were then used to close gaps in the scaffolds using
Readfq with the options: –rq1 input_1.fq, –rq2 input_2.fq,–
oq1 out_1.fq,–oq2 out_2.fq,–adp1 adapter_1.lst,–adp2
adapter_2.lst,– Q QUAL, PERCENT,–C QUAL, PERCENT,–
N PERCENT,–alen INT,–amis INT,–dup,–gz,–check1
read1.check,–check2 read2.check.

Genome Feature Predictions
Genome component prediction included prediction of coding
genes, repetitive sequences, non-coding RNAs, genomic islands,
transposons, prophages, and clustered regularly interspaced
short palindromic repeat sequences (CRISPRs). The Gene Mark
program was used to identify coding genes, while interspersed
repetitive sequences were predicted using the Repeat Masker
(http://www.repeatmasker.org/). Tandem repeats were identified
using the tandem repeats finder (TRF) program. Transfer RNA
(tRNA) genes were predicted using tRNA scan-SE (18–21), while
ribosomal RNA (rRNA) genes were identified using rRNAmmer
(22). Small nuclear RNAs (snRNA) were predicted by BLAST
searches against the Rfam database (23, 24). The Island Path-
DIOMB program was used to predict genomic islands and the
transposon PSI program was used to identify transposons based
on the homologous blast method (25). Lastly, PHAST was used
to predict prophages (http://phast.wishartlab.com/), and CRISPR
Finder was used to identify CRISPRs (26, 27).

Gene Function Prediction
Four databases were used to predict gene functions, including
the Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), Clusters of Orthologous Groups (COG) (28),
and non-redundant (NR) protein databases (29–32). In addition,
whole-genome BLAST searches were performed against the
above-mentioned four databases using an E-value threshold of
<1e-5 and a minimum alignment length percentage >40% as
criteria (33). Secretory proteins were predicted using the Signal
P database, and the prediction of Type I-VII proteins secreted
by pathogenic bacteria was based on the EffectiveT3software
program (34, 35). To evaluate pathogenic factors, pathogenicity,
and drug resistance analyses were also conducted using the
Virulence Factors of Pathogenic Bacteria (VFDB) and Antibiotic
Resistance Genes Database (ARDB) databases (36, 37).

Comparative Genomic Analyses
Comparative genomic analyses were conducted including
analysis of genomic synteny, the distribution of core- and
strain-specific genes, and phylogenetic analysis of gene families.
Genomic alignment between the sample and reference genomes
was performed using the MUMmer and LASTZ tools while
including 41 V. cholerae strains and 4 V. metschnikovii strains
as reference genomes (see Supplementary Table 2 for additional
details) (38). The analysis of genomic synteny was based on
alignment results. Core- and strain-specific genes were identified
based on rapid clustering of similar proteins with the CD-HIT

program while specifying a threshold of 50% pairwise identity
and a 70% length difference cutoff. A Venn diagram was then
used to show the relationships of core- and strain-specific genes
among samples. The MUSCLE software program was used to
align multiple single-copy core-encoded proteins identified by
the core-/pan-genome analysis. The aligned sequences were then
subjected to phylogenetic analysis using the TreeBeST program,
a neighbor-joining tree reconstruction algorithm, and 1,000
bootstrap replicates.

Multilocus gene sequence typing was conducted based on
sequence analysis of eight housekeeping genes (adk, gyrB, mdh,
metE, pgm, pntA, purM, and pyrC) using previously described
PubMLST protocols (https://pubmlst.org/databases.shtml). The
nucleotide sequences for each locus were analyzed with the
BioNumerics software program (version 7.6; Applied Maths,
Belgium) and compared against published sequences on the
PubMLST website. Sequence types (STs) were then determined
on the basis of the eight locus allelic profiles.

Nucleotide Sequence
Accession Numbers

The 74 sequences of V. cholerae and V. metschnikovii
were submitted to FigShare under the public
doi: 10.6084/m9.figshare.14417870. And C16-2-29, M13F,
M9D, M21D, M28D, and M29D uploaded Genbank database
at the same time, accession number GCA_014281135.1,
GCA_014305065.1, GCA_014267955.1, GCA_014267965.1,
GCA_014305075.1 and GCA_014305185.1, respectively.

RESULTS

Genome Sequencing
A total of 40 V. cholerae and 34 V. Metschnikovii strains were
identified in this study using PCR identification and comparison
of gene sequences against the non-redundant (NR) protein
database. All of the strains lacked the ctxA, tcpA, and chxA genes,
and were also non-O1/O139 serotypes by PCR. All isolates were
completely turbid after dripping V. cholerae O antisera and no
agglutination occurred, the result was the consistent as the PCR,
and it was identified as non-O1/O139 V. cholerae (Table 1).

Core- and Pan-Genomic Analysis
The V. cholerae pan-genomes were analyzed by dividing
them into core and dispensable genomes. A total of 40 V.
cholerae strains isolated from migratory birds were used in
comparison against 41 reference V. cholerae genomes retrieved
from GenBank. The number of core genes and the pan-genome
sizes of the V. cholerae strains are shown in Figure 1A as a
function of the number of genes within the genomes. The number
of core genes plateaued when plotting the number of core genes
against the reciprocal of the number of genomes included in the
estimates. In contrast, the pan-genome size steadily increased
with the addition of each additional genome, suggesting that
V. cholerae exhibited a large pan-genome. Overall, a total of
18,310 pan-genes, 2,130 core-genes, and 16,180 dispensable
genes were identified among all V. cholerae strain genomes
(Supplementary Table 3). In this study, the dispensable genome
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TABLE 1 | Characteristics of Vibrio cholerae and Vibrio metschnikovii isolates identified in migratory birds.

Isolate name Sampling

date

Species

identification

Host Sample location

C1F_2 2018.8.23 V. cholerae Larus ridibundus (lung) Chifeng, Inner Mongolia, China

C1C_1 2018.8.23 V. cholerae Larus ridibundus (intestines) Chifeng, Inner Mongolia, China

C1S_2 2018.8.23 V. cholerae Larus ridibundus (kidney) Chifeng, Inner Mongolia, China

C2XS_1 2018.8.23 V. cholerae Larus ridibundus (kidney) Chifeng, Inner Mongolia, China

C4C_1 2018.8.23 V. cholerae Himantopus (intestines) Chifeng, Inner Mongolia, China

C5G 2018.8.23 V. cholerae Pochard (liver) Chifeng, Inner Mongolia, China

C5G_R 2018.8.23 V. cholerae Pochard (liver) Chifeng, Inner Mongolia, China

C7F_1 2018.8.23 V. cholerae Larus argentatus (lung) Chifeng, Inner Mongolia, China

C8C_1 2018.8.23 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C8C_2 2018.8.23 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C11G_R 2018.8.23 V. cholerae Anas zonorhyncha (liver) Chifeng, Inner Mongolia, China

C11C_1 2018.8.23 V. cholerae Anas zonorhyncha (intestines) Chifeng, Inner Mongolia, China

C11S_2 2018.8.23 V. cholerae Anas zonorhyncha (kidney) Chifeng, Inner Mongolia, China

C18S_a 2018.8.30 V. cholerae Tadorna ferruginea (kidney) Chifeng, Inner Mongolia, China

C18p_2 2018.8.30 V. cholerae Tadorna ferruginea (spleen) Chifeng, Inner Mongolia, China

C18F_2 2018.8.30 V. cholerae Tadorna ferruginea (lung) Chifeng, Inner Mongolia, China

C18x_2 2018.8.30 V. cholerae Tadorna ferruginea (heart) Chifeng, Inner Mongolia, China

C18s_b 2018.8.30 V. cholerae Tadorna ferruginea (kidney) Chifeng, Inner Mongolia, China

C18s_2 2018.8.30 V. cholerae Tadorna ferruginea (kidney) Chifeng, Inner Mongolia, China

C18c_3 2018.8.30 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C18G_a 2018.8.30 V. cholerae Tadorna ferruginea (liver) Chifeng, Inner Mongolia, China

C18F_b 2018.8.30 V. cholerae Tadorna ferruginea (lung) Chifeng, Inner Mongolia, China

C18G_b 2018.8.30 V. cholerae Tadorna ferruginea (liver) Chifeng, Inner Mongolia, China

C18c_a 2018.8.30 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C18x_b 2018.8.30 V. cholerae Tadorna ferruginea (heart) Chifeng, Inner Mongolia, China

C19p_c 2018.8.30 V. cholerae Tadorna ferruginea (spleen) Chifeng, Inner Mongolia, China

C19F_3 2018.8.30 V. cholerae Tadorna ferruginea (lung) Chifeng, Inner Mongolia, China

C19c_a 2018.8.30 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C19c_B 2018.8.30 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C19G_b 2018.8.30 V. cholerae Tadorna ferruginea (liver) Chifeng, Inner Mongolia, China

C19F_1 2018.8.30 V. cholerae Tadorna ferruginea (lung) Chifeng, Inner Mongolia, China

C19S_b 2018.8.30 V. cholerae Tadorna ferruginea (kidney) Chifeng, Inner Mongolia, China

C19x_a 2018.8.30 V. cholerae Tadorna ferruginea (heart) Chifeng, Inner Mongolia, China

C19c_1 2018.8.30 V. cholerae Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

C19x_b 2018.8.30 V. cholerae Tadorna ferruginea (heart) Chifeng, Inner Mongolia, China

C19G_a 2018.8.30 V. cholerae Tadorna ferruginea (liver) Chifeng, Inner Mongolia, China

C19p_b 2018.8.30 V. cholerae Tadorna ferruginea (spleen) Chifeng, Inner Mongolia, China

C2W 2018.8.30 V. cholerae Water Chifeng, Inner Mongolia, China

C7W 2018.8.30 V. cholerae Water Chifeng, Inner Mongolia, China

C16_2_290 2017.8.4 V. cholerae Phalacrocorax Wuliangsuhai, Inner Mongolia, China

M4G_2 2018.8.23 V. metschnikovii Himantopus mexicanus (liver) Chifeng, Inner Mongolia, China

M5C_1 2018.8.23 V. metschnikovii Pochard (intestines) Chifeng, Inner Mongolia, China

M5C_2 2018.8.23 V. metschnikovii Pochard (intestines) Chifeng, Inner Mongolia, China

M7S_1 2018.8.23 V. metschnikovii Larus argentatus (kidney) Chifeng, Inner Mongolia, China

M7C_1 2018.8.23 V. metschnikovii Larus argentatus (intestines) Chifeng, Inner Mongolia, China

M9G_2 2018.8.23 V. metschnikovii Tadorna ferruginea (liver) Chifeng, Inner Mongolia, China

M11F_1 2018.8.23 V. metschnikovii Anas poecilorhyncha (lung) Chifeng, Inner Mongolia, China

M12C 2018.8.30 V. metschnikovii Pochard (intestines) Chifeng, Inner Mongolia, China

M13F 2018.8.30 V. metschnikovii Aix galericulata (lung) Chifeng, Inner Mongolia, China

M14Y 2018.8.30 V. metschnikovii Tadorna ferruginea (pancreas) Chifeng, Inner Mongolia, China

(Continued)
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TABLE 1 | Continued

Isolate name Sampling

date

Species

identification

Host Sample location

M14Y_1 2018.8.30 V. metschnikovii Tadorna ferruginea (pancreas) Chifeng, Inner Mongolia, China

M17C_1 2018.8.30 V. metschnikovii Migratory birds (intestines) Chifeng, Inner Mongolia, China

M19C_2 2018.8.30 V. metschnikovii Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

M19C_6 2018.8.30 V. metschnikovii Tadorna ferruginea (intestines) Chifeng, Inner Mongolia, China

M1W 2018.8.30 V. metschnikovii Water Chifeng, Inner Mongolia, China

M3W 2018.8.30 V. metschnikovii Water Chifeng, Inner Mongolia, China

MH3GW 2018.8.30 V. metschnikovii Water Chifeng, Inner Mongolia, China

MNW 2018.8.30 V. metschnikovii Water Chifeng, Inner Mongolia, China

MNW_3 2018.8.30 V. metschnikovii Water Chifeng, Inner Mongolia, China

M3X 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M7D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M8D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M9D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M14D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M15D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M16X 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M19X 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M21D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M26X 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M27D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M28D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M29D 2019.7 V. metschnikovii Larus ridibundus Chifeng, Inner Mongolia, China

M19_1W 2019.7 V. metschnikovii Water Chifeng, Inner Mongolia, China

M19_6WC 2019.7 V. metschnikovii Aquatic plants Chifeng, Inner Mongolia, China

was considered to comprise strain-specific genes. A heatmap
was constructed to identify the distribution of dispensable
genes among different V. cholerae strains. With the exception
of the strain TSY216 genome that contained 984 dispensable
genes, most other strains in the group C clade contained few
dispensable genes.

To analyze the V. metschnikovii pan-genome, 34 V.
metschnikovii strain genomes recovered from migratory bird
isolates and four reference genomes of V. metschnikovii strains
were used for comparative analysis. The size of the pan-genome
steadily increased with the addition of each additional genome
in the analysis (Figure 1B), suggesting that V. metschnikovii also
exhibited a large pan-genome. A total of 10,530 pan-genes, 1,352
core-genes, and 9,178 dispensable genes were identified among
all V. metschnikovii strains. Like the genomes of the V. cholerae
strains, most V. metschnikovii genomes did not contain many
dispensable genes, with the exception of strain M13F, whose
genome contained 1,048 dispensable genes.

Phylogenetic Analysis
Phylogenetic analysis indicated the presence of similar branching
patterns, wherein the V. cholerae genomes consistently grouped
into twomajor clades. The first clade containedV. cholerae strains
from the GenBank reference database and one strain (C16-2-
29) from our study. All of the other reference strains, with
the exception of strain NCTC30, were present in this clade. In

the first clade, strains harboring the cholera toxin (CTX) were
divided into group C, while the others in the first clade were
considered as group A. All of the strains identified in this study,
with the exception of strain C16-2-29 (Wuliangsuhai, 2017), were
present in the second clade, which was designated as Group B
(Figure 2).

MLST analysis of the pandemic V. cholerae strains was
conducted using eight different loci (adk, gyrB, mdh, metE,
pgm, pntA, purM, and pyrC). However, only seven different
loci (adk, gyrB, mdh, metE, pntA, purM, and pyrC) were
used for the MLST of the environmental V. cholerae strains
(Supplementary Table 3), since pgm was not detected in the
environmental strain genomes. With the exception of the C16-
2-29 genome, most of the housekeeping genes of V. cholerae
strains from migratory birds did not exhibit homology to known
genotypes in the pubMLST database. In addition, the pgm gene
was detected in the strain C16-2-29 genome, as observed for
the pandemic strain genomes. ST69 was the common sequence
typing classification for the pandemic strains, while the sixth
pandemic strain, O395, exhibited an ST73 sequence type. ST69
was not observed for the V. cholerae strains derived from
environments or migratory birds.

Phylognetically, the V. metschnikovii and V. cholerae strains
were genetically highly distant. The V. metschnikovii genomes
consistently grouped into two major clades, with the first
comprising V. metschnikovii strains from different samples and
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FIGURE 1 | Vibrio cholerae and Vibrio metschnikovii core-/pan-genome diversity curves. (A) The V. cholerae core- and pan-genomes are shown as a function of the

number of genomes included in the counts. Boxes represent one standard deviation around the median number of genes within the subsets, while the whiskers

indicate two standard deviations from the median. (B) The V. metschnikovii core- and pan-genomes are shown as a function of the number of genomes included in

the counts. Boxes represent one standard deviation around the median number of genes within the subsets, while the whiskers indicate two standard deviations from

the median.

the reference genomes. This first group was designated as
Group D. The second clade comprised four strains (M21D,
M28D, M9D, and M29D) designated as Group E (Figure 3).
A V. metschnikovii MLST database has not been established
yet, and thus the V. metschnikovii genomes were not subject to
these analyses.

Comparison of Gene Functional
Enrichment
Gene functions were predicted from the predicted genes and
subjected to functional gene enrichment analysis. The V.
cholerae core genes were enriched in numerous KEGG pathways
including the “E,” amino acid transport and metabolism, and “T,”
signal transduction mechanism pathways of the COG database.

The numbers of genes within the “T,” signal transduction
mechanism pathway, were enriched in group C genomes
relative to “E,” amino acid transport and metabolism pathways.
However, the otherV. cholerae strain genomes exhibited opposite
enrichment patterns (Figure 4).

To further investigate the functional differences encoded

by the Vibrio genomes, we analyzed the “metabolism and
environmental information processing” functional category
encoded by different V. cholerae group genomes. Differences
were observed in trimetlylamine oxide (TMAO) metabolism,
in addition to two-component systems. Specifically, only group
C genomes encoded complete TMAO systems. In addition,
the genomes of the other groups lacked TorA, and these
isolates are thus unable to metabolize TMAO. Differences
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FIGURE 2 | Phylogenetic analysis of V. cholera strains. Different colored blocks are used to indicate types and groups of strains on the left of phylogenetic tree. The

color legend is shown below the phylogenetic tree.

between the two groups of V. metschnikovii strain genomes
were minimal, although all group genomes were particularly

enriched in genes involved in the “E,” amino acid transport and

metabolism pathway.

Pathogenicity and Antibiotic-Resistance
Potential
The V. cholerae genomes generated in this study only
encoded partial RTX protein structures and not rtxA. In
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FIGURE 3 | Phylogenetic analysis of V. metschnikovii strain genomes. Different colored blocks are used to indicate types and groups of strains on the left of

phylogenetic tree. The color legend is shown below the phylogenetic tree.

FIGURE 4 | Functional classification of V. cholerae core genome COG functions. (A) COG functional classification of the core genomes of reference environmental V.

cholerae strains; (B) COG functional classification of the core genomes of migratory bird V. cholerae strains; (C) COG functional classification of the core genomes of

V. cholerae pandemic strains retrieved from the GenBank database.

addition, all of the groups encoded complete type VI secretory
systems (T6SS). The presence of drug resistance genes for
V. cholerae in the genomes generated here exhibited low
frequencies of resistance genes and the lack of plasmids
(Supplementary Table 4). All V. metschnikovii strains lacked
CTX, and RTX. However, the genomes of the four strains from
migratory birds (M13F, M9D, M29D, and M28D) encoded a
T6SS system. Among these, three strains (M9D, M29D, and
M28D) lacked other genes involved in secreting proteins (e.g.,

hcp and vgrG), while onlyM13F encoded a complete T6SS system
V. metschnikovii.

DISCUSSION

Vibrio cholerae acquired cholera toxin (CTX), which is the
primary reason for their ability to cause global pandemics, and
CTX acquisition occurred over a long evolutionary history (39).
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CTX was likely introduced to Vibrio by the CTXφ phage, while
the toxin co-regulated pilus (TCP) is also a critical colonization
factor of V. cholerae that serves as a receptor for CTXφ

(40). Other studies have indicated that AphA functions in a
previously unknown step in the ToxR virulence cascade and helps
activate the transcription of tcpPH. TcpP/TcpH, together with
ToxR/ToxS, then activate toxT expression, ultimately resulting
in the production of virulence factors like the cholera toxin
and TCP (41–43). Vibrio strains isolated in this study exhibited
unique combinations of virulence factor genes [e.g., ctx(-) tcpA(-
) hlyA(+) AphA(+) toxR(+) toxT(-) tcpP(-) tcpH(-)], and
thus they did not contain complete virulence factor regulatory
networks based on the lack of toxT.

The group C genomes identified in this study also encoded
the TMAO metabolic pathway, which differed from other Vibrio
groups based on core-/pan-genome analysis. The TorR response
regulator mediates TMAO induction of the torCAD operon
expression and was intriguingly observed in all of the V. cholerae
pandemic strains. With the exception of M66-2, all of the
other strains in group C also encoded CTX. The original M66-
2 strain did encode CTX, but CTX was knocked out of the
strain in a previous study (44). The TMAO metabolic pathway
exhibits a unique relationship with CTX production. Specifically,
human intestines are anaerobic, and V. cholerae, as a facultative
anaerobe, is able to grow by anaerobic respiration. CTX is a
major virulence factor of V. cholerae, and its production is
highly promoted during anaerobic growth using trimethylamine
N-oxide (TMAO) as an alternative electron acceptor (45).
The V. cholerae strains from environmental samples lacked
the torA operon, which could lead to an inability to conduct
TMAO respiration and thus produce CTX. However, the TMAO
metabolic signaling pathway was not observed in the migratory
bird V. cholerae strain genomes. Thus, it is likely that this
metabolic pathway is not present in all V. cholerae strains.
However, strain C16-2-29 shared very similar genomic attributes
with the reference pandemic strains, unlike the other migratory
bird V. cholerae strains. Specifically, the strain harbored the
ability to encode a complete TMAO metabolic pathway, despite
the apparent inability to produce CTX.

It should be noted that we were not able to exclude
geographical factors that can influence bacterial evolution or
differences in genomic contents. Strains that were isolated from
the same host species but that exhibit differences in two-
component systems will respond to external stresses differently.
We speculated that conditionally pathogenic V. cholerae would
unlike to evolve into a strain with CTX over a short period.
Accordingly, the cholera pandemic strains have all been
confirmed to be clonally related (2). The genomes of most
strains belonging to group C contained fewer dispensable genes
based on core-/pan-genomic analysis. A notable exception was
the genome of TSY216, which contained more strain-specific
genes. In addition to harboring two pairs of chromosomes, strain
TSY216 also harbors a giant replicon that could explain its high
strain-specificity relative to the others (46).

We additionally searched for other virulence genes in the
genomes of V. cholerae from migratory birds by comparing
them against the VFDB database. While the genomes contained

some of the pathway components to produce the RTX toxin,
they lacked the rtxA gene. rtxA deletion can cause a significant
reduction in RTX toxin production (47). All strain genomes also
encoded the T6SS system, while the V. cholerae genomes from
migratory birds also harbored complete T6SS pathways based
on KEGG analysis. T6SS was first discovered in V. cholerae in
2006 (48). Several of the V. cholerae groups encoded the T6SS
system, and thus T6SS is probably a specific secretion system
of V. cholerae. Only one of the three V. metschnikovii strain
genomes contained the gene encoding the spike protein for T6SS.
The V. metschnikovii strain encoding the spike protein of T6SS
was isolated from migratory bird epidemic materials, while the
V. metschnikovii strains that did not encode the spike protein
of T6SS were isolated from healthy migratory bird feces in the
second year. Importantly, T6SS without a spike protein does not
confer pathogenic ability. Nevertheless, these results indicate that
T6SS systems could have begun to evolve in V. metschnikovii
strains. The M19X and M13F strains were closely related in the
core genome phylogenetic analysis, although strain M13F did
not encode a complete T6SS structure. Furthermore, strainM13F
contained theHS I-I system that could activate T6SS, whileM19X
did not. Thus, different induction environments might activate
the expression of HS I-I.

Phylogenetic analysis indicated that the V. cholerae strains
from migratory birds (including strain NCTC30) were largely in
group B, with the exception of C16-2-29. Strain NCTC30 was
isolated from a World War One soldier with diarrhea (49). The
strain harbored the T3SS-1 system, conferring it cytotoxicity (50).
However, all of the migratory bird V. cholerae strains lacked the
T3SS-1 system.

MLST analysis revealed a high degree of diversity among
the strains that were evaluated. Indeed, these analyses indicated
that the migratory bird strains harbored numerous new V.
cholerae alleles and STs that have not been previously observed
in databases. A total of seven different loci were used for MLST
analysis of the environmental V. cholerae strains (excluding
strain C16-2-29), while MLST analysis of the pandemic
strains and C16-2-29 was performed using eight different
loci (Supplementary Table 2). The combined phylogenetic
analyses indicated that C16-2-29 was more closely related to
the pandemic strains than to the strains isolated from the
migratory birds.

In contrast to other migratory bird V. cholerae strains, C16-
2-29 was classified within group A. The primary difference
between the genome of this strain and other migratory bird V.
cholerae strains was differences in the sequence of the Cbb3-
type cytochrome oxidase. Accordingly, the genetic relationship
between strain C16-2-29 and strains from group C was low. The
COG group, “R,” functional genes were specifically enriched in
the C16-2-29 strain relative to the others. In addition, C16-2-
29 harbored a complete biosynthesis pathway for siderophore
group non-ribosomal peptides based on KEGG annotations,
while the other strains did not. The C16-2-29 strain was isolated
from the Wuliangsuhai area of the Inner Mongolia autonomous
region of China in 2017, while the other migratory bird V.
cholerae strains were isolated from the Chifeng area of the Inner
Mongolia autonomous region of China in 2018. Consequently,
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it is unclear whether differences in geographic location influence
the evolution of V. choleraemigratory bird strain genomes.

Transmissible elements similar to plasmids were not
found integrated into the V. cholerae and V. metschnikovii
genomes from migratory bird strains, indicating little chance of
transmitting and spreading resistance genes. Rather, inherent
resistance mechanisms were identified on the genomic
chromosomes. For example, efflux pump-based inhibition
is likely to be a viable strategy to overcome antibiotic resistance
for V. cholerae and V. metschnikovii strains present in migratory
birds. An important pathogenic characteristic to identify is
whether V. cholerae can form biofilms based on complete
formation pathways. All of the strains analyzed here exhibited
this capacity, except for the environmental strains and those
from migratory birds. Moreover, the biofilm formation capacity
of theV. metschnikovii strains was the same as the environmental
strains and V. cholerae strains from the migratory birds, wherein
the basement protein-forming gene RmbA was absent. Thus,
biofilms formed by these strains might be thinner than those of
group C, or they may not develop a three-dimensional structure
(51, 52). In addition, CTXφ phage has been observed in biofilms
(53), although it is yet unclear whether a relationship exists
between biofilm thickness and the presence of CTXφ phage.

Overall, our study demonstrates that V. cholerae strains
isolated from migratory birds do not exhibit genomic
features consistent with an ability to cause pandemics, or
otherwise be pathogenic. Specifically, these strains were
identified as non-O1/O139 serotypes and only conditional
pathogens. In addition, we document the first isolation of
V. metschnikovii strains with complete T6SS pathways. Both
V. cholerae and V. metschnikovii strains may cause intestinal
discomfort in migratory birds through the activities of T6SS
and hemolysin. In contrast, all strains with an ability to
form biofilms were identified in aquatic plant or animal
intestine environments.
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