Contents lists available at ScienceDirect

Advances in Ophthalmology Practice and Research

Meta-analysis

Efficacy and safety of monoclonal antibodies in neuromyelitis optica spectrum disorders: A survival meta-analysis of randomized controlled trials

Xintong Xu^{a,b}, Lindan Xie^b, Lili Wei^{c,d,e}, Meixuan Li^{c,d,e}, Hao Wang^f, Huanfen Zhou^b, Mingming Sun^b, Mo Yang^b, Quangang Xu^b, Kehu Yang^{c,d,e}, Shihui Wei^{b,*}

^a Medical School of Chinese PLA, Beijing, China

^b Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China

^c Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China

^d Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China

^e Gansu Medical Guideline Technology Center, Lanzhou University, Lanzhou, China

^f Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China

ARTICLE INFO	A B S T R A C T						
Keywords: NMOSD Randomized controlled trials Monoclonal antibody Meta-analysis Free-relapse Adverse events	<i>Background</i> : Monoclonal antibodies such as rituximab (RTX), eculizumab, inebilizumab, satralizumab, and toci lizumab have been found to be effective therapies for neuromyelitis optica spectrum disease (NMOSD) in severa clinical randomized controlled trials. <i>Objective</i> : The purpose of this meta-analysis of randomized controlled trials was to assess the efficacy and safety o monoclonal antibodies in the treatment of NMOSD. <i>Methods</i> : We searched the following databases for relevant English language literature from the establishment o the database to June 2021: PubMed, Embase, Cohorane Library, the Central Register of Controlled Trials (CENTRAL), and Web of Science. Randomized controlled trials of monoclonal antibodies were the targets of the review. <i>Results</i> : We included seven trials containing 775 patients (485 in the monoclonal antibody group and 290 in the control group). Patients in the monoclonal group (HR 0.24, 95% CI: 0.14 to 0.40, <i>P</i> < 0.00001), as well as patients with seropositive AQP4-IgG (HR 0.18, 95% CI: 0.11 to 0.29, <i>P</i> < 0.00001), both had a higher free recurrence rate than that in the control group. In the first year (HR 0.25, 95% CI: 0.09 to 0.71, <i>P</i> = 0.009) and the second year (HR 0.32, 95% CI: 0.13 to 0.81, <i>P</i> = 0.02), no relapses were documented. The average changes of the expanded disability status scale (EDSS) score decreased by 0.29 (95% CI: -0.09 to 0.51, <i>P</i> = 0.005). Upper respiratory trace infection (OR 1.52, 95% CI: 0.76 to 3.04, <i>P</i> = 0.24), urinary tract infection(OR 0.79, 95% CI: 0.51 to 1.21, <i>P</i> = 0.27), and headache (OR 1.30, 95% CI: 0.78 to 2.17, <i>P</i> = 0.31) were three most frequent adverse reactions. <i>Conclusions</i> : Monoclonal antibodies are particularly effective treatments in avoiding recurrence for NMOSD pa tients, according to this meta-analysis. The associated adverse responses are not significantly different from those seen with traditional immunosuppressants.						

1. Introduction

1.1. Description of the condition

Neuromyelitis optica spectrum disease (NMOSD) is an inflammatory disease of the central nervous system that mainly involves the optic nerve and spinal cord.^{1–3} Aquaporin-4 (AQP4) is a water channel protein expressed in the vascular astrocytes. When AQP4-IgG binds to the protein, it induces an inflammatory response by complementing the cellular

mechanisms, causing astrocytic axon demyelination.^{4–6} AQP4-IgG has lately been regarded as one of the most specific diagnostic markers of NMOSD since 80% of patients have this pathogenic autoantibody.^{4,7} NMOSD is characterized by recurrent, severe neurological damage in patients, and if they are not given timely treatment, it will cause irreversible severe damage. Nevertheless, a curative treatment for NMOSD does not exist to date, the primary target of treatment is to alleviate symptoms and prevent patients from relapsing to reduce neurological impairment and disability worsening.^{8,9} Because of the high morbidity

* Corresponding author. Department of Ophthalmology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China. *E-mail address:* weishihui706@hotmail.com (S. Wei).

https://doi.org/10.1016/j.aopr.2022.100064

Received 8 March 2022; Received in revised form 30 April 2022; Accepted 15 May 2022

Available online 18 May 2022

2667-3762/© 2022 The Authors. Published by Elsevier Inc. on behalf of Zhejiang University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Advances in Ophthalmology Practice and Research 2 (2022) 100064

associated with NMOSD relapse, early initiation of immunosuppressive therapy is recommended in AQP4-IgG seropositive patients from the first attack, and stopping immunosuppression is associated with an increased risk of disease recurrence.¹⁰

1.2. Description of the intervention

When patients are suffering an acute attack, corticosteroids, intravenous immunoglobulin (IVIG), or apheresis therapies (such as plasma exchange (PE) therapy and immunoadsorption) are recommended.^{4,11-14} When the disease has progressed to the chronic stage, we frequently consider utilizing traditional immunosuppressive drugs, such as azathioprine (AZA) and mycophenolate mofetil (MMF).^{11,15} Several randomized controlled trials (RCT) have recently revealed that monoclonal antibodies such as rituximab (RTX), eculizumab, inebilizumab, satralizumab, and tocilizumab may be effective treatments for NMOSD.¹⁶⁻²² Therefore, we plan to conclude the studies by assessing the efficacy and safety of monoclonal antibodies in the treatment of neuromyelitis optica spectrum disorders.

1.3. Motivation for the review

System review and meta-analysis are not only crucial in the advancement of medicine but are also widely employed in other sectors.^{23–27} RTX has been shown to have a good effect in preventing the recurrence of NMOSD, several monoclonal antibody medicines have been tested in clinical trials. A few randomized controlled trials have surfaced in the last two years, all of which have validated the exceptional therapeutic impact of these medications on NMOSD patients. Four of these papers were included in a prior meta-analysis, which verified partial results.²⁸ However, there were three new articles published recently,^{19,20,22} and they provide us with more evidence. The previous meta-analysis of outcome evaluation was based solely on the number of events included in the study, performing a point estimation at a certain point in time and calculating the relapse events between different groups. The relapse rate ratio, that is, the relative risk (RR), was also described. The ratio was measured to some extent, but not all elements were taken into account; it is hard to convey a comprehensive picture of this type of data, and such incomplete data may lead to an inappropriate conclusion. The outcome of the event and the timing of the outcome are both essential in survival data. The most appropriate effect indicator for meta-analysis of survival research is the hazard ratio (HR), although it is sometimes difficult to get because the original research was not directly disclosed. As a result, we attempt to intercept the survival rate and other data from the survival curve of the original study, and the information, including follow-up time and other data, is entered into Excel for conversion to HR and 95% CI data.

2. Methods

2.1. Study protocol

A protocol of this study has been registered in PROSPERO; our registration number is CRD42021225328.

2.2. Search strategy and information sources

Two researchers independently searched the following databases for relevant English language literature from the establishing the database to June 2021: PubMed, Embase, Cochrane Libray, the Central Register of Controlled Trials (CENTRAL), and Web of Science. We used the keywords'Neuromyelitis Optica', 'NMO Spectrum Disorder', 'monoclonal drugs', 'immunosuppressive drug', 'rituximab', 'eculizumab', 'inebilizumab', 'satralizumab', 'tocilizumab', and 'randomized controlled trial', etc. The electronic database search was supplemented by a manual search of the reference lists of included articles.

2.3. Criteria for inclusion

2.3.1. Type of study

Randomized controlled trials were included in this survival metaanalysis.

2.3.2. Type of participants

The study contained patients who were diagnosed with NMOSD according to the 2015 International Panel for Neuromyelitis Optica Diagnosis criteria or 2006 NMO diagnosis criteria,^{1,29} all patients had been treated with monoclonal antibodies. Patients were excluded if they had evidence of other systemic severe diseases. Traditional immunosuppressive medicines (corticosteroids, azathioprine, mycophenolate mofetil, cyclophosphamide) were allowed for the control patients, but we excluded them if they had accepted any monoclonal antibodies within three months of enrolling in the trial.

2.3.3. Type of intervention

Monoclonal antibodies, such as RTX, eculizumab, inebilizumab, satralizumab, and tocilizumab were used to treat exposures; the patient could also take traditional immunosuppressive drugs (corticosteroids, azathioprine, mycophenolate mofetil, cyclophosphamide, and so on) before or during the treatment. Patients who utilized multiple monoclonal antibodies during the trial were disqualified.

2.3.4. Outcomes

The primary outcome for the comparison of interventions was the rate of free relapse, the first year of free recurrence rate, and the second year of free recurrence rate. Secondary outcomes for comparison were:(1) mean change in EDSS; (2) the proportion of participants with adverse effects (including urinary tract infection, upper respiratory tract infection, and headache); (3) the proportion of participants with serious adverse effects (such as death, serious affecting, and so on).

2.4. Selection of studies and data extraction

Endnote x9.2 was used to manage the search results. Two reviewers read the titles and abstracts independently selected the articles that fulfilled the inclusion criteria, kept the uncertain studies, then read the full texts to decide whether they should be enrolled or excluded. Any differences would be resolved by a third reviewer.

The following data were extracted: title, author, year of publication, the country where the study was conducted, diagnostic criteria, original inclusion criteria, sample size, sex ratio, age of onset, disease course, intervention method, following time, the serological state of AQP4-IgG, rate of relapse-free patients, basic EDSS score and mean changes of EDSS score, adverse effects, and serious adverse effects.

2.5. Risk of bias (every study)

Two reviewers independently assessed the quality of the selected studies according to the Cochrane Collaboration's tool for randomized controlled trials. Items were examined in three categories: low risk of bias, unclear bias, and high risk of bias. The following characteristics were considered: random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other bias sources.^{30,31} The results from these questions were graphed and assessed using Review Manager 5.4.

2.6. Strategy for data synthesis

We calculated and analyzed the recurrence-free survival data using a random effect model that appeared as hazard ratio (HR) (95% confidence interval [CI]), the dichotomous outcomes such as adverse events appeared as odds ratio (OR) and the consecutive outcomes appeared as

mean difference (MD); all these were completed by Review Manager 5.4. Statistical heterogeneity (I²) was defined as follows: I² <25% represented "low heterogeneity,"25% < I² < 50% meant "moderate heterogeneity," and I²>50% denoted "substantial heterogeneity." Two sides were used to test, and *P* < 0.05 was deemed significant for all analyses.

2.7. Subgroup analysis and investigation of heterogeneity

Subgroup analyses were conducted to explore the free recurrence rate of AQP4-IgG-positive patients.

3. Results

3.1. Description of studies

We performed the electronic searches on June 1, 2021 and identified 574 records in Pubmed, Embase, Web of Science, and CENTRAL (Fig. 1). Two reviewers read the titles and abstracts of the 423 remaining articles after removing 151 duplicated records. After that, we retrieved 23 full trials and excluded 16 studies. Eventually, we included seven trials containing 775 patients (485 in the monoclonal antibody group and 290 in the control group). The characteristics of each study are presented in Table 1.

3.1.1. Type of participants

Patients in seven trials had all been diagnosed with NMOSD or NMO, and had at least one relapse throughout the study.¹⁷ Patients in two studies were all AQP4-IgG seropositive.^{18,19} The percentages of

AQP4-IgG seropositive individuals in four other studies were 48.5% in Ref. $^{17},$ 41.7% in Ref. $^{16},$ 66.3% in Ref. $^{21},$ 67.4% in Ref. $^{20},$ and 87.3% in Ref. 22

3.1.2. Type of intervention

The seven trials provided a variety of comparisons. Two trials separately compared RTX with AZA and placebo,^{17,19} two trials compared satralizumab with placebo,^{20,21} and three trials compared the effects of eculizumab, inebilizumab, and tocilizumab to placebo or AZA, respectively.^{16,18,22}

3.1.3. Type of outcome

Free relapse was monitored and reported as the primary outcome in all trials. We used Engauge Digitizer software to intercept the results of the Kaplan-Meier curve and evaluated the non-recurrence rate of the first and second years after the application of monoclonal antibodies following the method introduced in the literature.³² EDSS scores were reported from four trials and evaluated by mean difference. According to the results, adverse events and serious adverse events were reported in all trials: upper respiratory tract infection, urinary tract infection, and headache were the most common adverse symptoms exhibited in these treatments.³³

3.2. Risk of bias in included studies

The "risk of bias" assessments for the included studies are summarized in Fig. 2. The majority of the domains we assessed were "low bias"; where we couldn't determine the risk of bias based on the available data,

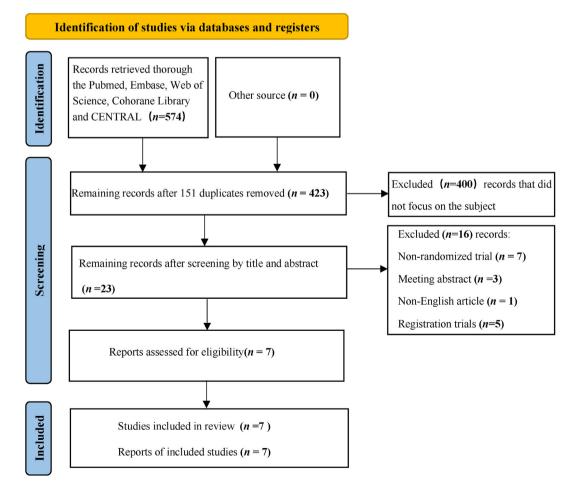


Fig. 1. Flow chart of the number of studies identified and selected for the meta-analysis.

Table 1 Characteristic of the included studies.

Include studies	Nikoo et al., 2017	Pittock,S. J.2019	Cree, B. A. C.2019	Yamamura, T.2019	Traboulsee, A.2020	Tahara, M.2020	Zhang, C.2020
Study design	Open-label randomized clinical trial	Randomized double-blind time-to-event trial	Multicentre double-blind, randomized placebo- controlled study	Randomized, double- blind, placebo-controlled trial	Double-blind, placebo- controlled parallel-group trial,	Multicentre, randomized double-blind placebo- controlled clinical trial	Open-label multicentre randomized phase 2 trial
Number randomized AQP4 seropositive	35 in AZA group; 33 in RTX group 20 (57.1%) in AZA group;	96 in eculizumab group; 47 in placebo group All AQP4-IgG seropositive	174 in Inebilizumab group; 56 in placebo group 77(48%) in Inebilizumab;	41 in Satralizumab group; 42 in placebo group 27 in Satralizumab;	63 in Satralizumab group; 32 in placebo group 41 (65%) in	19 in RTX group; 19 in placebo group All AQP4-IgG-	59 in tocilizumab group; 59 in AZA group 50 (85%) in tocilizumab;
	13 (39.4%) in RTX group		19 (37%) in placebo	28 in placebo	Satralizumab; 23 (72%) in placebo	seropositive	53 (90%) in AZA
Follow up Country	24 months Iran	211weeks American	197days American	216weeks Japan	216weeks Canada	72weeks Japan	90weeks China
Inclusion criteria	Diagnosis with NMOSD; Age between 18 and 50 years; EDSS between 0 and 7.0	At least 18 years; diagnosed NMOSD; AQP4-IgG seropositive status; A history of at least two relapses during the previous 12 months or	Adults (≥18 years old) with a diagnosis of NMOSD; An EDSS score of 8.0 or less; A history of either at least one attack requiring rescue therapy	Adolescents or adults (12–74 years of age) diagnosed NMO/ NMOSD; At least two relapses in the 2 years	Adults (aged 18–74 years) diagnosed NMO/ NMOSD; At least one documented attack in the 12 months before	Patients aged 16–80 years who were diagnosed NMOSD with seropositive AQP4-IgG; A history of either optic neuritis or	Adults (≥18 years) with highly relapsing NMOSD; EDSS score of 7.5 or lower; A history of at least two clinical relapses
		three relapses during the previous 24 months; A score of 7.0 or less on the EDSS	(intravenous corticosteroids, intravenous immunoglobulin, plasma exchange, or a combination of these therapies) during the year before screening or at least two attacks requiring rescue therapy in the 2 years before screening	with at least one relapse occurring in the previous 12 months; EDSS score of 0–6.5 at screening	screening and a score of 6.5 or less on the EDSS	myelitis, receiving oral steroids; EDSS score 7.0 or less, and were neurologically stable.	during the previous 12 months or three relapses during the previous 24 months, with at least one relapse in the previous 12 months
Experimental Control	RTX AZA	Eculizumab Placebo	Inebilizumab Placebo	Satralizumab Placebo	Satralizumab Placebo	RTX Placebo	Tocilizumab AZA
Primary outcomes	ARR measured after 12 months of intervention	The first adjudicated relapse	Time from day 1 to the onset of an NMOSD attack, on or before day	The first protocol-defined relapse in the double- blind period in a time-to- event analysis	The time to the first protocol identified relapse in the double- blind period	ARR measured after 12 months of intervention	The first adjudicated relapse
Secondary outcomes	The EDSS was measured after 12 months	The adjudicated annualized relapse rate; Changes from baseline in scores on the EDSS; Modified Rankin scale; Hauser Ambulation Index; EQ-5D-3L visual analogue scale; EQ-5D-3L summary index	Worsening of EDSS score from baseline; Change from baseline in low contrast visual acuity bin ocular score; Cumulative total number of active MRI lesions; Number of NMOSD related inpatient hospitalisations	The change from baseline to week 24 in the visual analogue scale (VAS) score; The Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F) score; The 36item Short Form Health Survey; The EuroQol-5 Dimensions (EQ-5D) instrument; The modified Rankin scale; The Zarit Burden Interview; The EDSS score; visual acuity; The percentage of patients free from relapse	The change in the VAS pain score; FACIT score; Proportion of relapse-free patients; Annualized relapse rate; 36-item Short Form Health Survey; EuroQol-5 dimensions; Timed 25- foot walk speed; modified Rankin Scale; Zarit Burden Interview; EDSS; Visual acuity; Low- contrast visual acuity	The EDSS was measured after 12 months	The adjudicated annualized relapse rate; Changes from baseline in scores on the EDSS; Modified Rankin scale; Hauser Ambulation Index; EQ-5D-3L visual analogue scale; EQ-5D-3L summary index
Adverse events reported	RTX: Allergic reactions; AZA: Liver function; Gastrointestinal intolerance	Upper respiratory tract infection; Headache; Nasopharyngitis; Nausea; Diarrhoea; Urinary tract infection; Limb pain; Vomiting	Urinary tract infection; Arthralgia; Infusion-related reaction; Back pain; Headache; Nasopharyngitis; Diarrhoea; Upper respiratory tract infection; Depression; Oral herpes Pain in extremity; Pruritus; Vomiting	Nasopharyngitis; Upper respiratory tract infection; Headache; Urinary tract infection; Leukopenia; Injection- related reactions; Anemia; Hypercholesterolemia; Constipation; Pyrexia	Urinary tract infection; Upper respiratory tract infection; Injection- related reactions; Nausea; Rash; Headache; Pain in extremity; Nasopharyngitis; Arthralgia; Fatigue	Infusion reaction; Nasopharyngitis; Headache; Upper respiratory infection; Diarrhoea	Hepatotoxicity; Upper respiratory tract infection; Urinary tract infection; Anaemia; Leukopenia; Nausea; Fatigue

4

the risk was rated "unclear." Each domain of every article is summarized below. Based on the assessment of the quality of the trials, we judged the overall quality of evidence as high to moderate. Random sequence generation and allocation concealment were implemented in five of the seven included trials. Except for two studies,^{17,22} blinding of participants and evaluators was used throughout the studies. Complete outcome data were reported from all tests. Only one article we analyzed was determined to show bias due to its incomplete reporting outcome¹⁶; no other conflict of interest were found in any articles.

3.3. Effect of intervention

The efficiency of this meta-analysis was primarily assessed using two outcome indicators: the rate of relapse-free and the mean change of EDSS score.

3.4. Free recurrence rate

As shown in Fig. 3A, patients in the monoclonal arm had a higher free recurrence rate than in control (HR 0.24, 95% CI: 0.14 to 0.40, P < 0.00001). We classified the result as "moderate heterogeneity;" therefore, we conducted a subgroup analysis of the results of the seven studies according to the status of serum AQP4-IgG. In AQP4-IgG seropositive patients, monoclonal effects seemed to be more valid in preventing relapse than the control (HR 0.18, 95% CI: 0.11 to 0.29, P < 0.00001; Fig. 3B). Four studies reported the first year of the no-relapse rate (HR 0.25, 95% CI: 0.09 to 0.71, P = 0.009; Fig. 3C); data on the second year (HR 0.32, 95% CI: 0.13 to 0.81, P = 0.02; Fig. 3D) were extracted from three studies.

3.5. EDSS score change

In the monoclonal groups, the mean EDSS score decreased significantly by 0.29 (95% CI: -0.09 to 0.51, P = 0.005; Fig. 3E).

3.6. Adverse events

There was no difference in the probability of adverse events occurring between the monoclonal and control group (OR 0.89, 95% CI: 0.49 to 1.59, P = 0.68; Fig. 4A). Among the included studies, the three most frequent adverse reactions were upper respiratory tract infection (OR 1.52, 95% CI: 0.76 to 3.04, P = 0.24; Fig. 4B), urinary tract infection (OR 0.79, 95% CI: 0.51 to 1.21, P = 0.27; Fig. 4C), and headache (OR 1.30, 95% CI: 0.78 to 2.17, P = 0.31; Fig. 4D). Similarly, there was no distinction between the occurrence of severe adverse events in the monoclonal groups and the control groups (OR 0.66, 95% CI: 0.41 to 1.06, P = 0.08; Fig. 4E).

4. Discussion

Seven RCTs with 775 randomized individuals were included in this review of monoclonal antibodies for NMOSD. Half of these studies were followed up for more than one year. These monoclonal antibodies appeared to be significantly more effective than control in preventing NMOSD relapses in the first two years. The total recurrence rate of patients treated with monoclonal antibodies was lowered, according to the findings, which is consistent with earlier research.^{28,34–36} Furthermore, we analyzed the outcomes of the two-year follow-up period and discovered that the experimental group's recurrence rate was much lower. Previous studies and case reports have demonstrated that pregnancy patients usually had a poor prognosis due to the activity and pathogenesis of the disease.³⁷⁻³⁹ Monoclonal antibodies may be an alternate treatment for pregnant patients with NMOSD. RTX administered before conception may prevent the mother from relapsing without exposing the fetus to potentially harmful effects.^{40,41} Experts have recommended that receive RTX treatment until conception, and if necessary,

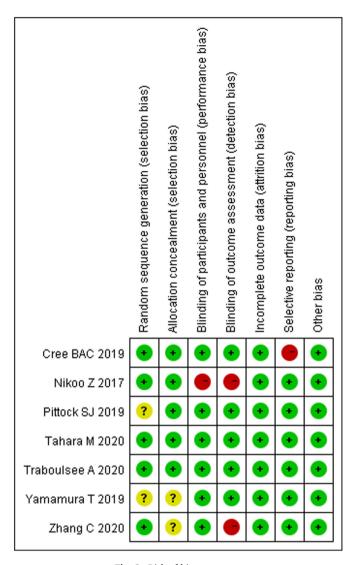


Fig. 2. Risk of bias summary.

during pregnancy as well.^{6,41,42} A Japanese cohort study of pregnant women with rheumatoid arthritis reported that rates of spontaneous abortion, congenital abnormalities, and other pregnancy outcomes in the tocilizumab arm were not different from those seen in the general population.⁴³ Furthermore, experts support that tocilizumab and eculizumab can be considered if patients experience a very severe course of the disease.^{6,8,44} The effects of inebilzumab and satralizumab on pregnancy are currently unknown, and we need to look for more evidence in the future.

A previously published network meta-analysis compared the efficacy of current immunosuppressive agents and monoclonal antibodies, and RTX was deemed to be more effective.¹¹ However, due to the recent introduction of new types of monoclonal antibodies and restricted research capability, the sample size was insufficient to draw a comprehensive conclusion.¹⁷ As some studies have found that AQP4-IgG positive individuals respond well to satralizumab, eculizumab, and inebilizumab monotherapy.^{35,45–47} IL-6 promotes the differentiation of naive T cells into inflammatory T-helper-17 cells, increases the permeability of the blood-brain barrier, and regulates the expression of complement C3. Targeting the IL-6 signaling pathway inhibits both the humoral immune response as well as the T-cell pathway and dysfunction of the BBB, providing comprehensive treatment for the different NMOSD manifestations. Satralizumab is a subcutaneously administered, humanized monoclonal antibody that binds to membrane-bound and soluble IL-6 Δ

				Haz	ard Ratio	Hazard Ratio
Study or Subgroup	log[Hazar	d Ratiol	SE Wei		ndom, 95% Cl	IV, Random, 95% Cl
Cree BAC 2019		1.30195 (27 [0.15, 0.50]	
Pittock SJ 2019		341072 (D6 [0.02, 0.19]	•
Tahara M 2020		341012 (3282315 (11 [0.03, 0.52]	
Traboulsee A 2020		'985077 (45 [0.23, 0.89]	_
Yamamura T 2019		303077 (3758403 (38 [0.16, 0.88]	
Zhang C 2020	-1.44	392347	0.4 18.	6% U.	24 [0.11, 0.52]	-
Total (95% CI)			100.		24 [0.14, 0.40]	◆ 1
Heterogeneity: Tau ² Test for overall effec	•	•		.06); I² = 53	0.0	
В			,		Fa	vours [experimental] Favours [control]
D					Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard I	Ratio]	SE		, Random, 95% Cl	IV, Random, 95% Cl
Cree BAC 2019	-1.4828	80526 0.3	1928103	37.5%	0.23 [0.12, 0.42]	
Pittock SJ 2019	-2.8134	41072 0.5	8739416	15.5%	0.06 [0.02, 0.19]	_
Tahara M 2020		32315 0.7		9.7%	0.11 [0.03, 0.52]	
Traboulsee A 2020		07365 0.4		24.0%	0.26 [0.11, 0.62]	
Yamamura T 2019	-1.5606	64775 0.6	4431853	13.3%	0.21 [0.06, 0.74]	
Total (95% CI)				100.0%	0.18 [0.11, 0.29]	•
Heterogeneity: Tau ² =	= 0.07; Chi ^z = 5	5.09, df = 4	(P = 0.28);	I ^z = 21%	+ 0.02	2 0.1 1 10 5
Test for overall effect:	Z= 6.82 (P ≺ I	0.00001)				Z 0.1 1 1 10 5 Favours [experimental] Favours [control]
С						ravours (experimental) ravours (control)
	xperimental	Control			Hazard Ratio	Hazard Ratio
		vents Total	0-E Var	iance Weig	ht Exp[(O-E) / V], Fixed, 95	
Pittock SJ 2019	28 96	26 47	-0.72	0.21 5.9	% 0.03 (0.00, 2	2.34] +
Traboulsee A 2020	17 63		-1.99	1.64 46.2		
Yamamura T 2019	17 41		-0.86	1.05 29.6		
Zhang C 2020	9 59	21 59	-1.32	0.65 18.3	% 0.13 [0.01, 1	-
Total (95% CI)	259	180		100.0	% 0.25 [0.09, 0	0.71]
Total events	71	83				-
Heterogeneity: Chi ² = 1.53						
Test for overall effect: Z =	2.60 (P = 0.009)					Favours (experimental) Favours (control)
D						r areare (experimental) i areare (centrel)
Ð	xperimental vents Total F	Control	O.F. Va	iance Weig	Hazard Ratio	Hazard Ratio
EX Study or Subgroup Ev	vents Total E	Events Total			ht Exp[(O-E) / V], Fixed, 95	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI
EX Study or Subgroup EX Pittock SJ 2019	vents Total E	Events Total 38 47	<u>I O-E Var</u> '-0.17 2-3.54		ht Exp[(O-E) / V], Fixed, 95 % 0.01 [0.00, 257	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19]
E	vents Total E 50 96	Events Total 38 47 23 32	'-0.17	0.04 0.9	ht Exp[(O-E) / V], Fixed, 95 % 0.01 [0.00, 257 % 0.38 [0.13, 1	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19]
E) <u>Study or Subgroup</u> Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019	vents Total E 50 96 33 63	Events Total 38 47 23 32 26 42	'-0.17 ?-3.54 ?-1.31	0.04 0.9 3.61 82.0 0.75 17.0	ht Exp[(O-E) / V], Fixed, 95 % 0.01 [0.00, 257 % 0.38 [0.13, 1 % 0.17 [0.02, 1	Hazard Ratio <u>KCI</u> Exp[(O-E) /VI, Fixed, 95% CI .05] .68]
E) Study or Subgroup Ev Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI)	vents Total E 50 96 33 63 21 41	Events Total 38 47 23 32	'-0.17 ?-3.54 ?-1.31	0.04 0.9 3.61 82.0	ht Exp[(O-E) / V], Fixed, 95 % 0.01 (0.00, 257 % 0.38 (0.13, 1 % 0.17 (0.02, 1	Hazard Ratio <u>KCI</u> Exp[(O-E) /VI, Fixed, 95% CI .05] .68]
E) Study or Subgroup EV Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI) Total events	vents Total E 50 96 33 63 21 41 200 104	Events Total 38 47 23 32 26 42 121 87	'-0.17 ?-3.54 ?-1.31	0.04 0.9 3.61 82.0 0.75 17.0	ht Exp[(O-E) / V], Fixed, 95 % 0.01 [0.00, 257 % 0.38 [0.13, 1 % 0.17 [0.02, 1	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68]
E3 Study or Subgroup Ev Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI) Total events Heterogeneity: Chi ² = 0.7 Test for overall effect: Z =	vents Total E 50 96 33 63 21 41 200 104 '5, df = 2 (P = 0.69	Events Total 38 47 23 32 26 42 121 87	'-0.17 ?-3.54 ?-1.31	0.04 0.9 3.61 82.0 0.75 17.0	ht Exp[(O-E) / V], Fixed, 95 % 0.01 [0.00, 257 % 0.38 [0.13, 1 % 0.17 [0.02, 1	Hazard Ratio Hazard Ratio Expl(O-E) /VI, Fixed, 95% Cl
E3 Study or Subgroup Ev Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI) Total events Heterogeneity: Chi ² = 0.7	vents Total E 50 96 33 63 21 41 200 104 '5, df = 2 (P = 0.69	Events Total 38 47 23 32 26 42 121 87	'-0.17 ?-3.54 ?-1.31	0.04 0.9 3.61 82.0 0.75 17.0	ht Exp[(O-E) / V], Fixed, 95 % 0.01 [0.00, 257 % 0.38 [0.13, 1 % 0.17 [0.02, 1	Hazard Ratio <u>* CI Exp[(O-E) / VI, Fixed, 95% CI</u> 7.19] 1.05] 1.68] .681 0.05 0.2 1 5 20
EXAMPLE A CONTRACT OF CONTRACT.	vents Total E 50 96 33 63 21 41 200 104 104 200 104 5.0 df = 2 (P = 0.69) 2.39 (P = 0.02) Experimental 104 104	Events Total 38 47 23 32 26 42 121 87 9); I² = 0% al	2 -0.17 2 -3.54 2 -1.31	0.04 0.9 3.61 82.0 0.75 17.0 100.0	ht Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 25] % 0.38 [0.13, 1 % 0.17 [0.02, 1 % 0.32 [0.13, 0 Mean Difference	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 8.81] 0.05 0.2 1 5 20 Favours [experimental] Favours [control] Mean Difference
E3 Study or Subgroup Ex Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI) Total events Heterogeneity: Chi ² = 0.7 Test for overall effect: Z = E Study or Subgroup	vents Total E 50 96 33 63 21 41 200 104 104 20 104 20 23,9 (P = 0.02) Experiment: Mean SD	Events Total 38 47 23 32 26 42 121 87 9); I² = 0% al Total Mea	2 -0.17 2 -3.54 2 -1.31 Control n SD Tr	0.04 0.9 3.61 82.0 0.75 17.0 100.0	ht Exp[(0-E) / VI, Fixed, 95 % 0.01 [0.00, 263 % 0.38 [0.13, 1 % 0.38 [0.12, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] Mean Difference IV, Random, 95% CI	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.05] 1.68] 0.81] 0.05 0.2 1 5 20 Favours [experimental] Favours [control]
Example 2017 Subgroup Example 2017 Subgroup Example 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI) Total events Heterogeneity: Chi² = 0.7 Test for overall effect: Z = E Study or Subgroup Nikoo Z 2017	vents Total E 50 96 33 63 21 41 200 104 104 200 104 200 104 200 104 200 203 (P = 0.03) 200 200 Experimenta Mean SD -0.98 1.14	Events Total 38 47 23 32 26 42 121 87 9); I² = 0% al <u>Total Mea</u> 33 -0.4	2 -0.17 2 -3.54 2 -1.31 Control n <u>SD T</u>i 4 0.54	0.04 0.9 3.61 82.0 0.75 17.0 100.0 0tal Weight 35 22.7%	Mt Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 25] % 0.38 [0.13, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0]	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 8.81] 0.05 0.2 1 5 20 Favours [experimental] Favours [control] Mean Difference
Example 2017 Study or Subgroup Ex Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total (95% CI) Total events Heterogeneity: Chi ² = 0.7 Test for overall effect: Z = E Study or Subgroup Nikoo Z 2017 Pittock SJ 2019	vents Total E 50 96 33 63 21 41 200 104 104 - - 200 105 - 0.02) - - 50 - 0.02) -	Events Total 38 47 23 32 26 42 121 87 9); I² = 0% al <u>Total Mea</u> 33 -0.4 96 0.1	 ' -0.17 2 -3.54 2 -1.31 Mathematical State Mathematical State	0.04 0.9 3.61 82.0 0.75 17.0 100.0 0 tal Weigh 35 22.7% 47 41.6%	Mt Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 25] % 0.38 [0.13, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0]	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 8.81] 0.05 0.2 1 5 20 Favours [experimental] Favours [control] Mean Difference
EXAMPLE A CONTRACT OF STATE OF	vents Total E 50 96 33 63 21 41 200 104 104 5, df = 2 (P = 0.6) 2.39 (P = 0.02) 104 • 2.39 (P = 0.02) 0.02) 0.98 1.14 • 0.98 1.14 0.81 -0.18 0.81 • 0.32 0.63 3 3 3	Events Total 38 47 23 32 26 42 121 87 9); I [≈] = 0% al <u>Total Mea</u> 33 -0.4 96 0.1 19 -0.2	2 -0.17 2 -3.54 2 -1.31 Control n SD T 4 0.54 2 0.95 6 1.06	0.04 0.9 3.61 82.0 0.75 17.0 100.0 0 tal Weigh 35 22.7% 47 41.6% 19 13.5%	Mt Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 25] % 0.38 [0.13, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.30 [0.0, 0] % -0.30 [-0.54 [-0.97, -0.11] % -0.30 [-0.62, 0.02] % -0.06 [-0.61, 0.49]	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 8.81] 0.05 0.2 1 5 20 Favours [experimental] Favours [control] Mean Difference
Exitive or Subgroup Ex Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total events Heterogeneity: Chi ² = 0.7 Test for overall effect: Z = E Study or Subgroup Nikoo Z 2017 Pittock SJ 2019 Tahara M 2020 Traboulsee A 2020	vents Total E 50 96 33 63 21 41 200 104 104 -5, df = 2 (P = 0.6%) -2,39 (P = 0.02) -2,39 (P = 0.02) Experimenta Mean SD -0,98 1,14 -0,98 1,14 -0,18 0,81	Events Total 38 47 23 32 26 42 121 87 9); I² = 0% al <u>Total Mea</u> 33 -0.4 96 0.1	2 -0.17 2 -3.54 2 -1.31 Control n <u>SD</u> <u>Tr</u> 4 0.54 2 0.95 6 1.06 6 1.06 7 0.76	0.04 0.9 3.61 82.0 0.75 17.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Int Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 263 % 0.38 [0.13, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % -0.30 [0.16, 0] % -0.30 [0.62, 0.02] % -0.30 [0.62, 0.02] % -0.17 [0.60, 0.26]	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 8.81] 0.05 0.2 1 5 20 Favours [experimental] Favours [control] Mean Difference
Exitive or Subgroup Ex Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total events Heterogeneity: Chi ² = 0.7 Test for overall effect: Z = E Study or Subgroup Nikoo Z 2017 Pittock SJ 2019 Tahara M 2020 Traboulsee A 2020 Total (95% CI)	vents Total E 50 96 33 63 21 41 200 104 25, df = 2 (P = 0.63) 2.39 (P = 0.02) Experiment: Mean SD -0.98 1.14 -0.98 1.14 -0.18 0.81 -0.32 0.63 -0.34 1.03	Events Total 38 47 23 32 26 42 121 87 9); I² = 0% al <u>Total Mea</u> 33 -0.4 96 0.1 19 -0.2 53 -0.1 201	2 -0.17 2 -3.54 2 -1.31 Control n SD T 4 0.54 2 0.95 6 1.06 6 1.06 7 0.76	0.04 0.9 3.61 82.0 0.75 17.0 100.0 0.75 22.79 47 41.69 19 13.59 20 22.29 121 100.09	Int Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 263 % 0.38 [0.13, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % -0.30 [0.16, 0] % -0.30 [0.62, 0.02] % -0.30 [0.62, 0.02] % -0.30 [0.63, 0.26] % -0.17 [0.60, 0.26]	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 1.68] 0.05 0.05 0.2 Favours [experimental] Mean Difference
Exitive or Subgroup Ex Pittock SJ 2019 Traboulsee A 2020 Yamamura T 2019 Total events Heterogeneity: Chi ² = 0.7 Test for overall effect: Z = E Study or Subgroup Nikoo Z 2017 Pittock SJ 2019 Tahara M 2020 Traboulsee A 2020	vents Total E 50 96 33 63 21 41 200 104 75, df = 2 (P = 0.6) 2.39 (P = 0.02) 104 Experimenta -0.38 1.14 -0.38 1.14 -0.32 0.63 -0.34 1.03 0.00; Chi ² = 2.2 2.2	Events Total 38 47 23 32 26 42 121 87 9); P = 0% al Total Mea 33 -0.4 96 0.1 19 -0.2 53 -0.1 27, df = 3 (P	2 -0.17 2 -3.54 2 -1.31 Control n SD T 4 0.54 2 0.95 6 1.06 6 1.06 7 0.76	0.04 0.9 3.61 82.0 0.75 17.0 100.0 0.75 22.79 47 41.69 19 13.59 20 22.29 121 100.09	Int Exp[(O-E) / VI, Fixed, 95 % 0.01 [0.00, 263 % 0.38 [0.13, 1] % 0.17 [0.02, 1] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % 0.32 [0.13, 0] % -0.30 [0.16, 0] % -0.30 [0.62, 0.02] % -0.30 [0.62, 0.02] % -0.30 [0.63, 0.26] % -0.17 [0.60, 0.26]	Hazard Ratio % CI Exp[(O-E) / VI, Fixed, 95% CI 7.19] 1.68] 1.68] 0.05 0.05 0.2 Favours [experimental] Mean Difference

Fig. 3. The monoclonal effect of preventing recurrence, the forest plot indicates the estimated hazard ratio (95% confidence interval): A. in all patients; B. in AQP4-IgG seropositive patients; C. the first-year of no relapse rate; D. the second-year of no relapse rate; E. the mean change of EDSS score.

receptors, preventing IL-6 from binding and inhibiting the IL-6 signaling pathways involved in inflammation.²⁰ Eculizumab is a long-acting humanized monoclonal antibody targeted against complement C5, it inhibits the cleavage of C5 into C5a and C5b and hence inhibits the deployment of the terminal complement system including the formation of membrane attack complex.^{35,46} Inebilizumab targets and depletes CD19-expressing B cells through antibody-dependent cell-mediated cytotoxicity.^{46,47} In addition, we believe that numerous other factors, including those that frequency, severity, AQP4-IgG antibody status, and

age, influence the disease's recurrence, based on available information.^{45,48–50} Of note, differentiating symptoms between a true relapse and a pseudorelapse is a diagnostic challenge even for expert clinicians. Of the patients who presented with true relapses, 75% had positive AQP4-IgG serostatus, however, 60% of pseudorelapse patients had positive serostatus similarly. A previous study identified that vision loss in NMOSD is strongly suggestive of a true relapse vs a pseudorelapse, meanwhile, pseudorelapses localized to the spinal cord in patients with previous myelitis presented similarly to true relapses and could only be

Α									
	Experim	ental	Control		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rando	om, 95% Cl	
Cree BAC 2019	125	174	41	56	22.0%	0.93 [0.47, 1.84]			
Nikoo Z 2017	4	40	3	46	9.7%	1.59 [0.33, 7.59]		-	
Pittock SJ 2019	49	96	27	47	21.5%	0.77 [0.38, 1.56]			
Tahara M 2020	17	19	17	19	6.4%	1.00 [0.13, 7.94]			
Traboulsee A 2020	58	63	24	32	13.4%	3.87 [1.15, 13.02]			
Yamamura T 2019	37	41	40	42	8.2%	0.46 [0.08, 2.68]			
Zhang C 2020	36	59	49	59	18.7%	0.32 [0.14, 0.75]			
Total (95% CI)		492		301	100.0%	0.89 [0.49, 1.59]	-		
Total events	326		201						
Heterogeneity: Tau ² = 0.29; Chi ² = 12.21, df = 6 (P = 0.06); l ² = 5						%		10	100
Test for overall effect:	Z=0.41 (F	P = 0.68)				Favours [experimental]		100

В

	Experimental Control		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Cree BAC 2019	5	174	3	56	16.5%	0.52 [0.12, 2.26]	
Pittock SJ 2019	28	96	6	47	28.2%	2.81 [1.07, 7.37]	
Tahara M 2020	4	19	1	19	8.0%	4.80 [0.48, 47.68]	
Traboulsee A 2020	10	63	6	32	23.8%	0.82 [0.27, 2.49]	
Yamamura T 2019	10	41	6	42	23.6%	1.94 [0.63, 5.93]	+
Total (95% CI)		393		196	100.0%	1.52 [0.76, 3.04]	•
Total events	57		22				
Heterogeneity: $Tau^{2} = 0.20$; $Chi^{2} = 5.97$, $df = 4$ (P = 0.20);				= 0.20)); I z = 33%	6	
Test for overall effect:	Z=1.18 (F	P = 0.24)				0.01 0.1 1 10 100 Favours [experimental] Favours [control]

С

_

	Experimental Control		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Cree BAC 2019	20	174	5	56	17.1%	1.32 [0.47, 3.71]	
Pittock SJ 2019	13	96	10	47	21.9%	0.58 [0.23, 1.44]	
Traboulsee A 2020	11	63	8	32	17.1%	0.63 [0.23, 1.78]	
Yamamura T 2019	7	41	7	42	13.7%	1.03 [0.33, 3.25]	
Zhang C 2020	17	59	21	59	30.2%	0.73 [0.34, 1.59]	
Total (95% CI)		433		236	100.0%	0.79 [0.51, 1.21]	•
Total events	68		51				
Heterogeneity: Tau ² = 0.00; Chi ² = 1.83, df = 4 (P = 0.77); I ² = 1); I ^z = 0%		
Test for overall effect:	Z = 1.10 (F	P = 0.27)				0.01 0.1 1 10 100 Favours [experimental] Favours [control]

D

	Experimental Control		Odds Ratio		Odds Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	om, 95% Cl	
Cree BAC 2019	13	174	4	56	19.2%	1.05 [0.33, 3.36]		•	
Pittock SJ 2019	22	96	11	47	38.1%	0.97 [0.43, 2.22]			
Tahara M 2020	4	19	3	19	9.5%	1.42 [0.27, 7.44]		•	
Traboulsee A 2020	10	63	4	32	16.7%	1.32 [0.38, 4.59]			
Yamamura T 2019	10	41	4	42	16.5%	3.06 [0.88, 10.73]	-		
Total (95% CI)		393		196	100.0%	1.30 [0.78, 2.17]	-	•	
Total events	59		26						
Heterogeneity: Tau² =	Heterogeneity: Tau ² = 0.00; Chi ² = 2.42, df = 4 (P = 0.66); l ² =); I² = 0%		0.01 0.1	1 10	100
Test for overall effect: Z = 1.02 (P = 0.31)						Favours [experimental]		100	

Ε

	Experimental Control		Odds Ratio		Odds				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	om, 95% Cl	
Cree BAC 2019	8	174	5	56	16.7%	0.49 [0.15, 1.57]		<u> </u>	
Nikoo Z 2017	0	40	1	46	2.2%	0.37 [0.01, 9.45]	· · · · ·	<u> </u>	
Pittock SJ 2019	9	96	9	47	22.5%	0.44 [0.16, 1.19]		+	
Tahara M 2020	3	19	2	19	6.1%	1.59 [0.23, 10.82]			
Traboulsee A 2020	12	63	5	32	17.2%	1.27 [0.41, 3.98]		-	
Yamamura T 2019	7	41	9	42	18.6%	0.75 [0.25, 2.26]		+	
Zhang C 2020	5	59	9	59	16.7%	0.51 [0.16, 1.64]		+-	
Total (95% CI)		492		301	100.0%	0.66 [0.41, 1.06]	•	-	
Total events	44		40						
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.00; Chi ² = 3.34, df = 6 (P = 0.77); l ² = 0%						0.01 0.1	+ + 1 10	100
Test for overall effect:	Z=1.74 (F	P = 0.08)				Favours [experimental]		100

Fig. 4. The forest plot indicates the estimated odds ratio (95% confidence interval) of adverse events: A. the total adverse events; B. the upper respiratory tract infection; C. the urinary tract infection rate; D. headache; E. serious adverse events.

ruled out by a negative MRI.^{51–53} To avoid and manage worsening conditions in the chronic phase, a correct assessment of the disease status and the adoption of appropriate treatment strategies are required.^{8,35,36,54} This meta-analysis found that seropositivity for AQP4-IgG in NMOSD patients could effectively prevent recurrence when treated with monoclonal antibodies, although more research with more samples is needed.

The mean EDSS score change reported by four trials showed the result: monoclonal antibodies were correlated with a remarkable decrease in EDSS scores. Other non-RCT studies that were not included in the meta-analysis also found that monoclonal antibodies have a similar effect on reducing EDSS score.^{34,35,54–56} However, the guidelines of the European Medicines Agency (EMA) suggest that an average change of EDSS score from baseline is not an adequate efficacy parameter. Instead, they recommend defining treatment success or treatment failure as either reaching a certain EDSS score or a sustained change of insufficient volume.⁵⁷ But due to the lack of raw data, we could not follow this method of analysis.

In comparison to standard immunosuppressants, there was no statistical difference in the safety of monoclonal antibodies for NMOSD. Upper respiratory tract infection, urinary tract infection, and headache were the most common side events reported in both the monoclonal antibodies and control groups. We hypothesize that the reason may be that patients in the control group did not restrict the use of other traditional immunosuppressants, and the adverse effects of immunosuppressants may be roughly similar to those of the experimental group. The possibility of numerous adverse events should be considered during therapy, and precautions should be made to avoid them. Because inebilizumab can cause hypogammaglobulinemia, it's vital to check immunoglobulin levels before and during treatment^{58,59}; In patients with hepatitis B and active or untreated latent tuberculosis, satralizumab and RTX are contraindicated^{19,21,58,60}; Meningococcal sepsis has been a severe adverse event in eculizumab-treated patients, and we believe that meningococcal vaccine should be given to patients at the commencement of treatment.18,55

5. Limitation

We limited our literature search and screening to studies written in English; as a result, the experimental results of certain non-English articles may have been overlooked. In addition, in the process of extracting data, we used the Engauge Digitizer software, although we have done our best to be accurate, it inevitably caused a bit of error in the calculation of two-year relapse-free survival by using the manual screenshot. Furthermore, there are few clinical studies on novel monoclonal antibody medications, a network meta-analysis to compare which works best is not possible.

6. Conclusions

Monoclonal antibodies are particularly effective treatments in avoiding recurrence for NMOSD patients, according to this metaanalysis. The associated adverse responses are not significantly different from those seen with traditional immunosuppressants.

Study approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by XX, LX, and LW. The first draft of the manuscript was written by XX and all authors

commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We express our sincere gratitude to the Medicine Center of Lanzhou University/World Health Organization Collaborating Center for Guideline. Thanks to all the peer reviewers for their opinions and suggestions.

Funding

This work is supported by the Ministry of Science and Technology of the People's Republic of China Core Project(2018YFE0113900).

Declaration of completing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations

AQP4	aquaporin-4
AZA	azathioprine
BBB	blood-brain barrier
EDSS	expanded disability status scale
HR	hazard ratio
IVIG	intravenous immunoglobulin
MMF	mycophenolate mofetil
MD	mean difference
NMOSD	neuromyelitis optica spectrum disorders
OR	odds ratio
RCT	randomized controlled trials
DTV	rituringah

RTX rituximab

References

- Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. *Neurology*. 2015;85(2):177–189. https://doi.org/10.1212/wnl.00000000001729.
- Jarius S, Paul F, Weinshenker BG, et al. Neuromyelitis optica. Nat Rev Dis Prim. 2020; 6(1):85. https://doi.org/10.1038/s41572-020-0214-9.
- Kawachi I, Lassmann H. Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2017;88(2):137–145. https://doi.org/10.1136/ jnnp-2016-313300.
- Valencia-Sanchez C, Wingerchuk DM. Emerging targeted therapies for neuromyelitis optica spectrum disorders. *BioDrugs*. 2020. https://doi.org/10.1007/s40259-020-00460-9.
- Narayan R, Simpson A, Fritsche K, et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. *Mult Scler Relat Disord*. 2018;25:66–72. https://doi.org/10.1016/j.msard.2018.07.025.
- Mao-Draayer Y, Thiel S, Mills EA, et al. Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. *Nat Rev Neurol*. 2020;16(3):154–170. https:// doi.org/10.1038/s41582-020-0313-y.
- Tan CT, Mao Z, Qiu W, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. *Neurology*. 2016;86(5):491–492. https:// doi.org/10.1212/wnl.00000000002366.
- Holmøy T, Høglund RA, Illes Z, et al. Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder. J Neurol. 2020. https://doi.org/10.1007/ s00415-020-10235-5.
- Trebst C, Jarius S, Berthele A, et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014;261(1):1–16. https://doi.org/10.1007/s00415-013-7169-0
- Kim SH, Jang H, Park NY, et al. Discontinuation of immunosuppressive therapy in patients with neuromyelitis optica spectrum disorder with aquaporin-4 antibodies. *Neurol Neuroimmunol Neuroinflamm.* 2021;8(2). https://doi.org/10.1212/ nxi.00000000000947.
- Carnero Contentti E, Rojas JI, Cristiano E, et al. Latin American consensus recommendations for management and treatment of neuromyelitis optica spectrum disorders in clinical practice. *Mult Scler Relat Disord*. 2020;45:102428. https:// doi.org/10.1016/j.msard.2020.102428.
- Qin C, Tao R, Zhang SQ, et al. Predictive factors of resistance to high-dose steroids therapy in acute attacks of neuromyelitis optica spectrum disorder. *Front Neurol.* 2020;11:585471. https://doi.org/10.3389/fneur.2020.585471.

- Kosiyakul P, Songwisit S, Ungprasert P, et al. Effect of plasma exchange in neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. Ann Clin Transl Neurol. 2020;7(11):2094–2102. https://doi.org/10.1002/acn3.51203.
- Kleiter I, Gahlen A, Borisow N, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. *Neurol Neuroimmunol Neuroinflamm*. 2018;5(6):e504. https://doi.org/10.1212/nxi.000000000000504.
- Palace J, Leite MI, Jacob A. A practical guide to the treatment of neuromyelitis optica. *Practical Neurol.* 2012;12(4):209–214. https://doi.org/10.1136/practneurol-2012-000237.
- Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebocontrolled phase 2/3 trial. *Lancet.* 2019;394(10206):1352–1363. https://doi.org/ 10.1016/S0140-6736(19)31817-3.
- Nct. Comparison of clinical effects of azathioprine and rituximab NMO-SD patients. https://clinicaltrialsgov/show/NCT03002038; 2016.
- Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614–625. https://doi.org/10.1056/NEJMoa1900866.
- Tahara M, Oeda T, Okada K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. *Lancet Neurol.* 2020;19(4):298–306. https://doi.org/ 10.1016/S1474-4422(20)30066-1.
- Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. *Lancet Neurol.* 2020;19(5):402–412. https://doi.org/10.1016/S1474-4422(20)30078-8.
- Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(22):2114–2124. https://doi.org/ 10.1056/NEJMoa1901747.
- Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. *Lancet Neurol.* 2020;19(5): 391–401. https://doi.org/10.1016/S1474-4422(20)30070-3.
- Li Xiu-xia, Han Xue-mei, Yang K-h. Development and prospect of evidence-based Health policy. *Library and Information*. 2018;3:43–49.
- Yang K-h. The emergence, development and future of evidence-based social science. Library and Information. 2018;(3):1–10. https://doi.org/10.11968/tsyqb.1003-6938.2018038.
- Yang Ke-hu, Li Xiu-xia, Bai Z-g. Evidence-based Social Science Research Methods: Systematic Reviews and Meta-Analysis. Lanzhou University Press; 2018.
- Gülen S, Fonnes S, Andresen K, et al. Increasing number of authors in Cochrane reviews. J Evid Base Med. 2020;13(1):34–41. https://doi.org/10.1111/jebm.12371.
- Yang J, Li Y, Liu Q, et al. Brief introduction of medical database and data mining technology in big data era. J Evid Base Med. 2020;13(1):57–69. https://doi.org/ 10.1111/jebm.12373.
- Xue T, Yang Y, Lu Q, et al. Efficacy and safety of monoclonal antibody therapy in neuromyelitis optica spectrum disorders: evidence from randomized controlled trials. *Mult Scler Relat Disord*. 2020;43, 102166. https://doi.org/10.1016/ i.msard.2020.102166.
- 29. Wingerchuk DM. Neuromyelitis optica. Int MS J. 2006;13(2):42-50.
- Luo S, Long Y, Xiao W, et al. Risk of bias assessments and reporting quality of systematic reviews and randomized controlled trials examining acupuncture for depression: an overview and meta-epidemiology study. *J Evid Base Med.* 2020;13(1): 25–33. https://doi.org/10.1111/jebm.12372.
- Andersen MZ, Fonnes S, Andresen K, et al. Group authorships in Cochrane had low compliance with Cochrane recommendations. *J Evid Base Med.* 2020;13(3):199–205. https://doi.org/10.1111/jebm.12396.
- Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials*. 2007;8:16. https://doi.org/10.1186/ 1745-6215-8-16.
- Hu Q, Wu B, Zhan M, et al. Adverse events identified by the global trigger tool at a university hospital: a retrospective medical record review. *J Evid Base Med.* 2019; 12(2):91–97. https://doi.org/10.1111/jebm.12329.
- 34. Kim SH, Jeong IH, Hyun JW, et al. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol. 2015;72(9):989–995. https://doi.org/10.1001/jamaneurol.2015.1276.
- Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. *Lancet Neurol.* 2013;12(6):554–562. https://doi.org/10.1016/s1474-4422(13)70076-0.
- Ringelstein M, Ayzenberg I, Harmel J, et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 2015;72(7):756–763. https://doi.org/10.1001/jamaneurol.2015.0533.
- Shimizu Y, Fujihara K, Ohashi T, et al. Pregnancy-related relapse risk factors in women with anti-AQP4 antibody positivity and neuromyelitis optica spectrum

disorder. Mult Scler. 2016;22(11):1413-1420. https://doi.org/10.1177/1352458515583376.

- Nour MM, Nakashima I, Coutinho E, et al. Pregnancy outcomes in aquaporin-4positive neuromyelitis optica spectrum disorder. *Neurology*. 2016;86(1):79–87. https://doi.org/10.1212/wnl.00000000002208.
- Kim W, Kim SH, Nakashima I, et al. Influence of pregnancy on neuromyelitis optical spectrum disorder. *Neurology*. 2012;78(16):1264–1267. https://doi.org/10.1212/ WNL.0b013e318250d812.
- Palmeira P, Quinello C, Silveira-Lessa AL, et al. IgG placental transfer in healthy and pathological pregnancies. *Clin Dev Immunol.* 2012;2012:985646. https://doi.org/ 10.1155/2012/985646.
- Kim SH, Huh SY, Jang H, et al. Outcome of pregnancies after onset of the neuromyelitis optica spectrum disorder. *Eur J Neurol.* 2020;27(8):1546–1555. https://doi.org/10.1111/ene.14274.
- Borisow N, Hellwig K, Paul F. [Neuromyelitis optica spectrum disorder and pregnancy]. Nervenarzt. 2018;89(6):666–673. https://doi.org/10.1007/s00115-018-0486-4.
- Borisow N, Hellwig K, Paul F. Neuromyelitis optica spectrum disorders and pregnancy: relapse-preventive measures and personalized treatment strategies. *EPMA J.* 2018;9(3):249–256. https://doi.org/10.1007/s13167-018-0143-9.
- 2020 Sammaritano LR, Bermas BL, Chakravarty EE, et al. American college of rheumatology guideline for the management of reproductive Health in rheumatic and musculoskeletal diseases. *Arthritis Rheumatol.* 2020;72(4):529–556. https:// doi.org/10.1002/art.41191.
- Stellmann JP, Krumbholz M, Friede T, et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry. 2017;88(8):639–647. https://doi.org/10.1136/jnnp-2017-315603.
- Holmøy T, Høglund RA, Illes Z, et al. Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder. J Neurol. 2020. https://doi.org/10.1007/ s00415-020-10235-5.
- Fujihara K, Bennett JL, de Seze J, et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. *Neurol Neuroimmunol Neuroinflamm*. 2020;7(5). https://doi.org/10.1212/nxi.000000000000841.
- Lin CW, Lin IH, Chen TC, et al. Clinical course and treatment response of neuromyelitis optica spectrum disease: an 8-year experience. Asia Pac J Ophthalmol (Phila). 2019;8(3):206–210. https://doi.org/10.22608/apo.2018247.
- Kunchok A, Malpas C, Nytrova P, et al. Clinical and therapeutic predictors of disease outcomes in AQP4-IgG+ neuromyelitis optica spectrum disorder. *Mult Scler Relat Disord*. 2020;38, 101868. https://doi.org/10.1016/j.msard.2019.101868.
- Shi Z, Du Q, Chen H, et al. Effects of immunotherapies and prognostic predictors in neuromyelitis optica spectrum disorder: a prospective cohort study. J Neurol. 2020; 267(4):913–924. https://doi.org/10.1007/s00415-019-09649-7.
- Kessler RA, Mealy MA, Levy M. Early indicators of relapses vs pseudorelapses in neuromyelitis optica spectrum disorder. *Neurol Neuroimmunol Neuroinflamm*. 2016; 3(5):e269. https://doi.org/10.1212/nxi.00000000000269.
- Cree BA, Bennett JL, Sheehan M, et al. Placebo-controlled study in neuromyelitis optica-Ethical and design considerations. *Mult Scler*. 2016;22(7):862–872. https:// doi.org/10.1177/1352458515620934.
- D'Souza M, Papadopoulou A, Levy M, et al. Diagnostic procedures in suspected attacks in patients with neuromyelitis optica spectrum disorders: results of an international survey. *Mult Scler Relat Disord*. 2020;41, 102027. https://doi.org/ 10.1016/j.msard.2020.102027.
- Cree BA, Lamb S, Morgan K, et al. An open label study of the effects of rituximab in neuromyelitis optica. *Neurology*. 2005;64(7):1270–1272. https://doi.org/10.1212/ 01.Wnl.0000159399.81861.D5.
- Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. *Lancet Neurol.* 2013;12(6):554–562. https://doi.org/10.1016/s1474-4422(13)70076-0.
- Mealy MA, Levy M. A pilot safety study of ublituximab, a monoclonal antibody against CD20, in acute relapses of neuromyelitis optica spectrum disorder. *Medicine*. 2019;98(25), e15944. https://doi.org/10.1097/MD.000000000015944.
- Meyer-Moock S, Feng YS, Maeurer M, et al. Systematic literature review and validity evaluation of the expanded disability status scale (EDSS) and the multiple sclerosis functional composite (MSFC) in patients with multiple sclerosis. *BMC Neurol*. 2014; 14:58. https://doi.org/10.1186/1471-2377-14-58.
- Wallach AI, Tremblay M, Kister I. Advances in the treatment of neuromyelitis optica spectrum disorder. *Neurol Clin.* 2020. https://doi.org/10.1016/j.ncl.2020.09.003.
- Agius MA, Klodowska-Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebocontrolled, escalating intravenous and subcutaneous dose study. *Mult Scler.* 2019; 25(2):235–245. https://doi.org/10.1177/1352458517740641.
- Ciron J, Audoin B, Bourre B, et al. Recommendations for the use of Rituximab in neuromyelitis optica spectrum disorders. *Rev Neurol (Paris)*. 2018;174(4):255–264. https://doi.org/10.1016/j.neurol.2017.11.005.