
Bioinformatic Analysis of Nematode Migration-
Associated Genes Identifies Novel Vertebrate Neural
Crest Markers
Seung-Hae Kwon1., Ok Kyu Park1., Shuyi Nie2, Jina Kwak3, Byung Joon Hwang4, Marianne E. Bronner2*,

Yun Kee3,5*

1 Korea Basic Science Institute Chuncheon Center, Chuncheon, Korea, 2 Division of Biology 139-74, California Institute of Technology, Pasadena, California, United States

of America, 3 Department of Systems Immunology, Kangwon National University, Chuncheon, Korea, 4 Department of Molecular Bioscience, College of Biomedical

Science, Kangwon National University, Chuncheon, Korea, 5 Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea

Abstract

Neural crest cells are highly motile, yet a limited number of genes governing neural crest migration have been identified by
conventional studies. To test the hypothesis that cell migration genes are likely to be conserved over large evolutionary
distances and from diverse tissues, we searched for vertebrate homologs of genes important for migration of various cell
types in the invertebrate nematode and examined their expression during vertebrate neural crest cell migration. Our
systematic analysis utilized a combination of comparative genomic scanning, functional pathway analysis and gene
expression profiling to uncover previously unidentified genes expressed by premigratory, emigrating and/or migrating
neural crest cells. The results demonstrate that similar gene sets are expressed in migratory cell types across distant animals
and different germ layers. Bioinformatics analysis of these factors revealed relationships between these genes within
signaling pathways that may be important during neural crest cell migration.
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Introduction

Cell migration is essential for tissue and organ formation during

embryogenesis and for the regeneration of some adult tissues.

Abnormal regulation of cell migration often results in severe

developmental defects and can lead to cancer metastasis. The

neural crest is a stem cell-like, multipotent, migratory cell

population unique to vertebrate embryos. Neural crest progenitors

are born at the border of the neural plate and non-neural

ectoderm, become localized within the dorsal neural tube and then

migrate away from the neural tube as it closes. This emigration

process occurs via an epithelial-to-mesenchymal transition (EMT)

such that these ectodermally-derived cells delaminate from the

dorsal neural tube and invade the surrounding mesenchyme. They

then migrate to distant sites in the periphery of embryos and

differentiate into various tissues [1–4].

Although neural crest development has been extensively studied

for several decades, few genes functionally involved in neural crest

cell migration have been identified. This is mainly because the

neural crest is a vertebrate-specific cell type and it remains

impractical to carry out large scale genetic screening in vertebrates

due to their relatively long generation times and high upkeep costs.

In contrast, invertebrate genetic screens using the nematode

Caenorhabditis elegans and fruit fly Drosophila melanogaster have

identified large number of genes involved in key developmental

processes. Mutations disrupting cell migration in different cell

types have been identified in C. elegans, many of which have yet to

be fully functionally characterized [5–7].

Genome-wide sequencing of many organisms has provided

insight into the infrastructures of their genomic organization. To

date, a tremendous amount of sequence information exists in

available databases and is ripe for bioinformatic analysis.

Comparative genomics is a powerful tool for the identification of

novel genes associated with conserved biological processes even

between evolutionarily distant animal model systems. We previ-

ously used this approach to show that genes important for the

migration of nematode hermaphrodite-specific neurons (HSNs)

are also involved during neural crest development (Kee et al.,

2007). Of fifteen identified vertebrate homologs of genes required

for HSN neuronal cell migration, thirteen were shown to be

expressed in premigratory or migratory neural crest cells [8],

demonstrating that many cell migration genes are evolutionary

conserved and ancient. The remarkable conservation of genes

involved in long-range cell migration between worm HSN and

chick neural crest emphasizes the utility of exploiting existing

sequenced genomes and information from traditional genetics to

identify candidates involved in stereotypic cell biological processes

like cell migration.
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Here, we ask whether such high conservation also exists for

regulatory genes functioning in cell migration processes between

migratory nematode cells arising from different germ layers and

vertebrate neural crest. To address this, we selected twenty-five C.
elegans genes required for the migration of various cell types and

performed genomic scanning to search for putative vertebrate

orthologs; further candidates were identified by bioinformatic

analysis of common functional pathway components. This was

followed by expression analysis of the putative candidate genes,

which revealed previously unidentified regulatory and signaling

genes that may play key, conserved roles in controlling cell

migration.

Materials and Methods

Computational identification of vertebrate orthologs of
worm cell migration genes

Twenty-five nematode (C. elegans) genes previously identified in

genetic screens as essential for migration of various cell types were

selected for this study (Table 1) [6,7]. Putative chicken (Gallus
gallus) orthologs of the worm genes were identified by compar-

ative genomic scanning, as shown previously [8]. As the chicken

genome has been almost completely sequenced, we were able to

identify putative orthologs corresponding to all twenty-five C.
elegans cell migration genes (Table 1).

DNA constructs and RNA probe synthesis
Sequences of putative vertebrate orthologs corresponding to all

twenty-five C. elegans cell migration genes were used as queries to

search the chicken EST database at www.chick.umist.ac.uk/

(Table 1). Chicken EST clones of the genes in the predicted FGFR

signaling pathway were identified in a similar manner: SOS1

(ChEST793F19), GAB1 (ChEST878L14), FRS2 (ChEST166G11),

Shc1 (ChEST352e24), SOS2 (ChEST173l15). PIK3R2 was isolated

in our previous screen [9]. Antisense RNA probes for in situ
hybridization were prepared as previously described [10].

Embryo collection and whole mount in situ hybridization
White Leghorn chicken eggs were obtained from local farms

and were incubated at 38uC for two to three days. Embryos were

fixed in 4% paraformaldehyde in PBS (Phosphate Buffered Saline)

at 4uC overnight, and subjected to whole mount in situ
hybridization, as previously described [11,12]. Stages were

determined according to criteria of Hamburger and Hamilton

[13]. National Institute of Health guidelines state that for chicken

embryos younger than embryonic day 10, no special approval or

IACUC documentation is required.

Pathway analysis
Predicted signaling pathways were obtained from our identified

putative vertebrate orthologs using Gene Ontology and MetaCore

(GeneGo) analysis with the canonical pathways setting. A specific

sub-pathway was generated by limiting the connections of the

components in each pathway including only genes identified from

this study.

Results and Discussion

Genomic scanning of cell migration genes
Twenty-five genes, identified from genetic screens in C. elegans

for their functional importance in cell migration in various tissues

[6,7], were selected for computational analysis. Using BLAST

search engines against available vertebrate genome sequences and

genomic databases [8], we identified vertebrate counterparts, here

defined as putative orthologs. The vertebrate gene with highest

identity score by computational analysis was used to identify the

putative chick ortholog and its available EST (Expressed Sequence

Tags) sequence. In this way, we identified orthologs in the chicken

genome corresponding to all twenty-five C. elegans cell migration

genes (Table 1).

Expression screening of cell migration genes
To test whether the twenty-five vertebrate orthologs of the

worm genes were expressed during neural crest development, we

performed in situ hybridization at various stages beginning at the

premigratory stage (HH8) when cranial neural crest cells are

located within the dorsal neural tube and have yet to delaminate

from the neuroepithelium by undergoing EMT to initiate

migration at HH9. Thirteen chicken transcripts, homologous to

the C. elegans cell migration genes ced-2 (Crk), ced-5 (Dock180),

ced-10 (p21-Rac1), ceh-10 (Chx10), daf-12 (NR1I3), egl-15
(Fgfr1), egl-17 (Fgf18), lin-39 (HoxA4), mab-5 (HoxB6), sem-5
(Grb2), unc-40 (DCC), unc-51 (ULK2) and vab-8 (kinesin), were

detected in premigratory neural crest cells in the dorsal neural tube

(Figure 1). Neural crest expression was not uniform in every case:

the putative vertebrate ortholog of lin-39 (HoxA4) for example,

was only expressed in the neural folds of the caudal trunk at later

stages (Figure 1). Furthermore, expression of the fbl-1 ortholog

FBLN2 was limited to the tip of the dorsal neural tube and was

also expressed in the cranial ectoderm, while the vab8 ortholog

(kinesin) was expressed only in the dorsal hindbrain. Thus, we

identified homologs of nematode cell migration genes that are

expressed in subpopulations of premigratory neural crest cells from

different axial levels of the neural tube. All of these genes have

known functions in cell migration in the nematode (Table 1). The

fact that they are also expressed by premigratory neural crest cells

as they are preparing to initiate EMT raises the intriguing

possibility that they may be functionally important in vertebrates

as well.

At later stages, chick orthologs of ced-2 (Crk), ced-5 (Dock180),

ced-10 (p21-Rac1), daf-12 (NR1I3), egl-15 (Fgfr1), egl-17 (Fgf18),

mab-5 (HoxB6), sem-5 (Grb2) and unc-51 (Ulk2) were expressed in

migrating neural crest cells at the midbrain level (Figure 2A). The

ortholog of fbl-1 (FBLN2) was transiently expressed in a small

population of migrating cells and in the ectoderm (Figure 2A).

Finally, the vertebrate orthologs of ced-5 (Dock180), ced-10 (p21-

Rac1), daf-12 (NR1I3), egl-15 (Fgfr1), mab-5 (HoxB6) and vab-8
(kinesin) were detected in migrating neural crest cells at the

hindbrain level of stage 11–13 embryos (Figure 2B, mab-5 in

Figure 1). Interestingly, the vertebrate ortholog of vab-8, kinesin,

was specifically expressed in a subset of premigratory neural crest

cells in rhombomeres 4 through 6 (r4 to r6) and in the r6 migration

stream in the hindbrain (Figure 2B).

Cumulatively, the chick orthologs of nematode migratory genes

expressed in the neural crest include two transcription factors,

HoxA4 (lin-39) and HoxB6 (mab-5), eight signaling molecules

including Crk (ced-2), Dock180 (ced-5), Chx10 (ced-10), p21-Rac1

(ceh-10), HoxA4 (lin-39), HoxB6 (mab-5), Grb2 (sem-5) and Ulk2

(unc-51), three growth factors or receptors, Fgfr1 (egl-15), Fgf18

(egl-17) and Frizzled10 (lin-17), a single nuclear hormone receptor

NR1l3 (daf-12), a guidance molecule DCC (unc-40), a basal

membrane protein Fbln2 (fbl-1), and a motor protein Kinesin

(vab-8) (Table 1). These findings suggest that the expression of a

variety of molecules important for long-range cell migration in

nematode, including transcription factors, are common to

migratory cells in vertebrates as well. Thus, they may have

general roles in EMT and/or motility, regardless of their tissue

origins. This comparative analysis revealed that 56% of the
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vertebrate orthologs of C. elegans genes were expressed in neural

crest cells, contrasting with 87% for HSN genes in our previous

study. This suggests that cells originating from different germ

layers may share fewer orthologous migratory genes than those

from the same germ layer.

Functional pathway analysis
To identify the biochemical pathways in which the identified

vertebrate orthologs might act, we performed bioinformatic

analysis using MetaCore (GeneGo) software and The Gene

Ontology Consortium. This provided candidate pathways in

which the orthologous genes had been previously implicated. One

of the best hits was in the developmentally-related FGFR signaling

pathway, a canonical pathway in the MetaCore database. By

analyzing genes common to this pathway, we extracted a predicted

pathway including direct connections with the genes identified

from our expression studies; FGF, FGFR1, GRB2, CRK,

DOCK1 and RAC1 (Figure 3A, red). The molecular components

of this map were previously implicated in EMT and cytoskeletal

remodeling during cell migration [14–16].

To determine whether the members of this predicted pathway

are conserved in migrating neural crest cells, the remaining

pathway components (Figure 3A, black letters) were analyzed by

in situ hybridization. Our results show that transcripts of FRS2,

GABA1, SHC1, and SOS1 are barely detectable in premigratory

neural crest cells (Figure 3C a, b,d,e), but are present at low levels

in migrating neural crest cells (Figure 3C a9, b9,d9,e9). The guanine

nucleotide exchange factors son of sevenless 1 (SOS1) and son of

Figure 1. Vertebrate orthologs of genes essential for cell migration in C. elegans are expressed in premigratory neural crest cells in
chicken embryos. Whole mount in situ hybridization was performed using RNA probes corresponding to orthologs of each nematode gene (upper
panel). Of the twenty-five genes examined in this study, fourteen chicken orthologs were expressed in the premigratory neural crest domain in the
neural folds, as clearly shown in sections (lower panel); Crk (ced-2), Dock180 (ced-5), p21-Rac1 (ced-10), Chx10 (ceh-10), NR1I3 (daf-12), Fgfr1 (egl-15),
Fgf18 (egl-17), Fbln2 (fbl-1), Frizzled10 (lin-17), HoxA4 (lin-39), HoxB6 (mab-5), Grb2 (sem-5), DCC (unc-40) and Kinesin (vab-8). arrow, plane of section;
arrowhead, gene expression in neural fold.
doi:10.1371/journal.pone.0103024.g001
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sevenless 2 (SOS2) function in multiple signaling pathways and

have been implicated in a wide variety of biological and oncogenic

processes [17]. Interestingly, SOS2 is highly up-regulated in the

emigrating neural crest cells and maintained in migrating neural

crest cells (Figure 3C, f,f9), while SOS1 is expressed in migrating

neural crest cells at low levels (Figure 3C e9). PIK3R2 (p85b
phosphoinositide 3-kinase subunit) is known to regulate tumor

progression: p85b expression is elevated in breast and colon

carcinomas and genetic alteration of PIK3R2 expression levels

modulate tumor progression in vivo [18]. Our result shows

PIK3R2 is up-regulated in the neural crest cells emigrating out of

neural tube (Figure 3C, c,c9) and in migrating neural crest cells [9].

Our functional pathway analysis suggests that up-regulation of

PIK3R2 and SOS2 correlate with neural crest EMT and that

SOS2 appears to be more prevalent than SOS1 in early neural

crest development. FGF signaling is known to be required for

neural crest induction or specification from neural stem cells, but

has not been previously implicated in neural crest EMT or initial

cell migration. Thus, our genomic and pathway analysis have

revealed previously unidentified genes and pathways that may be

critical for normal emigration and/or migration of neural crest

cells and are promising candidates for future functional experi-

ments.

Conclusions

Large quantities of genomic sequencing data are available in

diverse databases that are ripe for mining. Genetic screens in

invertebrates such as worms and fruit flies have identified many

molecules important in behavioral, developmental, and physio-

logical processes. Here, we have broadened the utility of cross-

Figure 2. Putative chicken orthologs of nematode cell migration genes are conserved in migrating cranial neural crest cells. Chicken
embryos were subjected to whole mount in situ hybridization using RNA probes corresponding to the vertebrate orthologs of each nematode gene.
(A) Whole mount chicken embryos (upper panel) and tissue sections at the midbrain level of each embryo (lower panel) show that ten vertebrate
orthologs are expressed in neural crest cells migrating from the neural tube in chicken embryos at HH stage 9–10; Crk (ced-2), Dock180 (ced-5), p21-
Rac1 (ced-10), NR1I3 (daf-12), Fgfr1 (egl-15), Fgf18 (egl-17), Fbln2 (fbl-1), HoxB6 (mab-5), Grb2 (sem-5) and Ulk2 (unc-51). Arrowhead indicates migrating
neural crest cells. (B) Five vertebrate orthologs are expressed in migrating neural crest cells at the hindbrain level in HH stage 11–13 embryos;
Dock180 (ced-5), p21-Rac1 (ced-10), NR1I3 (daf-12), Fgfr1 (egl-15) and Kinesin (vab-8). Arrows indicate gene expression in migrating cranial neural crest
cells in rhombomere 4 and/or rhombomere 6.
doi:10.1371/journal.pone.0103024.g002

Figure 3. Functional pathway analysis. (A) Predicted FGFR signaling pathway map showing genes obtained from our comparative analyses in
red. Whole mount in situ hybridization using RNA probes corresponding to the genes in black was performed. (B) Table summarizing gene expression
in neural crest cells. pNCC, premigratory neural crest cells: mNCC, migratory neural crest cells: -, not detected: +, detected: ++, expressed at high level.
(C) Transverse sections of chick embryos showing gene expression in premigratory and/or emigrating neural crest cells at stage HH 8–9 (a–f) and in
migrating neural crest cells at the midbrain level at HH stage 9–10 (a9–f9); (a, a9) frs2, (b, b9) gab1, (c, c9) pik3r2, (d, d9) shc1, (e, e9) sos1, (f, f9) sos2.
Arrows indicate emigrating neural crest cells (a–d, f) or premigratory neural crest cells (e). Arrowheads indicate head mesenchymal cells (a,a9).
doi:10.1371/journal.pone.0103024.g003
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species comparative genomic screening by combining it with

functional pathway analysis to identify additional candidate genes

for analysis. Our results have uncovered previously unidentified

molecular players up-regulated during the course of neural crest

migration. It is interesting to note that many of the genes identified

have previously been assumed to be ubiquitously expressed, and

would be unlikely to be identified by conventional screens. This

proof-of-principle study validates our combinatorial strategy as an

effective pipeline for the identification of novel regulatory genes

during neural crest development and other complex migratory

processes.
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