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Abstract
Nuclear positioning plays an essential role in defining cell architecture and
behaviour in both development and disease, and nuclear location frequently
adjusts according to internal and external cues. For instance, during periods of
migration in many cell types, the nucleus may be actively repositioned behind
the microtubule-organising centre. Nuclear movement, for the most part, is
dependent upon coupling of the cytoskeleton to the nuclear periphery. This is
accomplished largely through SUN and KASH domain proteins, which together
assemble to form LINC (linker of the nucleoskeleton and cytoskeleton)
complexes spanning the nuclear envelope. SUN proteins of the inner nuclear
membrane provide a connection to nuclear structures while acting as a tether
for outer nuclear membrane KASH proteins. The latter contain binding sites for
diverse cytoskeletal components. Recent publications highlight new aspects of
LINC complex regulation revealing that the interplay between SUN and KASH
partners can strongly influence how the nucleus functionally engages with
different branches of the cytoskeleton.
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Introduction
The defining feature of metazoa is recruitment of diverse cell 
types into a broad range of tissues and organ systems. Such spe-
cialisation during development goes hand-in-hand with oftentimes 
extensive cellular remodelling. Think of non-contractile myob-
lasts fusing to form mature muscle fibres or neuroepithelial cells 
transforming into cortical neurons. Reorganisation of cellular 
architecture almost invariably involves structural and composi-
tional changes to the cytoskeleton, repositioning of organelles, 
and expansion or contraction of different cellular compartments. 
Even the nucleus, as the largest organelle in multicellular animals, 
may be the object of large-scale movements1. In certain cell 
types such as erythroblasts, it is even dispensed with entirely in a 
process of active ejection.

What has become increasingly clear is that the nucleus main-
tains extensive contacts with the cytoskeleton. In this way, it may 
function as a nexus for the dissemination of mechanical forces 
throughout the cell. It is also apparent that nuclear components 
may experience physical forces originating in the cytoplasm or 
even in the extracellular environment. This was demonstrated by 
Maniotis et al., who used ligand-coated beads to displace extra-
cellular matrix–associated plasma membrane proteins and their 
coupled cytoskeletal elements2. The result was distortion and 
dislocation of intracellular structures, including the nucleus, 
in the direction of bead movement. More surprising was the  
corresponding displacement of intranuclear landmarks such as 
nucleoli. Related experiments in which a microneedle was used 
to directly perturb cytoplasmic structures, including the cytoskel-
eton, gave qualitatively similar results. These conceptually simple 
experiments implied that there must be structures at the nuclear 
envelope (NE) that can mechanically couple nuclear and cyto-
plasmic components3. The identification of such structures in the 
intervening years has represented an important advance in our 
understanding of the biology of the NE and how this contributes 
to the organisation of both the nucleus and the cytoplasm4–7.

LINCing the nucleus and cytoskeleton
The interface between nuclear and cytoplasmic compartments 
is formed by the NE8. Its most prominent features are inner and 
outer nuclear membranes (INM and ONM) separated by a perinu-
clear space (PNS). The ONM shares multiple connections with the 
endoplasmic reticulum to which it is functionally related. In 
contrast, the INM contains a unique array of integral membrane 
proteins that associate with nuclear components. Despite composi-
tional differences, the INM and ONM display continuities at sites 
occupied by nuclear pore complexes (NPCs), massive channels 
that mediate movement of macromolecules back and forth across 
the NE. The final significant component of the NE is the nuclear 
lamina, a filamentous meshwork composed of A- and B-type 
lamins which is associated with the nuclear face of the INM and 
which provides structural integrity to the NE9,10.

Molecular details of force transmission between the nucleus and 
cytoplasm first emerged from observations that cytoplasmic 
dynein was recruited to the NE during G

2
 of the cell cycle11–13. This 

was subsequently shown to facilitate NE breakdown and disper-
sal during mitotic prometaphase14,15. In essence, NE-associated 

dynein, engaging with astral microtubules, serves to peel open the 
NE. However, it is obvious that, to be effective, a dynein anchor 
at the nuclear surface must be able to transmit forces across 
the nuclear membranes to the nuclear lamina. Ensuing studies 
implicated NPCs as just such an anchor, and two distinct NPC- 
associated dynein-binding sites were identified. The first of these 
involved the Nup107/160 complex, which is a major component 
of the structural framework of the NPC16. The second dynein-
binding site featured Nup358/RanBP2, a component of filament 
structures that extend from the NPC framework into the cyto-
plasm17. In addition to NE breakdown, NPC-associated dynein is 
required to drive vectorial nuclear movement in certain cell types. 
A notable example is interkinetic nuclear migration (IKNM) in 
neuroepithelial cells16. One aspect of IKNM is dynein-mediated 
basal-to-apical movement of nuclei during G

2
 of the cell cycle. 

This occurs as a prelude to cell division and is essential for 
ordered development of the central nervous system.

The role of NPCs as cytoskeletal attachment sites is restricted to 
the microtubule system and then only for limited periods during 
the cell cycle. During interphase in most somatic cells, it is LINC 
(linker of the nucleoskeleton and cytoskeleton) complexes that 
sustain this function1,6. LINC complexes are versatile structures 
recognised in all nucleated cells examined to date. This includes 
plant18,19 and animal20–23 as well as fungal24–26 cells. LINC complexes 
are assembled from members of two families of integral membrane 
proteins. SUN (Sad1, UNC-84) domain proteins are residents 
of the INM in which their N-terminal regions are exposed to the 
nuclear contents while C-terminal sequences, consisting of a 
coiled-coil region that terminates in the eponymous, roughly  
200-residue SUN domain, extends into the PNS. In mammals, 
there are five genes encoding orthodox SUN proteins27. However,  
only two of these, SUN1 and SUN2, are widely expressed.

SUN proteins typically function as transluminal tethers for ONM 
KASH (Klarsicht, ANC-1, SYNE, Homology) domain proteins4. 
All members of the KASH family engage directly with available 
SUN domains through a short, roughly 30-residue, C-terminal 
sequence exposed to the PNS. The cytoplasmic N-terminal region 
of KASH family members binds components of the cytoskeleton. 
In this way, LINC complexes, spanning both nuclear mem-
branes, are able to mechanically couple nuclear and cytoplasmic 
structures.

SUN proteins are clearly of ancient origin given their presence 
in all eukaryotic groups, where they have broadly similar roles. 
Indeed, glycosylated SUN homologues have even been recognised 
in archaeal cell walls. Based partly on such findings, Baum and 
Baum have suggested an intriguing “inside-out” model for the 
acquisition of nuclei and other membrane-bound compartments 
in eukaryotic cells28. They propose that SUN proteins, and later 
LINC complexes, made a significant contribution to this key 
evolutionary process.

LINC diversity
The role of LINC complexes in nuclear positioning and anchor-
ing was first recognised in Caenorhabditis elegans by Starr and 
Han29,30. They showed that a large actin-binding protein, ANC-1, 
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a prototypic KASH family member, was required for tether-
ing hypodermal cell nuclei. Localisation of ANC-1 to the ONM 
was found to be dependent upon the SUN protein UNC-84. The 
single C. elegans lamin (lamin C) in turn was found to be essential 
for UNC-84 localisation31. The inference was that UNC-84 together 
with ANC-1 formed a protein bridge that crossed the NE and 
that coupled the nuclear lamina to actin filaments. Similar SUN–
KASH protein pairs had also been identified in both budding and 
fission yeast where they were shown to have roles in spindle pole 
assembly and organisation as well as in meiotic chromosome 
dynamics24,25,32,33. In Drosophila, LINC complexes consisting 
of the SUN protein Klaroid and the dynein-binding KASH pro-
tein Klarsicht were found to be essential for IKNM in the devel-
oping eye34,35. Other Drosophila LINC components contribute to 
muscle organisation36–39. Even in plants, nuclear positioning and 
movement are mediated by LINC complexes, featuring SUN 
family members that engage with functional homologues of 
fungal and animal KASH proteins40–43.

In mammals, there are six KASH proteins, of which five have 
well-characterised LINC complex functions4,6,44. Two of these, 
Nesprin1 (Nesp1) and Nesprin2 (Nesp2), are encoded by a pair 
of complex genes featuring more than 100 exons45. The largest 
isoforms of Nesp1 and 2, Nesprin1-Giant and Nesprin2-Giant 
(Nesp1G and Nesp2G), have masses of about 1 MDa and 800 kDa, 
respectively. Like ANC-1, each bears an N-terminal actin-binding 
site consisting of paired calponin-homology domains. In the case 
of at least Nesp2G, actin association is enhanced by an interaction 
with the actin nucleating protein formin, FHOD1, as well as with 
fascin, an actin bundling protein46,47. Both Nesp1 and 2 also 
contain binding sites for kinesin-1 and cytoplasmic dynein. In this 
way, Nesp1 and Nesp2, depending upon the isoform, can associ-
ate with the actin or microtubule systems or both. In developing 
muscle cells, Nesp1 is involved in the recruitment of centro-
somal proteins to the NE, thereby co-opting the nucleus as a new 
microtubule-organising centre (MTOC)48,49. Similarly, a recent 
report50 describes an association between Nesp1 and rootletin, a 
filament protein that forms ciliary rootlets. The implication is that 
Nesp1 may have a role in ciliary anchoring in a variety of cell 
types, including photoreceptors.

The third member of the family, Nesp3, binds plectin, a cytolinker 
molecule that provides a connection between the NE and the 
intermediate filament system51. Nesp4 and KASH5 function as NE 
adaptors for kinesin-1 and cytoplasmic dynein, respectively52,53. 
Nesp4 is required for nuclear positioning in certain epithelial cells 
and is essential for viability of outer hair cells of the inner ear54. 
Accordingly, Nesp4 mutations are linked to early-onset hearing 
loss54. KASH5 is expressed primarily in meiotic cells and is 
responsible for telomere-led chromosome movements that  
culminate in homologous chromosome pairing53. In C. elegans, 
ZYG-12, a dynein-binding KASH protein55, has an analogous  
role56,57, while in budding and fission yeast, Kms1 and Csm4  
perform roughly equivalent meiotic functions33,58,59.

LINC adjustments
Given the operational diversity of KASH proteins, it would 
seem logical that it is these that uniquely define LINC complex 

specificity. This view is reinforced by findings that mice defi-
cient in either SUN1 or SUN2 are viable, indicating that these 
proteins, both widely (albeit not exclusively) co-expressed, are 
functionally redundant60. However, recent articles have thrown 
a cat amongst this particular flock of pigeons. Gomes et al. have 
focused on the role of Nesp2G in nuclear repositioning during 
cell migration61. It is well established that in migrating mouse 
3T3 cells the MTOC becomes oriented towards the cell leading 
edge in front of the nucleus61. However, the MTOC itself remains 
stationary at the cell centroid and instead it is the nucleus that 
actually moves rearward. This was demonstrated in classic scratch-
wound assays on 3T3 monolayers. Although rearward move-
ment occurs relative to the MTOC, the process itself is driven not 
by microtubules but rather by the retrograde flow of dorsal actin 
filaments that engage with LINC complexes in the NE. A conse-
quence of this interaction is recruitment of Nesp2G, SUN2 and 
lamins into TAN (transmembrane actin-associated nuclear) lines 
subjacent to the actin filaments62,63. An additional ONM protein, 
Samp1 (NET5), also localised to TAN lines, is thought to 
contribute to the SUN2–lamin association64.

To explore nuclear reorientation, Zhu et al.65 devised a clever yet 
simple method. Employing the same scratch wound–type assay 
on cells grown on coverslips, nuclei were displaced by centrifuga-
tion. This was carried out by orienting the centrifugal field paral-
lel to the coverslip surface and at right angles to the scratch in the 
cell monolayer. In this way, nuclei were moved to the front of cells 
on one side of the scratch while, on the other side, nuclei were 
displaced to the rear. The authors then followed the recovery of 
nuclei to their equilibrium positions. These experiments revealed 
that when the nucleus was displaced forwards it was returned to 
its correct location behind the MTOC in an actin- and myosin- 
dependent manner. This required LINC complexes containing 
Nesp2G and SUN2 and featured TAN line formation. However, 
when the nucleus was displaced rearwards, recovery was found 
to be dependent not on actin but on the microtubule system. In 
this case, nuclear movement was driven by cytoplasmic dynein. 
The identity of the dynein adaptor at the ONM was none other 
than Nesp2G. Evidently, cytoskeletal associations of Nesp2G may 
be modulated on the basis of the directionality of nuclear move-
ment. However, the biggest surprise here was that for anterograde 
microtubule-dependent nuclear recovery, the LINC complex 
partner for Nesp2G was not SUN2 but rather SUN1. In the absence 
of SUN1, anterograde recovery was eliminated. The implication 
here is that the LINC complex partner of Nesp2G, either SUN1 or 
SUN2, is dictated by (or determines) the nature of its association 
with the cytoskeleton. The role of SUN proteins in either defining 
or reflecting the cytoskeletal engagement of Nesp2G is reinforced 
by the finding that the two SUN proteins can exert transdomi-
nant effects. Overexpression of SUN2 biases Nesp2G towards the 
actin system whereas overexpression of SUN1 has the reverse 
effect. The mechanisms underlying the differential effects of SUN1 
versus SUN2 on the cytoskeletal interactions of Nesp2G are far 
from clear. However, they must in some way reflect the nature of 
the forces applied by actin versus microtubule systems and how 
they are accommodated by the two SUN proteins. Recent work 
from Cain et al.66 also points to mechanistic differences in the way 
that LINC complexes may transmit sustained forces generated 
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by the actin cytoskeleton versus transient forces generated by 
the microtubule system.

Something new under the SUN
The original structural analyses of SUN–KASH complexes 
revealed that SUN2 SUN domains are organised as homotrim-
ers67,68. In vivo this would involve the association of three SUN2 
monomers by the formation of an extended triple-helical coiled 
coil that links the SUN2 transmembrane sequences to the terminal 
SUN domains. Association with a Nesp1 or Nesp2 KASH domain 
occurs mainly at contact sites between SUN domains within 
each trimer. This interface is formed where an anti-parallel beta-
structure (the “KASH-lid”) extending from one SUN domain 
overlaps with the core structure of its neighbor. LINC complex 
assembly involves 18 to 23 amino acids at the KASH domain 
C-terminus. These are organised in an extended conformation 
and are accommodated largely within a groove beneath the 
KASH-lid. However, the four terminal amino acids of the KASH 
domain, comprising a PPPX (P is proline and X is any amino acid) 
motif, fit into a discrete pocket within a single SUN monomer. 
Integrity of this motif is crucial for the SUN–KASH interaction. 
Extension of this sequence by only a single alanine abolishes 
association. The implication is that the SUN–KASH interaction 
is initiated by the PPPX tetrapeptide followed by “zippering-up” 
of the KASH sequence within the binding groove. Additional 
KASH residues are also important: a tyrosine at position -7 (Y(-)7) 
and a cysteine at position -23. The latter is able to form a disul-
phide bond with a conserved cysteine residue (C563 in human 
SUN2) within the SUN domain. Cain et al. examined the role of 
these different KASH residues in C. elegans LINC complexes 
in vivo66. In particular, they explored interactions of the SUN pro-
tein UNC-84 with its two partners: ANC-1 and UNC-83. The latter 
is a KASH protein that binds kinesin-1 and cytoplasmic dynein 
and is required for nuclear migration in hypodermal precursor 
cells69–71. As we have seen, ANC-1 is required for actin- 
dependent nuclear anchoring in the hypodermis29. For both  
ANC-1 and UNC-83, integrity of the C-terminus is paramount for  
productive association with UNC-84. The Y(-)7 in UNC-83 also 
proves to be essential. While still localising to the NE, an alanine 
substitution at this position renders UNC-83 incapable of sup-
porting nuclear migration. The inference is that interaction with 
UNC-84 is sufficiently weakened so that it cannot withstand 
application of forces encountered during kinesin-driven nuclear 
movement. In contrast, disulphide bond formation is not required. 
Indeed, UNC-83 has a foreshortened KASH domain that lacks 
the key cysteine residue. The reverse is found to be true for  
ANC-1. Y(-)7 is dispensable, while the cysteine at -23 is absolutely 
required for nuclear anchoring. The suggestion is that for short-
term processes such as UNC-83 and microtubule-driven migra-
tion, maintenance of SUN–KASH interactions by a disulphide 
bond may be unnecessary. By contrast, long-term anchoring via 
actin may require disulphide-dependent LINC complex stabilisa-
tion. This notion makes some sense since the mammalian dynein- 
binding KASH protein KASH5, which has only a transient func-
tion in meiotic cells, like UNC-83 has a foreshortened KASH 
domain and lacks the cysteine at -23. The role of disulphide bond 

formation in the stabilisation of SUN2–Nesp2 association is 
brought further into focus in molecular dynamics studies66. 
Loss of this bond results in significantly weakened interactions, 
and application of pulling forces to the Nesp2 KASH peptide 
causes its partial detachment. Moreover, both the KASH peptide 
and the SUN2 KASH-lid become stretched out to accommodate 
the applied forces. With the disulphide bond intact, however, 
forces are transmitted beyond the SUN–KASH interface and 
instead are relieved by stretching of the triple-helical coiled coil.

It is obvious that diverse KASH proteins display subtly different 
associations with their cognate SUN proteins. However, this  
cannot easily explain observations that the cytoskeletal interactions 
of Nesp2 are reflected in its discrimination between SUN1 and 
SUN265. It seems likely, however, that the key to this puzzle lies 
in how forces across LINC complexes are dissipated. Studies by 
Nie et al. and Xu et al. suggest that the triple-helical coiled coil 
may play a significant role in the regulation of SUN–KASH 
interactions72,73. Structural analyses reveal that the lumenal 
coiled-coil domain is actually formed from two separate helical 
segments, CC1 and CC2, which are connected by a flexible 
linker. By the same token, CC2, which lies closest to the SUN 
domain, is itself formed from three shorter helices. These helices, 
in addition to facilitating trimerisation of SUN2 monomers, can 
adopt an alternative structure in which they form an intra-chain 
triple-helical bundle. In this conformation, CC2 is able to associ-
ate with the SUN domain KASH-lid, thereby effectively blocking 
LINC complex formation. In this way, CC2 functions as an auto- 
inhibitory domain (AID). Clearly, CC2 must be able to switch 
reversibly between its inhibitory conformation and its extended 
conformation permissive for trimerisation and KASH binding. 
What is not clear is whether this switching may still occur after 
trimer formation74. If it can occur, then it opens up a range of 
regulatory possibilities. In one such model, tension applied to 
CC2 via a bound KASH domain should favour its extended per-
missive conformation over its inhibitory conformation. Given that 
there is some divergence between SUN1 and SUN2 CC2/AID 
sequences, it is possible that one or the other may be more prone to 
switching to the AID conformation. Certainly, Hennen et al.75 
and Jahed et al.76 have documented differences in the limitations 
of SUN1 versus SUN2 homo-oligomerisation. As an example, 
the actin system may be less effective at retaining SUN1 in its 
permissive conformation when compared with the microtubule 
system. Thus, Nesp2G, when bound to actin, may be biased away 
from SUN1. Conversely, Nesp2G, when engaged with kinesin-1, 
may be biased towards SUN1 because of its ability to prevent 
auto-inhibition by CC2. This model would be consistent with 
observations that in mammalian systems, all microtubule-associated 
LINC complexes seem to be based around SUN1, regardless of 
whether they contain Nesp2, Nesp4 or KASH5. It is also certain 
that additional factors, such as the AAA+ (ATPase associated with 
various cellular activities) protein TorsinA, contribute to these 
various SUN–KASH associations77. Intriguingly, a recent report 
described a Drosophila ONM protein, Kuduk (Kud), which asso-
ciates either directly or indirectly with KASH proteins78. Kud 
appears to suppress NE anchorage of KASH proteins lacking 
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cytoskeletal interactions. In this way, Kud and its mammalian 
homologue TMEM258 may function as a quality control or  
chaperone for the assembly of LINC complexes that are engaged 
with the cytoskeleton.

The scheme outlined here, which involves SUN auto-inhibition 
and which draws on work from several laboratories, cannot be 
the whole story. The model, as it stands, cannot easily explain 
reciprocal transdominant effects of SUN1 versus SUN2 in 
Nesp2G-dependent nuclear positioning65. However, taken together, 
all of these recent biophysical and cell biological studies have 
hinted at previously unappreciated levels of LINC complex 

adaptation. There is no question that these may impact diverse 
aspects of cell function from mechanotransduction to migration 
and will open new avenues of research activities.
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