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Abstract
The recent explosion of genomic data has underscored the need for interpretable and com-

prehensive analyses that can capture complex phylogenetic relationships within and across

species. Recombination, reassortment and horizontal gene transfer constitute examples of

pervasive biological phenomena that cannot be captured by tree-like representations. Start-

ing from hundreds of genomes, we are interested in the reconstruction of potential evolu-

tionary histories leading to the observed data. Ancestral recombination graphs represent

potential histories that explicitly accommodate recombination and mutation events across

orthologous genomes. However, they are computationally costly to reconstruct, usually

being infeasible for more than few tens of genomes. Recently, Topological Data Analysis

(TDA) methods have been proposed as robust and scalable methods that can capture the

genetic scale and frequency of recombination. We build upon previous TDA developments

for detecting and quantifying recombination, and present a novel framework that can be

applied to hundreds of genomes and can be interpreted in terms of minimal histories of

mutation and recombination events, quantifying the scales and identifying the genomic

locations of recombinations. We implement this framework in a software package, called

TARGet, and apply it to several examples, including small migration between different pop-

ulations, human recombination, and horizontal evolution in finches inhabiting the Galápa-

gos Islands.

Author Summary

Evolution occurs through different mechanisms, including point mutations, gene duplica-
tion, horizontal gene transfer, and recombinations. Some of these mechanisms cannot be
captured by tree graphs. We present a framework, based on the mathematical tools of
computational topology, that can explicitly accommodate both recombination and muta-
tion events across the evolutionary history of a sample of genomic sequences. This
approach generates a new type of summary graph and algebraic structures that provide
quantitative information on the evolutionary scale and frequency of recombination events.
The accompanying software, TARGet, is applied to several examples, including migration
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between sexually-reproducing populations, human recombination, and recombination in
Darwin’s finches.

This is a PLOS Computational BiologyMethods paper.

Introduction
Since the publication of the first draft of the human genome [1, 2], there has been an explosion
in genomic data. The genomes of thousands of different human individuals have been
sequenced [3], several hundreds of eukaryotic genomes have been characterized, and new viral,
bacterial and archaeal species are being sequenced on an almost daily basis [4, 5]. Darwin pro-
vided a historical dimension to the taxonomical enterprise, proposing that closely related spe-
cies in the hierarchical taxonomy share ancestors. Since then, tree-like structures have been
proposed to represent the evolutionary/historical relationship between organisms. In the last
few years, however, the richer and more comprehensive genomic characterization of many
organisms have underscored the need of representations that are not strictly tree-like. Phenom-
ena such as horizontal gene transfer in bacteria [6], the ability of viruses to borrow and lend
genes across species, and hybridization in metazoa (in plants, in particular [7, 8]) are exposing
some of the limitations imposed by tree-like phylogenetic structures. The definition of species
itself becomes cumbersome in bacteria and viruses [9]. Within many species, including
humans, genetic recombination is so pervasive that tree-like representations are useless. It is
then natural to wonder what other frameworks could be used to capture phylogenetic relation-
ships without losing the interpretability and simplicity of trees [10–12]. Of particular interest
are representations that reduce to trees when evolution is tree-like; that capture genetic rela-
tions between ancestors, and identify genomic regions originating from different ancestral line-
ages; and, more generally, that allow for an interpretation of the observed data in terms of a
chronological sequence of events.

Several such frameworks have been proposed in the last two decades. The study of phyloge-
netic networks has been an area particularly active [13–15]. Phylogenetic networks provide
representations that extend trees to graphs (networks), generating loops when the data does
not fit into a tree. Some of those methods can easily be applied to more than one hundred
genomes [16–21] providing the opportunity for large-scale representations. However, the bio-
logical interpretation of these representations is limited, as loops represent inconsistencies with
trees, but it is unclear how these inconsistencies arose historically, what genomic regions were
involved, or how frequently an exchange happened. Other types of representations, sometimes
named explicit networks [13, 22], do aim to provide a historical account in terms of a chronol-
ogy of events. Ancestral recombination graphs (ARGs) provide potential explanations of the
observed data in terms of a progression of recombination and mutation events. As in trees,
mutations are represented as events along the branches. Recombinations, however, appear as
the fusion of two parental branches into one offspring branch. ARGs provide simple histories
that can be used in association mapping [23–25], SNP genotyping [26] or inference of the fre-
quency and scale of recombination [27]. However, these applications are hindered by the
computational infeasibility of constructing ARGs that explain hundreds of sequences. The con-
struction of minimal ARGs, containing the minimum number of recombination events
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required to explain the sample in absence of convergent evolution and back-mutation, is an
NP-hard problem [28–30]. Several approximations have been developed in the last few years,
including galled trees [31, 32], branch and bound [33], heuristic [23] and sequentially Markov
coalescent approaches [34].

Recently, a new framework to study genomic relationships has been proposed [35–37],
based on topological data analysis [38–40]. Topology is the area of mathematics that aims to
characterize properties of spaces up to continuous deformations, for instance the number of
disconnected components, loops and holes of a space. TDA extends the concepts and tools of
topology to finite metric spaces, that is, finite sets of points and distances between them. Taking
the premise that a set of points has been sampled from an unknown underlying space, TDA
attempts to infer the topological features of the space (Fig 1A). Stability results [35, 41, 42]
guarantee that small fluctuations in the data only create small changes in the inferred topologi-
cal features, providing robust characterizations of the data.

In a TDA framework, genomes are characterized by points in a high dimensional space
where pairwise distances are genetic distances between sequences. Assuming that each genomic
site mutates at most once across the evolutionary history of the sample, the genetic distance
between two genomes can only increase with the acquisition of novel mutations. The only way
of “closing” a loop (a close path) in this space is therefore by means of a recombination event
[35]. Hence, an approach to studying recombination in the sample of genetic sequences is to
study the loops that those sequences generate when represented in the above way.

A valuable attribute of TDA methods is that they are informative about the scale or size of
the inferred topological features. Given a finite set of data points, there is an infinite number of
spaces that are compatible with the points. TDA structures this spectrum of possibilities by
introducing a notion of scale (Fig 1B): at a given scale �, two points are connected in the under-
lying space if their distance is smaller than �. Topological features compatible with the data can
be then summarized in terms of sets of intervals, named barcodes [43] (Fig 1C). Each interval
in a barcode represents the range of scales across which a particular topological feature (e.g. a
loop) is present in the inferred topological space. In the genomic context introduced above,
barcodes of loops summarize the frequency and scale (mutational distance between recombin-
ing sequences) of recombination events, and provide a basic structure on which statistics of
genomic exchange can be built [37].

TDAmethods are particularly well suited for large datasets. In the context of molecular phy-
logenetics and evolution, they have been applied to the study of viral recombination and reas-
sortment [35], bacterial species [36] and point estimators in population genetics [37].
However, these implementations of TDA have limitations, as they are not tailored for the bio-
logical problem they try to address. Specifically, traditional TDA methods only use information
about genetic distances between sequences, and so they discard the full structure of segregating
characters, missing numerous recombination events that are required to explain the data.
Relatedly, it is unclear which specific evolutionary histories explaining the data TDA informs
about, and what is the precise relation between barcodes and these histories.

Here we address these two important aspects, improving on the scalable capabilities of TDA
to extract robust information on the possible evolutionary histories of a sample of genetic
sequences. In particular, we show that by systematically sampling subsets of segregating sites
and performing TDA, we are able to identify most of the necessary recombination events iden-
tified by bound methods [33, 44, 45], providing a significant improvement of past methods
[35–37] in terms of interpretation and sensitivity. Moreover, we introduce a novel type of
graph (topological ARG or tARG), closely related to minimal ARGs, that captures ensembles of
minimal recombination histories; and we show that TDA informs about the topological fea-
tures and genetic scales of these graphs. Like minimal ARGs [22, 23], tARGs can be considered
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Fig 1. Topological data analysis. (A) Topological data analysis aims to infer the topological features (e.g. loops, voids, etc.) of an unknown space from a
finite set of sampled points. (B) Persistent homology, a tool of TDA, builds simplicial complexes (generalizations of networks that include higher
dimensional elements like triangles and tetraheadra), by taking balls of radius � centred on the sampled points. Points are connected in the simplicial
complex if the corresponding balls intersect. This construction is known as Vitoris-Rips complex. Persistent homology tracks how the topological features
of Vietoris-Rips complexes change with �. (C) Barcodes are suitable representations of persistent homology. Each interval in the barcode represents the
range of � across which a particular topological feature (for instance, a loop) is present in the inferred topology. In this figure, the barcode of the first
persistent homology, that tracks the presence of loops, is shown. The two intervals in the barcode correspond to the two loops present in the original
space.

doi:10.1371/journal.pcbi.1005071.g001
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as explicit, parsimonious, interpretable phylogenetic representations. The main advantage of
tARGs and barcodes versus minimal ARGs is, however, the possibility of obtaining such phylo-
genetic information in polynomial time, which allows us to deal with hundreds of sequences.
We have implemented this method in a software, called TARGet, and have illustrated it with
several examples, including small migration between diverging populations, human recombi-
nation, and horizontal evolution of finches inhabiting the Galápagos archipelago. The software,
instructions and example files used in the manuscript can be obtained from https://github.
com/RabadanLab/TARGet.

Results

Topological ARGs
An ARG is an explicit phylogenetic network representing a possible evolutionary history of a
sample of genetic sequences, where only mutation and recombination events are present and
convergent evolution is not considered and so never occurs [22, 46, 47]. ARGs are very useful
constructs in population genetics and phylogenetics. However, the problem of building a mini-
mal ARG from a set of genetic sequences is known to be NP-hard [28–30]. The use of ARGs
has therefore been traditionally limited to small samples, consisting of a handful of sequences.

In this section, we introduce a particular class of minimal ARGs and a set of related graphs.
Then, using computational algebraic topology, in the next section we show that it is possible to
extract, in polynomial time, phylogenetic information from this class of minimal ARGs, with-
out having to explicitly construct them. Thus, by restricting to this specific class of graphs, we
are able to extend the realm of ARGs to large samples of sequences.

To be specific, we consider a sample S consisting of n distinct genetic sequences withm
binary segregating characters. The latter can be single nucleotide polymorphisms (SNPs), indels,
gene duplications or any other genetic trait that takes one of two possible states, 0 or 1, in each
sequence. An ARG is then formally defined as a directed acyclic graphN with n leaf nodes and
a unique root node, where every node other than the root has in-degree one (tree node) or two
(recombination node), every segregating character labels a unique edge inN (infinite sites
assumption), and every sequence in S labels a unique leaf inN . Moreover, each node inN is
labelled by am-length binary sequence, such that the sequence labelling a tree node differs from
the sequence of the parent node only at the character labelling the edge that connects the two
nodes; and the sequence labelling a recombination node is a combination of the sequences label-
ling the two parent nodes. Single-crossover recombinant sequences are formed by taking the
first k sites from the sequence of one of the parent nodes (prefix) and appending the lastm − k
sites from the sequence of the other parent node (suffix), for k 2 [1,m − 1].

There is an infinite number of ARGs that can explain a given sample S [22]. A stochastic
model, such as the coalescent model with recombination [46, 48], would assign probabilities to
each possible ARG. Here, however, we adopt a parsimony approach and consider ARGs that
are minimal (in a sense defined below), without assuming an underlying probabilistic model.
Such a model-independent approach has proven useful in summarizing genetic sequences into
evolutionary histories where all events are required.

Specifically, we consider ARGs that contain exactly the minimum number Rmin of single-
crossover recombinations required to explain the sample, and that minimize the function

DðN Þ ¼
XRmin

r¼0

dr ð1Þ

where the sum runs over all recombination events inN , and dr is the Hamming distance
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between the two parental sequences involved in the r-th recombination. This is a more
restricted definition of minimal ARG than the one that usually appears in population genetics
literature [22], where the condition on DðN Þ is generally not required. We use the term ultra-
minimal ARG to refer to this restricted type of minimal ARG. Ultra-minimal ARGs are thus
minimal ARGs where recombination events involve parental sequences that are as genetically
close as possible. They introduce a higher level of parsimony than minimal ARGs, being infor-
mative not only about the minimum number of recombination events, but also about the mini-
mum genetic distance between the recombining sequences that took part in those events. By
construction, an ultra-minimal ARG explaining any given sample always exists. Examples are
shown in Figs 2 and 3.

A minimal ARG can be condensed by collapsing all unlabelled edges, so that the resulting
graph can be embedded into anm-dimensional hypercube and its diagonals (that is, the line
segments joining non-consecutive vertices) (Fig 2). The number of edges and vertices of such a
condensed representation ism + 2Rmin andm + Rmin + 1, respectively, whereas the number of
independent loops is Rmin, where a loop is said to be independent if it cannot be embedded in
the union of other loops. In this representation, the distance between two nodes is defined as
the number of edges in the shortest path connecting the nodes, and is equal to the Hamming
distance between the corresponding sequences.

Fig 2. ARGs and condensed graphs. Two examples of ultra-minimal ARGs and the condensed graphs that result from collapsing their unlabelled
edges. The root node is marked red whereas sampled nodes are marked green. Mutations in the r-th character are indicated bymr. Edges pointing to a
recombination node are labelled with the letter P or S, depending on whether they contribute to the prefix or suffix of the recombinant sequence.
Recombinant nodes are marked with the position of the recombination breakpoint. All nodes are labelled by their sequence of characters. Condensed
graphs of ARGs can be embedded intom-dimensional hypercubes and their diagonals.

doi:10.1371/journal.pcbi.1005071.g002
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Given a sample S of genetic sequences, we would like to obtain information about the ultra-
minimal ARGs that explain S, without explicitly constructing them. To that end, we consider
the undirected graph G ¼ ðV ; EÞ, with vertices V and edges E = E1 [ . . . [ El, that results from
the union of all condensed ultra-minimal ARGs Gi ¼ ðV ; EiÞ explaining S and having the
same set of vertices V (Fig 4). We call this construction topological ARG (tARG). A tARG there-
fore summarizes the collection of most parsimonious histories associated to a sample of genetic
sequences. However, unlike minimal ARGs, tARGs are completely determined by their verti-
ces. By considering tARGs instead of minimal ARGs, we are able to reduce an NP-hard prob-
lem into a much simpler (but still very informative) topological problem, as we describe in next
section.

Fig 3. Ultra-minimal ARGs. Two examples of ARGs containing the minimum number of recombination events,
Rmin = 3, required to explain a sample of n = 7 sequences withm = 3 segregating sites. Both ARGs are minimal ARGs.
However, only the minimal ARG at the bottom is an ultra-minimal ARG.

doi:10.1371/journal.pcbi.1005071.g003
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Persistent homology and recombination inference
Topological data analysis has emerged during the last decade as a branch of applied topology
that attempts to infer topological features of spaces (such as the number of loops and holes)
from sets of sampled points [38]. The topological features of a space are preserved under con-
tinuous deformations of the space and can be arranged in mathematical structures called

Fig 4. Topological ARGs. Examples of condensed ultra-minimal ARGs (left) and their corresponding tARGs
(right). In a tARG the edges are completely determined by the vertices. The topology of the resulting tARG
can differ from that of the original condensed ultra-minimal ARGs.

doi:10.1371/journal.pcbi.1005071.g004
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homology groups [49]. We refer the reader to refs. [49, 50] for formal definitions and basic
introductions to algebraic topology. In brief, the nth homology group of a space is an algebraic
structure that encompasses all (n + 1)-dimensional holes of the space. Of special interest to us
is the first homology group, whose elements correspond to loops.

Homology groups can be computed by replacing the original space with a simpler one,
known as simplicial complex, which has the same topological features as the original space but
consists of a finite set of elements (Fig 1B). A simplicial complex is a generalization of a net-
work that, in addition to nodes and vertices, includes higher dimensional elements like trian-
gles and tetrahedra. Simplicial complexes are powerful because they allow the implementation
of algebraic operations to extract the topological features of the space.

When only a finite set of points of the space is given, there is still a well-defined notion of
homology groups, known as persistent homology [39, 40], which capture the topological fea-
tures of the underlying space. At each value of a scale parameter �, a simplicial complex
(known as Vietoris-Rips complex) can be constructed by considering the intersections of balls
of radius � centred at the sampled points (Fig 1B). Points are joined if their corresponding balls
intersect. This process produces a sequence of simplicial complexes parametrized by �, from
which persistent homology can be computed using available algorithms [39, 40]. Remarkably,
the computation time of persistent homology is polynomial in the number of points [39, 40].

Persistent homology can be represented using barcodes [43]. These are graphical represen-
tations where each element of persistent homology is represented by a segment spanning the
interval [�b, �d], where �b and �d are the values of the parameter � at which the corresponding
feature is respectively formed and destroyed in the sequence of simplicial complexes (Fig 1C).
Thus, each segment in a barcode represents a topological feature inferred from the data, and
the position and length of the segment are informative of the size of the topological feature.
The values �b and �d are referred as birth and death time of the topological feature, respectively.

In the current context, we exploit the use of persistent homology to infer topological features
of an unknown tARG, given a set of sampled nodes (Fig 5). The use of persistent homology to
detect the presence of recombination in genetic samples was proposed in [35]. However, the
relation between persistent homology and explicit evolutionary histories incorporating recom-
bination events was not studied. Our aim is inferring information about the loops of the tARG,
as they correspond to recombination events present in the collection of most parsimonious his-
tories explaining the sample. To that end, we consider the Hamming distance matrix of the
sample and compute persistent homology using the algorithm developed in ref. [39, 40]. Since
computing the distance matrix and persistent homology requires respectivelyOðn2mÞ and
Oðn3Þ operations [39, 40], the running time grows at most cubically with the number of genetic
sequences. An advantage of using persistent homology instead of just counting loops in a near-
est neighbour graph is that we also obtain valuable information about the genetic distances
between recombining sequences.

The barcode that results from this computation contains information about the number
and size of the loops in the tARG underlying the sample (Fig 5). Each segment in the barcode
represents a loop in the tARG, and therefore a recombination event in an ultra-minimal ARG
explaining the sample. The position of each segment provides information about the genetic
scales involved in the corresponding recombination event. Specifically, 2�d sets an upper
bound to the mutational distance between the two recombining sequences, since all pairwise
distances between nodes in the loop are smaller than 2�d. The number of segments in the bar-
code (namely, the dimension of the first persistent homology group) or persistent first Betti
number, b1, is hence a lower bound of the number of recombination events in the tARG, �Rmin.
Note that, since a tARG is the union of multiple minimal histories, �Rmin can be larger than
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Rmin. In particular, �Rmin > Rmin when there are three characters for which all eight possible
allele combinations appear in the sample. In general, this can only happen at very large recom-
bination rates.

The barcode ensemble of a sample
The sensitivity of persistent homology to detect recombination decreases as the numberm of
segregating characters increases. Indeed, in that case the dimensionality of the ambient space is
larger and the sample becomes sparser. For this reason, b1 is in general a loose lower bound of
�Rmin. To address a similar problem, Myers and Griffiths introduced the idea of combining the
local bounds that result from partitioning the sequence, building a more stringent global
bound [45]. In this way, information about the ordering of characters is incorporated and the
location of recombination breakpoints is constrained in the sequence. This general idea was
applied in [45] to the haplotype bound, n −m − 1� Rmin, to built a stronger lower bound of
Rmin, denoted RMG.

Fig 5. Persistent homology of a sample of genetic sequences. Barcode and Vietoris-Rips complexes at several values of the parameter �, for the
sample of sequences S ¼ f000; 010; 101; 111g. Only the first homology group (H1) is shown. At small � the four sampled points are disconnected.
Increasing � leads to a loop, that appears as a single element of H1. Further increasing � fills in the loop, leading to a single connected surface. An ultra-
minimal ARG explaining S, and the corresponding tARG are shown in Fig 2 (bottom). The barcode only captures one of the Rmin = 2 recombination
events.

doi:10.1371/journal.pcbi.1005071.g005
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A similar idea can be applied in the context of barcodes to build a barcode ensemble, given
by the disjoint union of the persistent first-homology barcodes of a set of optimally chosen,
non-overlapping intervals within the sequence alignment (Fig 6A). Given a partition of a
genetic sequence, the barcode associated to each interval captures information about recombi-
nation events with breakpoint in that interval. Due to the curse of dimensionality mentioned in
the previous paragraph, the union of the barcodes associated to two contiguous genomic inter-
vals often captures more recombination events than the barcode associated to the union of the
two genomic intervals. Therefore, by systematically exploring all possible partitions of the
genetic sequence, it is possible to find a partition that maximizes the total number of bars in
the barcodes. The solution is often not unique, as different partitions may lead to the same
total number of bars. One may reduce this degeneration by considering additional criteria,
such as also maximizing the total length of the bars (so that they are more informative about

Fig 6. Barcode ensemble of a sample. (A) Schematic representation of the barcode ensemble of a genomic sample. Persistent homology is computed for
each genomic interval of a partition of the sequence. Barcodes associated to different genomic intervals capture different recombination events. The union
of all barcodes is the barcode ensemble. The total number of intervals in the barcode ensemble is denoted as �b1. The partition is chosen such that �b1 is
maximized. (B) Comparison between lower bounds �b1 � �Rmin andRMG� Rmin in coalescent simulations. Values of �b1 andRMG for simulated samples of 40
sequences with 12 segregating sites, sampled from a population under the coalescent model with recombination. 4,000 samples were simulated in total.
The colored band represents the interdecile range, whereas the central line represents the mean. The values of �b1 andRMG are strongly correlated
(Pearson’s r = 0.98, p < 10−100). At very high recombination rates, �b1 tends to be larger thanRMG, as cases where �Rmin > Rmin occur more frequently.

doi:10.1371/journal.pcbi.1005071.g006
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genetic distances). The formal details of the barcode ensemble construction are presented in
the Methods section.

The barcode ensemble incorporates information about the full structure of characters in the
sample, largely increasing the sensitivity of persistent homology to recombination and provid-
ing information on the location of the recombination breakpoints in the sequence. The number

of bars in the barcode ensemble, �b1, is an improved lower bound of �Rmin, in the same way as
RMG is an improved lower bound of Rmin:

tARG ! �Rmin � �b1 � b1

"
ðultraÞminimal ARG ! Rmin � RMG � n � m � 1

In biological data, �b1 and RMG are in general very close to each other (Fig 6B), as tARGs
with �Rmin > Rmin occur very rarely. However, unlike RMG, barcode ensembles provide addi-
tional phylogenetic information, such as bounds on the mutational distances between recom-
bining sequences (note that birth and death times in barcode ensembles refer to local genetic
distances, namely mutational distances across the genomic interval associated to the particular
bar). These features put barcode ensembles at the very interesting interface between the fast,
but phylogenetically limited, existing lower bounds to Rmin; and the slow, but phylogenetically
rich methods for reconstructing minimal ARGs. We have implemented the computation of
barcode ensembles in publicly available software, called TARGet.

Examples
We consider five examples that illustrate how the formal developments presented in previous
sections can be used to extract useful phylogenetic information from samples of genetic
sequences. The first example is a simple toy model where an explicit minimal ARG can be easily
constructed. It displays how the information contained in the barcode ensemble of the sample
directly maps to features of ultra-minimal ARGs. The second example, based on simulated data
of two sexually reproducing populations exchanging genetic material at low rate, shows the
applicability of persistent homology to large datatsets, consisting of several hundreds of
sequences. It also demonstrates the use of phylogenetic information contained in the barcode
ensemble to distinguish among various biological settings with similar recombination rates. The
third and fourth examples consist respectively of 250 and 100 kilobase regions in the HLA and
MS32 loci of* 100 humans, where several meiotic recombination hotspots localize. The fifth
example consists of a 9 megabase scaffold in the genome of 112 Darwin’s finches [51]. These
last three examples serve to illustrate the applicability of barcode ensembles to real datasets.

A simple example. We illustrate the use and interpretation of barcode ensembles with a
simple example, consisting of a sample of 4 genetic sequences with 7 binary characters:
1111001, 1111111, 0000110 and 0000000. Minimal ARGs explaining this sample require two
single-crossover recombination events. An ultra-minimal ARG is presented in Fig 7A. The
most ancestral recombination event involves genetically distant parental gametes, leading to a
large loop in the ARG. To the contrary, the most recent recombination event involves geneti-
cally close parental gametes, leading to a second small loop in the ARG. These features are cap-
tured by the barcode ensemble of the 4 sequences (Fig 7B), which consists of two bars,
corresponding to the two recombination events. The position of the bars represent the genetic
scales associated to the recombination events, with the 2�d = 5 (3) bar corresponding respec-
tively to the large (small) recombination loop. These death times are good upper bounds for
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the mutational distance between recombinant sequences in the two genomic intervals associ-
ated to each bar (characters 1 to 5, and 6 to 7, respectively). The position of the crossover
breakpoints associated to these recombination events is also correctly reproduced. Hence, tak-
ing as input the 4 sequences, the barcode ensemble extracts phylogenetic information from
ultra-minimal ARGs that explain the sample, without requiring complete reconstruction of the
ARGs.

We note here the importance of using the barcode ensemble instead of the ordinary bar-
code, used in previous phylogenetic applications of persistent homology [35]. In this simple
example b1 = 1, and only one of the two recombination events would have been detected if the
ordinary first-homology barcode had been used. The barcode ensemble largely increases the
sensitivity to detect recombination events.

We can attempt to reconstruct the tARG of the sample by using persistent homology gener-
ators (Fig 7C). Whereas there are theorems ensuring the stability of barcodes against small per-
turbations [41, 42], the generators of persistent homology identified by TDA strongly depend
on the sample, and multiple choices of basis are possible. Hence, the use of generators to

Fig 7. Ultra-minimal ARG, first-homology barcode ensemble and reconstructed tARG of a sample of 4 sequences. The four sampled sequences
are represented by green leaf nodes in the ultra-minimal ARG depicted in (A). The ARG involves two single-crossover recombination events. Both
recombination events and their genetic scales (mutational distance between recombining sequences) are correctly captured by the barcode ensemble of
the samples, shown in (B). Intervals containing the location of recombination breakpoints are indicated over each bar. Persistent homology generators
can be used to reconstruct the topology of the tARG, as depicted in (C). Without adding any extra sequences to the sample, the two bars are associated
to the same four generators, allowing only to reconstruct the large envelope of the two loops in the tARG. Adding sequences E and F to the sample
(represented by blue leaf nodes in (A)) disentangles the generators of the two loops, fully reconstructing the topology of the tARG.

doi:10.1371/journal.pcbi.1005071.g007
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reconstruct the tARG is usually limited to small datasets. In this simple example, both bars in
the barcode ensemble are generated by the four sampled sequences. Therefore, the recon-
structed loop enclosing each recombination event is the same in both cases and corresponds to
the large enveloping loop in the ultra-minimal ARG (Fig 7A). Adding the internal nodes
1111000 and 1111110 to the sample permits disentangling the generators of the two loops
(Fig 7C), fully reconstructing the topology of the underlying tARG.

Genetic exchange between two divergent populations. We now consider a more
involved example consisting of two sexually-reproducing populations, simulated under the
coalescent model with recombination. The two populations diverged 24N generations before
present. Their effective population sizes are taken to be constant and given by N and N/5. We
consider two different cases, depicted in Fig 8. In the first case (Fig 8A), the two populations
are completely isolated from each other. In the second case (Fig 8B), to the contrary, there is a
small migration rate between the two populations. The recombination rate is the same in both
cases. Alternatively, in a phylogenetic context, this setting describes the incomplete lineage
sorting of two species, with or without the presence of gene flow.

We randomly sampled 250 sequences from the large population and 50 sequences from the
small population. The full sample consisted of 300 sequences with 300 segregating sites. We
present in Fig 8 the barcode ensemble for simulated samples without and with migration. The
computation took approximately 33 minutes (wall-clock time) in a modern 8-cores desktop
computer. Whereas the number of detected recombination events in the tARG, counted by the
number bars, is similar in both cases, their genetic scales are very different. Specifically, in the
presence of migration the size of some of the loops in the tARG is large, corresponding to migra-
tion events followed by a recombination event (Fig 8B). This is indicated by the presence of bars
with large death time �d in the barcode ensemble of the case with migration, corresponding to
recombination events with large mutational distances between recombining sequences.

Hence, in this example the barcode ensemble provides rich phylogenetic information that
could be hardly obtained by other methods. Methods that attempt to construct a minimal (or
nearly-minimal) ARG are computationally inefficient for such large sample sizes [33, 52]. Fast
bound methods [33, 44, 45], on the other hand, do not provide enough phylogenetic informa-
tion to distinguish between the cases with and without migration, as the total recombination
rate is the same in both situations. Sequentially Markov coalescent approaches [34] produce an
ARG that is far from being minimal but is a good approximation to the maximum likelihood.
However, these methods require an underlying coalescent model, with mutation, recombina-
tion and population structure parameters given as priors. Finally, algorithms for constructing
phylogenetic split networks [21] are fast and provide very different outputs in each of the
above two cases. However, the interpretation of the output in terms of recombination and
migration events is obscure.

Human leukocyte antigen (HLA) locus. The previous examples serve to illustrate the
relation between features of the barcode ensemble of a genetic sample and those of the ultra-
minimal ARGs explaining the sample. However, both examples are based on simulated data.
We now consider a more realistic example, consisting of 180 phased genotypes from a*250
kilobase region of the HLA locus of 90 individuals belonging to the Luhya in Webuye, Kenya
(LWK) population, sequenced as part of the International HapMap Project [53]. In total, the
region contains 471 SNPs. Recombination hotspots in this part of the HLA locus have been
studied in detail in the past through sperm typing [54] and other high-resolution methods
[55]. This example therefore serves to illustrate the capacity of the barcode ensemble to localize
recombination events in realistic situations. With this aim, we also considered 194 phased
genotypes from a smaller region (40 kilobase) within the same HLA locus of 97 individuals
from the same population, sequenced by the 1,000 Genomes Project Consortium [56]. This
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additional dataset contained a higher density of SNPs (482 SNPs in total), allowing for a higher
resolution in the localization of recombination events.

We used TARGet to compute the first-homology barcode ensembles of the two datasets
and analysed the distribution of bars across the HLA locus (Fig 9A and 9B). The computation
took 19 and 14 minutes (wall-clock time) in a modern 8-cores desktop computer, respectively
for the HapMap and 1,000 Genomes datasets. Comparison with the African-American recom-
bination map [55], based on more than 2 million crossovers in 30,000 unrelated African-

Fig 8. Barcode ensemble of two divergent sexually-reproducing populations. The case in (A) assumes the two populations are completely isolated.
All recombination events present in the barcode ensemble involve genetically close parental gametes. The case in (B) considers a small migration rate
between the two populations. Some of the recombination events present in the barcode ensemble involve genetically distant parental strains, leading to
larger death times �d in the barcode ensemble. The total number of detected recombination events is similar in both cases and uniform across the entire
genome. Intervals with the location of the recombination breakpoints are indicated for each recombination event, where positions refer to segregating
sites.

doi:10.1371/journal.pcbi.1005071.g008
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Fig 9. Barcode ensemble across the HLA and MS32mini-satellite loci of the LWK population. (A)
Recombination rates (top) across a 250 kilobase region of the HLA locus according to the African-American
recombination map, based on 30,000 individuals [55]. The vertical axis is in logarithmic scale. The distribution of
recombination events (bottom) detected by the barcode ensemble of a sample of 90 individuals from the LWK
population sequenced by the International HapMap Consortium [53] is consistent with the observed recombination

Inference of ARGs through Topological Data Analysis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005071 August 17, 2016 16 / 25



Americans, shows a large degree of consistency between the recombination rates and the geno-
mic position of recombination events detected by the barcode ensembles (Fig 9A). The distri-
bution of mutational distances associated to recombination events is qualitatively consistent
with coalescent arguments (Fig 9C). In particular, bars with large death time �d, corresponding
to recombination events with a large mutational distance between recombining sequences, are
mostly associated to regions of low recombination rate, consistently with the longer coales-
cence time for these regions [57].

Human MS32 mini-satellite locus. Similarly, we also considered 194 phased genotypes
from a*100 kilobase region (416 segregating sites) near the MS32 mini-satellite locus of 97 indi-
viduals from the LWK population, sequenced by the 1,000 Genomes Project Consortium [56].
We used TARGet to compute the barcode ensemble and studied the distribution of bars across
this genomic region (Fig 9D). The computation took 10 minutes (wall-clock time) in a modern
8-cores desktop computer. As in the previous example, the genomic position of the recombina-
tion events detected by the barcode ensemble (Fig 9D) was consistent with the recombination
rate across this region, as determined by the African-American recombination map [55].

Darwin’s finches. Our last example consists of the genetic sequences of 112 Darwin’s
finches, belonging to 15 different species inhabiting the Galápagos archipielago and Cocos
Island [51]. We aligned and genotyped a 9 megabase scaffold of their genome and, after filter-
ing for high-quality variants, we focussed on a set of 140 SNPs that were homozygous across
the 112 samples, thus avoiding potential phasing artefacts. By considering this set, we mostly
restrict to very ancestral recombination/gene flow events, close to the origin of radiation from a
common ancestor 1.5 million years ago [58]. We used TARGet to obtain the first-homology
barcode ensemble of the sample, as well as the partially reconstructed tARG. The computation
took 9 minutes (wall-clock time) in a modern 8-cores desktop computer.

The first-homology barcode ensemble (Fig 10A) contains 13 recombination events, mostly
involving samples from multiple species and usually including samples from the genus Certhi-
dea (Fig 10B), the most ancestral lineage among the genera present in the sample [51]. These
results add support to the evidence for genetic introgression found in [51]. Our analysis also
reveals that the crossover breakpoints of these events localize at four different genomic regions
within the 9 megabase scaffold that we have considered in this example (Fig 10C).

Parameter estimation
The examples above illustrate the use and interpretation of barcode ensembles in molecular phy-
logenetics. As we have discussed, an important feature of topological approaches to phylogenetics
is that they inform about most parsimonious evolutionary histories. Being model-independent

rates. Note that in neutral models of evolution the number of recombination events in minimal ARGs is roughly
expected to grow logarithmically with the recombination rate of the population [57]. (B) Distribution of recombination
events detected by the barcode ensemble of a sample of 97 individuals from the LWK population, sequenced by the
1,000 Genomes Project Consortium [56]. The higher density of SNPs in this dataset allows for a higher resolution in
the localization of recombination events as well as a higher sensitivity. (C) Density of recombination events per
nucleotide against their average death time 2�d, for recombination events captured by the barcode ensemble in (A).
Each point represents a genomic position for which the barcode ensemble detects recombination. The horizontal axis
represents the average death time of the bars in the barcode ensemble that are associated to that genomic position.
Events with large �d, corresponding to recombination events with a large mutational distance between recombining
sequences, are mostly associated to regions with low number of recombinations, as expected from neutral models of
evolution [57]. (D) Recombination rates (top) across a 100 kilobase region near the MS32 mini-satellite locus
according to the African-American recombination map [55]. The vertical axis is in logarithmic scale. The distribution of
recombination events (bottom) detected by the barcode ensemble of a sample of 97 individuals from the LWK
populations sequenced by the 1,000 Genomes Project Consortium [56] is consistent with the observed recombination
rates.

doi:10.1371/journal.pcbi.1005071.g009
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approaches, they describe minimal sets of events required to explain a sample of sequences, with-
out assuming any probabilistic model of evolution. In some situations, however, we are interested
in estimating the parameters of a specific evolutionary model from the observed data (e.g. the
recombination rate in a coalescent model with recombination). To that end, barcode ensembles
can be taken as summary statistics from which to build parameter estimators. For instance, in Fig

11A we show the dependence of �b1 on the recombination rate for a set of 1,000 coalescent model

simulations. The expected �b1 of the barcode ensemble is informative of the recombination rate,
growing monotonically with the later. Compared to sequentially Markov coalescent (SMC)

approaches for ARG inference [34], �b1 is strongly correlated with the number of recombinations
in SMC ARGs derived from the same set of sequences (Pearson’s r = 0.93, p< 10−100, S1 Fig).

Although the coefficient of variation is* 35% larger for �b1 (S1 Fig), its computing time is sub-
stantially lower (> 9 times faster after parallelizing in a modern 8-cores desktop computer, S1
Fig), being a robust approach to coalescent-model recombination rate estimation in large data-

sets. Furthermore, unlike the number of recombinations in SMC ARGs, �b1 is unbiassed at small
recombination rates, vanishing when the recombination rate is zero (Fig 11A).

Fig 10. Barcode ensemble and partially reconstructed tARG of a sample of 112 Darwin’s finches. The barcode ensemble is shown in (A), based
on 140 homozygous SNPs present in a 9 megabase scaffold. In total, 13 recombination/gene flow events are captured in the barcode ensemble, with
different genetic scales. Bars are colored according to the position of the corresponding recombination breakpoint in the genome, as depicted in (C).
We also indicate the number of recombination events detected at each genomic interval, as well as some of the orthologous genes present at regions
where recombination events are detected. The reconstructed tARG is presented in (B). Loops in the reconstructed tARG are outlined using the same
code of colors. We have also included leaf nodes that do not participate in any recombination event, using a nearest neighbour algorithm based on
genetic distance. Edge lengths are arbitrary.

doi:10.1371/journal.pcbi.1005071.g010
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Although recombination rate estimation is a very direct example, the barcode ensemble of a

sample of genetic sequences contains other rich phylogenetic information apart from �b1, which
can be used for more complex parameter estimation in structured models of evolution. Con-
sider, for instance, the case of two divergent populations with migration and recombination
discussed above. In this model, the average genetic distance between recombining sequences is
expected to decrease with the migration rate, as the average time to the most recent common
ancestor between foreign and local gametes in a population is shorter. In Fig 11B we show the
dependence of the average death time (h�di) on the migration rate parameter, for the barcode
ensembles of a set of 900 coalescent model simulations with fixed recombination and variable
migration rates. As expected, h�di is informative of the migration rate, decreasing monotoni-
cally with the later. It is therefore a good measure for estimating migration rates. Consistently,
h�di correlates with time to the most recent common ancestor of recombining sequences in
SMC ARGs obtained from the same data (Pearson’s r = 0.55, p< 10−72, S1 Fig). Although the
coefficient of variation of h�di is* 60% larger (S1 Fig), extracting this type of information
from SMC ARGs requires the implementation of a greedy algorithm, substantially increasing
the running time (* 8 times slower in a single core of modern desktop computer, S1 Fig) and
therefore limiting its applicability to large datasets.

These two simple examples illustrate the utility of barcode ensembles for building parameter
estimators in specific models of evolution. Importantly, being model-independent, they are
robust and flexible tools which can be applied in an infinitely large number of possible evolu-
tionary models.

Discussion
As the famous title of the essay by Dobzhansky “Nothing in Biology Makes Sense Except in the
Light of Evolution” underscores, evolutionary processes are central orchestrating themes in
biology. Mutations, recombinations and other evolutionary processes get imprinted into

Fig 11. Parameter estimation in models of evolution. (A) Dependence of �b1 on the recombination rate parameter for a set of 1,000 simulations of a
basic coalescent model. Each simulation consists of 200 sequences, 30 kilobase long. The expected �b1 of the barcode ensemble grows monotonically
with the recombination rate, providing a good measure of the later. The smoothed average is shown in red. (B) Dependence of the average death time,
h�di, on the migration rate of two divergent populations with fixed recombination and variable migration rates, based on 900 simulations. Each simulation
consists of 150 sampled sequences, 10 kilobase long. The same structure as in Fig 8 was considered for the two populations. The expected value of h�di
decreases monotonically with the migration rate, being informative of the later.

doi:10.1371/journal.pcbi.1005071.g011
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genomes through selection, reflecting the accumulated history giving rise to an organism. Phy-
logenetics try to reconstruct the evolutionary history through the comparison of genomes of
related organisms. In addition to reporting relationships and elucidating particular histories,
one would like to understand and quantify how different evolutionary processes have occurred.
The identification and quantification of evolutionary processes can be challenging due to the
lack of a well-established universal framework to capture evolutionary relationships beyond
trees. In addition, robust statistical inference needs to exploit the large number of genomes that
are now becoming available, aggravating the computational burden and obscuring interpreta-
tions. Ideally, we would like to have a biologically interpretable framework able to quantify dif-
ferent evolutionary processes by analyzing large numbers of genomes.

In this paper we have proposed a few steps in this direction. We have extended the notion of
barcodes in persistent homology to identify the genetic scale and number of recombination
events. We have shown that, by correctly studying persistent homology in subsets of segregat-
ing sites, it is possible to characterize the genomic regions where recombination takes place
and identify the gametes involved in particular recombination events. The persistent homology
barcodes derived from each of these sets can be structured as a “barcode ensemble” where each
bar captures a recombination event. Barcode ensembles can be interpreted as counting and
quantifying the scale of recombination events in a variation of Ancestral Recombination
Graphs (ARGs). Topological ARGs represent a summary of potential recombination histories
that can explain the data. The method proposed, TARGet, is scalable to hundreds of genomes.
As an alternative to some phylogenetic networks, barcode ensembles provide robust quantifica-
tion of events, the distribution of genetic scales, computational scalability and interpretative
graphs.

Barcode ensembles are versatile in that they do not assume any specific model of evolution,
providing explicit, interpretable summaries of the minimal set of recombination events
required to explain a sample of genetic sequences. Here we have illustrated their use in several
practical cases. However, the range of possible applications is unlimited. In some cases, it may
be convenient to perform minor modifications to the approach described here. For instance,
although in our exposition we have only made use of Hamming distance and binary sequences,
the main concepts we have presented extend straightforwardly to other genetic distances. The
use of these metrics can be particularly useful in cases with rapidly diverging samples or sub-
stantial mutational biases. In other cases, information about the ancestral and derived alleles
for each character in the sample may be available. Although tARGs have no natural directional-
ity, the inclusion of the ancestral sequence in the original sample may lead in those cases to
more stringent bounds on �Rmin, similarly to what occurs with other approaches to recombina-
tion inference [22]. Finally, more efficient integer linear programming algorithms, like the one
of [33], could in principle be also generalized to the computation of barcode ensembles.

Methods

First-homology barcode ensemble
We extended the construction of ref. [45] to persistent homology barcodes. From a geometric
perspective, this corresponds to projecting the original space on sets of mutually orthogonal
hyperplanes in the ambient hypercube, and computing persistent homology in each of those
projections. For that aim, we need to establish an ordering relation on barcodes. Being sets of
intervals, it is natural to take the maximum of two barcodes to be given by the one with largest
L0-norm, namely largest b1. If both barcodes have the same L0-norm, we may successively
compare other norms (e.g. other Lp-norms), until the tie is broken or, otherwise, one of the two
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barcodes is arbitrarily chosen. The algorithm of [45] is then generalized to persistent homology
barcodes as follows:

1. Let Bik be the first-homology barcode of the sequences that result from the i-th to k-th char-
acters in S. SetRij ¼ 0 and k = 2.

2. For j = 1, . . ., k − 1, setRjk ¼ maxfRji [ Bik : i ¼ j; . . . ; k � 1g
3. If k<m, increment k by 1 and go to step 2.

The barcode ensemble of S is the union barcodeR1m that results from this algorithm.
We implemented the algorithm in a publicly available multi-threaded software, TARGet,

which is distributed under the GNU General Public License (GPL v3). The application is fully
written in Python 2.7, and relies on Dionysus C++ library for persistent homology computa-
tions (http://www.mrzv.org/software/dionysus). Since considering all possible sequence parti-
tions is unnecessary and computationally infeasible in most cases, we follow the strategy of ref.
[45] and allow the user to limit the number of partitions by the maximum number of segregat-
ing characters within each subset of S (specified by the command line option -s), and by the
maximum distance between segregating characters in the subset (specified by the command
line option -w). In addition, we also allow the user to exclude from S segregating characters
that are compatible (namely, that satisfy the Hudson-Kaplan four-gamete test [44]) with all the
other characters in S (specified by the command line option -e). For each genomic interval, a
filtration of Vietoris-Rips complexes is constructed using Hamming distance and the persistent
first-homology group is computed over Z2.

Population genetics simulations
We performed 4,000 simulations of a sample of 40 sequences with 12 segregating sites, using
the software ARGweaver [34]. The population was simulated using a coalescent infinite sites
model with recombination. The population-scaled recombination rate, ρ, was randomly gener-
ated in each simulation, taking values from a uniform distribution between 0 and 110. For each
simulated sample, Myers and Griffiths lower bound RMG � Rmin was computed using the soft-

ware RecMin [45], with parameters -s 12 -w 12. Lower bounds �b1 � �Rmin were computed
using our application TARGet, with parameters -s 12 -w 12.

To study the dependence of �b1 on the recombination rate parameter in coalescent models,
we performed 1,000 simulations of a sample of 200 sequences. The population-scaled recombi-
nation rate, ρ, was randomly generated in each simulation, taking values between 0 and 216. For
each simulated sample, TARGet was run with parameters -s 11 -w 11, and ARGweaver’s
tool arg-sample was run with parameters -m 7e-9 -n 400 --sample-step 10, dis-
carding the first 200 iterations.

Samples of genetic exchange between two divergent populations were simulated using the
software ms [59], using the commands

ms 300 1 -s 300 -r 40 10000 -I 2 250 50 -ej 6.0 1 2 -n 2 0.2 -m 1 2 0.5
and,
ms 300 1 -s 300 -r 40 10000 -I 2 250 50 -ej 6.0 1 2 -n 2 0.2
respectively for the cases with and without migration. The barcode ensemble of each sample

was computed using TARGet with parameters -s 12 -w 14 -e.
To study the dependence of h�di on the migration rate in this scenario, we performed 900

simulations using the software ms [59] and seq-gen [60], with the commands
ms 150 1 -T -r 60 10000 -I 2 125 25 -ej 6.0 1 2 -n 2 0.2 -m 1 2 X
and
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seq-gen -mHKY -l 10000 -s 0.004 -p 50000
where the migration rate X in the first command takes random values from a uniform distri-

bution between 0 and 2. For each simulated sample, TARGet was run with parameters -w 8
-s 8, and arg-sample was run with parameters -m 1e-7 -n 400 -r 1.5e-7. We
extracted from SMC ARGs the time to the most recent common ancestor of recombining
sequences using a greedy algorithm that searches for the shortest non-zero path connecting the
two sequences.

HLA and MS32 loci
We downloaded phased genotype data from HapMap phase III [53], corresponding to all SNPs
of LWK population between rs6457661 and rs3129301 in chromosome 6. We also downloaded
phased genotype data from 1,000 Genomes Project [3], corresponding to all SNPs of LWK
population between positions 32,887,978 and 32,927,978 of chromosome 6, and half of the
SNPs of LWK population between positions 234,190,031 and 234,291,193 of chromosome 1.
All coordinates refer to human assembly hg18. The barcode ensemble of each dataset was com-
puted using TARGet with parameters -s 12 -w 12.

Darwin’s finches genotyping
Raw paired-end reads from 112 Darwin finches [51] were obtained from SRA archive (acces-
sion number PRJNA263122) and aligned against the consensus sequence of Geospiza Fortis,
version GeoFor_1.0/geoFor1, scaffold JH739904. We followed essentially the same procedure
than that of ref. [51] for the alignment, SNP calling, genotyping and filtering. In short, the
alignment was performed with Burrows-Wheeler aligner (BWA) [61], version 0.7.5, using
BWA-MEM algorithm and default parameters. PCR duplicates were marked using Picard tools
(http://picard.sourceforge.net/). Indel realignment, SNP discovery and simultaneous genotyp-
ing across the 112 samples was performed using Genome Analysis Toolkit (GATK) [62], fol-
lowing GATK best practice recommendations [63]. SNP calls were filtered by keeping variants
with SNP quality> 100, total depth of coverage > 117 and< 1750, ratio between SNP quality
and depth of coverage > 2, Fisher strand bias< 60, mapping quality> 50, mapping quality
rank> -4 and read position rank sum> -2. In total, 13,980 variant positions passed these fil-
ters. To avoid phasing errors, we only considered SNPs that were homozygous across the 120
samples. The resulting genotypes were processed with TARGet for barcode ensemble compu-
tation, using the options -s 14 -w 14.

Supporting Information
S1 Fig. Comparison to SMC approaches to ARG inference. (A) The number of recombina-
tion events in SMC ARGs [34], Rargweaver, plotted against the number of bars in the barcode

ensemble, �b1. Both quantities are strongly correlated (Pearson’s r = 0.93, p< 10−100). Plot
based on 1,000 coalescent model simulations of a sample of 200 sequences. (B) Coefficient of

variation of Rargweaver (blue) and �b1 (red) as a function of the recombination rate. (C) Distribu-
tion of wall-clock running times for the simulations in (A). (D) Average time to the most recent
common ancestor of recombining sequences in SMC ARGs, hTargweaveri, plotted against the
average death time of bars in the barcode ensemble, h�di, for two divergent populations with
recombination and migration. Both quantities are largely correlated (Pearson’s r = 0.55,
p< 10−72). Plot based on 900 simulations of a sample of 150 sequences. (E) Coefficient of vari-
ation of hTargweaveri (blue) and h�di (red) as a function of the migration rate. (F) Distribution of
wall-clock running times for the simulations in (D). ARGweaver running times also include
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the time required to extract hTargweaveri from SMC ARGs.
(TIFF)
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