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Abstract

Objectives

Smoking is a significant independent risk factor for postmenopausal osteoporosis, leading

to genome variations in postmenopausal smokers. This study investigates potential bio-

markers and molecular mechanisms of smoking-related postmenopausal osteoporosis

(SRPO).

Materials and methods

The GSE13850 microarray dataset was downloaded from Gene Expression Omnibus

(GEO). Gene modules associated with SRPO were identified using weighted gene co-

expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and path-

way and functional enrichment analyses. Feature genes were selected using two machine

learning methods: support vector machine-recursive feature elimination (SVM-RFE) and

random forest (RF). The diagnostic efficiency of the selected genes was assessed by gene

expression analysis and receiver operating characteristic curve.

Results

Eight highly conserved modules were detected in the WGCNA network, and the genes in

the module that was strongly correlated with SRPO were used for constructing the PPI net-

work. A total of 113 hub genes were identified in the core network using topological network

analysis. Enrichment analysis results showed that hub genes were closely associated with

the regulation of RNA transcription and translation, ATPase activity, and immune-related

signaling. Six genes (HNRNPC, PFDN2, PSMC5, RPS16, TCEB2, and UBE2V2) were

selected as genetic biomarkers for SRPO by integrating the feature selection of SVM-RFE

and RF.
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Conclusion

The present study identified potential genetic biomarkers and provided a novel insight into

the underlying molecular mechanism of SRPO.

1. Introduction

Osteoporosis is a systemic skeletal disorder. This disease is highly prevalent worldwide and is

characterized by bone microstructure degeneration, reduction in bone mineral density

(BMD), leading to increased bone fragility and decreased bone strength [1, 2]. It is reported

that almost 50% of postmenopausal women develop osteoporosis [3]. Furthermore, a third of

postmenopausal women have bone fractures due to osteoporosis [4]. The estimated cost of

managing postmenopausal osteoporosis (PMOP) and related fractures in the United States in

2015 was over USD 15 billion [5], and PMOP has become a major public health problem

worldwide [6].

Multiple factors are involved in PMOP by affecting the function of osteoblasts and osteo-

clasts and regulating bone mineral homeostasis [7]. Estrogen secretion is decreased during

menopause, resulting in the decline of ovarian function, increasing the risk of bone metabolic

diseases [8, 9]. Estrogens modulate immune activity and the response of immune cells (T cells,

B cells, and monocytes) to estrogen and its receptors [10]. Circulating B lymphocytes are

strongly implicated in the pathogenesis of PMOP by producing cytokines that regulate the

activity of osteoblasts and osteoclasts. In addition, the downregulation of MAPK3 and ESR1 in

B cells decreases osteogenesis and increases osteoclastogenesis, demonstrating the importance

of B cells in the etiology of PMOP [11].

Poor lifestyle habits are significant contributors to rapid bone loss in postmenopausal

women [12]. In this context, smoking is a significant independent risk factor for osteoporosis

(P = 0.000, OR = 1.911) [13]. Female smokers are almost twice as likely to have osteoporosis

than non-smoking women [14]. Smoking may lead to changes in the microarchitecture of tra-

becular bone and reduces the ability of the skeletal muscle to resist mechanical load and stress

[15]. Moreover, smoking may induce harmful changes in the immune system and cause dis-

eases via the dysregulation of impaired B cells. Smoking-related postmenopausal osteoporosis

(SRPO) is an emerging area of research that assesses changes in gene expression levels in post-

menopausal smokers.

With the rapid development of high-throughput microarray technologies, the identification

of genomic variations and biological mechanisms has improved our understanding of disease

pathogenesis and treatment [16, 17]. Weighted gene co-expression network analysis

(WGCNA) is widely used to analyze gene expression microarray data, identify functional gene

modules, and discover relationships between gene modules and disease traits [18–20].

WGCNA screens genes and divides them into modules, which in turn are correlated with spe-

cific clinical phenotypes through Pearson correlation analysis. Machine learning algorithms

have shown great promise in investigating the underlying relationship of high-dimensional

data through supervised or unsupervised methods [21, 22]. Moreover, machine learning is use-

ful to analyze high-dimension transcriptomic data and identify feature genes with biological

significance [23–25]. However, no studies have analyzed genome variations in SRPO.

In this study, we performed a comprehensive analysis of gene expression patterns of circu-

lating B cells from 20 postmenopausal female smokers with low or high BMD using bioinfor-

matics and machine learning algorithms, including WGCNA, support vector machine-
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recursive feature elimination (SVM-RFE), random forest (RF), protein-protein interaction

(PPI) and functional analyses, and receiver operating characteristic (ROC) curve analysis. Six

potential diagnostic biomarkers of SRPO were identified.

2. Materials and methods

2.1. Microarray data collecting and data preprocessing

The study flowchart is shown in Fig 1. The gene microarray dataset GSE13850 based on the

Affymetrix Human Genome U133A (GPL96) platform, probe annotation files, and CEL files

were downloaded from the Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.

nih.gov/geo/). Quantile normalization, background correction, and probe summarization of

raw data were performed using the robust multiarray average (RMA) algorithm [26]. If one

gene matched more than one probe, the maximum value of the probe was selected and calcu-

lated. The GSE13850 dataset provided data on gene expression in circulating B cells of 20 post-

menopausal female smokers (10 with high BMD and 10 with low BMD).

2.2. Construction of the WGCNA network

Phenotype-correlated gene modules associated with SRPO were identified by WGCNA. The

top 5,000 genes with the highest expression levels were used to construct the WGCNA network

using the WGCNA package in R [20]. First, Pearson’s correlation matrices for all pairs of

genes were calculated. The pairwise correlation coefficient between the pair of gene m and

gene n with significance (Smn) was defined as Smn = |cor(m,n)|. These correlation matrices

were transformed into a weighted adjacency matrix using the power function amn = power

(Smn, β) = |Smn|β [26]. According to the average connectivity degree and standard of approxi-

mate scale-free topology network, an appropriate soft-thresholding power β was selected, and

the adjacency matrix was transformed into a topological overlap matrix (TOM). TOM-based

hierarchical clustering of gene modules was performed using the dynamic tree cut algorithm

[27]. Gene modules with similar expression profiles were represented by different branches

with appropriate colors, and the minimum module size was set as 40.

2.3. Correlation between gene modules and SRPO

The WGCNA algorithm uses module eigengene (ME) to evaluate relationships between gene

modules and clinical traits. ME was defined as the major component computed by a principal

component analysis that recapitulates the manifestation of genes from a specific module into a

characteristic expression profile [28]. The Pearson correlation between ME and clinical traits

was calculated to identify the module that was highly correlated with SRPO. The significance

of Pearson correlation was assessed using a t-test, and the module with a P-value of less than

0.05 was considered to be significantly correlated with SRPO. Furthermore, gene significance

(GS) and module membership (MM) were calculated for intramodular analysis. MM was the

correlation between ME and the gene expression profile. GS was defined as the log10 transfor-

mation of the P-value (lgP) between gene expression and the clinical trait (GS = lgP). Module

significance (MS) was defined as the average GS of all genes in a module. The module with the

highest absolute MS was considered to be significantly correlated with SRPO. The module

with the highest correlation with a clinical trait (osteoporosis) was selected as a research object.

2.4. Construction of PPI networks

PPI networks were constructed to evaluate the relationship among genes in the selected mod-

ules using the Search Tool for the Retrieval of Interacting Genes version 11 (STRING V11,
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https://string-preview.org/). The confidence level was set as>0.4, and the network was visual-

ized using Cytoscape version 3.8.2 [29]. Hub genes are highly interconnected nodes and may

play important roles in the PPI network. A topological network analysis, including between-

ness centrality (BC), closeness centrality (CC), and degree centrality (DC), for screening hub

genes was performed using the CytoNCA plugin for Cytoscape [30].

Fig 1. Workflow of the present study.

https://doi.org/10.1371/journal.pone.0257343.g001
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2.5. Function and pathway enrichment analyses

Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis were performed using the clusterProfiler [31] package

in R to describe the possible biological functions of hub genes. Three categories of biological

process (BP), cellular component (CC), and molecular function (MF) were included in the GO

terms. A Benjamini–Hochberg adjusted P-value of less than 0.05 was considered to indicate

significantly enriched GO terms and KEGG pathways.

2.6. Machine learning for feature selection

Feature genes associated with SRPO were selected using SVM-RFE and RF. SVM-RFE was an

efficient feature selection algorithm and had shown promising power in the analysis of the

genomics [32], metabolomics [33], proteomics [34], etc. During the performance, SVM-RFE

iteratively removed the features with the smallest weight from a rank until all features were

excluded. In each iteration, the current SVM-RFE model was evaluated by k-fold cross-valida-

tion. After that, the classifier model with the highest accuracy was constructed, and the best

variables were found [35]. The RF algorithm used the variables to construct numerous decision

trees and generated the most accurate classes of variables to individual trees. RF has also been

widely used for detecting disease biomarkers [36, 37]. The SVM-RFE model was built using

the R package caret version 6.0–88. RF was applied using the randomForest package version

4.6–14. Ultimately, the common genes obtained using both SVM-RFE and RF were combined

for further analysis.

2.7. Evaluation of the diagnostic efficiency

The ability of feature genes to differentiate between SRPO patients and non-osteoporosis post-

menopausal smokers was evaluated by gene expression and ROC curve analyses. The predic-

tive efficiency was measured in the control group (ten samples from postmenopausal smokers

with high BMD) and the SRPO group (ten samples from postmenopausal smokers with low

BMD). A Benjamini–Hochberg adjusted P-value of less than 0.05 were considered to indicate

significant differences in gene expression. The ROC curve was created using the pROC pack-

age version 1.17.0.1 in R. The genes with an area under the ROC curve (AUC)>0.7 were con-

sidered to have good diagnostic performance.

3. Results

3.1. Data collection and WGCNA analysis

Gene expression data and clinical data from the GSE13850 dataset were downloaded from the

GEO database. Following data processing, the top 5,000 genes in circulating B cells were col-

lected, and the WGCNA network was constructed. Subsequently, an appropriate soft-thresh-

olding power β = 9 was adopted due to the signed R^2 of the scale-free topology network was

0.85 (Fig 2).

Eight gene modules were obtained using the dynamic tree cut algorithm (Fig 3A and 3B).

The correlation between each module and osteoporosis was assessed by calculating the mod-

ule–trait relationship and MS. First, the Pearson correlation between the ME of each module

and osteoporosis was calculated and shown in the module–trait relationship heatmap (Fig 3C

and Table 1). The blue module (module–trait relationships = 0.88, P-value = 7e-07) had the

highest association with osteoporosis. After that, the MS of each module was calculated. We

found that the blue module had the highest MS among all selected modules (Fig 3D). Hence,

the 1078 genes in the blue module were significantly associated with SRPO, and these genes
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were selected for subsequent analysis in the PPI network. The clustering heatmap of the ME of

the blue module and the scatterplots of GS vs. MM are presented in Fig 3E and 3F.

3.2. Construction of the PPI network and enrichment analysis of hub genes

After removing the disconnected nodes, there were 998 nodes and 10940 edges in the con-

structed PPI network for genes in the blue module (Fig 4A). According to topological network

analysis, PPI nodes are considered significant targets if the DC is greater than two-fold the

median DC [38]. Thus, DC> 28 was set as the threshold, and significant nodes were identified

to generate a subnetwork. Then, nodes where BC and CC values were greater than the median

in the subnetwork (BC>158.81, CC>0.48) were considered a new core network containing hub

genes. The core network containing 113 hub genes (nodes) and 1831 edges is shown in Fig 4B.

Functional enrichment analysis was performed to improve biological understanding of the

hub genes identified in the PPI network. Regarding biological processes, GO analysis showed

that hub genes were mainly involved in the regulation of mRNA transcription, regulation of

cell cycle, protein targeting, and cellular response to hypoxia (Fig 5A). In the cellular compo-

nent analysis, hub genes were mainly associated with ribosomal subunits, methylosome, and

proteasome complexes (Fig 5B). Significantly enriched molecular functions were translation

regulation, ATPase activity, hormone receptor binding, and protein binding (Fig 5C). KEGG

pathway enrichment analysis showed that ribosome, apoptosis, mitophagy, HIF-1 signaling

pathway, NF-kappa B signaling pathway, Th17 cell differentiation, and B cell receptor signal-

ing pathway were the most significant processes in SRPO (Fig 5D).

3.3. Identification of feature genes using machine learning algorithms

Machine learning classification algorithms are being increasingly used to predict feature genes

associated with diseases from the noise background. SVM-RFE and RF were used to predict

Fig 2. Construction of the weighted gene co-expression network of gene modules. (A) Analysis of the scale independence for the appropriate

soft-thresholding power β. (B) Analysis of the mean connectivity for the appropriate soft-thresholding power β. (C) Histogram of connectivity

distribution with an appropriate β = 9. (D) Checking the scale-free topology with an appropriate β = 9.

https://doi.org/10.1371/journal.pone.0257343.g002
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Fig 3. Identification of significant gene modules correlated with osteoporosis. (A) Cluster dendrogram of

representative gene modules. (B) Clustering heatmap of module eigengenes. (C) Relationships of module eigengenes and

osteoporosis. The number in the square at the top of each row is the correlation coefficient, and P-values are shown below.

(D) Gene significance across modules. (E) Heatmap and bar graph of the eigengenes in module blue. (F) Scatterplot of

gene significance vs. module membership in the blue module.

https://doi.org/10.1371/journal.pone.0257343.g003
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feature genes associated with SRPO. First, an SVM-RFE classifier (Core: svmliner; Cross:

10-fold cross-validation; soft-margin; tuning parameter C = 1) was established based on 113

hub genes. Data from the control and SRPO groups were randomly divided into ten equal por-

tions (training set: 9; test set: 1). During each of the ten iterations, SVM-RFE was applied to

the training set to train the classifier with the selected features, and the trained classifier was

applied to the test set to assess prediction accuracy. Then, the predictions from the ten itera-

tions were combined to evaluate the accuracy of the classifier. Eight feature genes were vali-

dated using SVM-RFE (Fig 6A). Similarly, feature genes were screened by 10-fold cross-

validation using RF algorithm. The RF classifier showed a least out-of-bag (OOB) error with

the top 11 feature genes (Fig 6B). After integrating feature genes from SVM-RFE and RF, six

feature genes closely associated with SRPO were obtained: HNRNPC, PFDN2, PSMC5, RPS16,

TCEB2, and UBE2V2 (Fig 6C).

3.4. Diagnostic efficiency of feature genes

The difference in expression pattern of the six feature genes between the SRPO and control

groups was assessed. Gene expression was downregulated in the SRPO group, except for

UBE2V2 (Fig 7A). To identify if the feature genes influence SRPO diagnosis independently,

ROC analysis was performed. The results showed that the ability of these genes to diagnose

SRPO was high, with an AUC>0.9 (Fig 7B).

As an RNA-binding protein, heterogeneous nuclear ribonucleoprotein C (HNRNPC) is

well known for regulating mRNA metabolism and RNA expression, splicing, and translation

[39, 40]. In addition, HNRNPC regulates N6-methyladenosine (m6A) RNA methylation,

which is crucial to neurogenesis, embryonic development, stress responses, and tumorigenesis

[41, 42]. TCEB2 (also known as ELOB) encodes the protein elongin B, a subunit of the tran-

scription factor B complex and an adapter protein in the proteasomal degradation of target

proteins through E3 ubiquitin ligases [43]. Proteasome 26S subunit ATPase 5 (PSMC5) inter-

acts with several transcription factors, including nuclear hormone receptors, p53, c-Fos, and

the basal transcription complex [44]. Moreover, PSMC5 plays a proteasome-independent role

in DNA repair, chromatin remodeling, and transcription activation and elongation [45, 46].

PFDN2 is a component of β subunits of the URI prefoldin-like complex, which plays a critical

role in maintaining cellular homeostasis [47]. Ubiquitin-conjugating enzyme E2 variant 2

(UBE2V2) mediates the transcriptional activation of target genes and controls cell differentia-

tion, cell cycle, and DNA damage response [48]. Ribosomal protein S16 (RPS16), the basic

component of the 40S ribosome, was reported to be associated with the defective mitochon-

drial translation [49]. These feature genes were closely associated with RNA transcription and

translation, and important cellular activity in SRPO.

Table 1. Correlation between modules and smoking-related postmenopausal osteoporosis.

Modules Gene count Correlation P-value

Blue 1078 0.88 7e-07

Turquoise 1728 -0.75 2e-04

Brown 771 -0.64 0.003

Red 78 -0.62 0.005

Black 60 0.36 0.1

Green 164 0.29 0.2

Yellow 225 -0.26 0.3

Grey 896 0.2 0.4

https://doi.org/10.1371/journal.pone.0257343.t001
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4. Discussion

There is increased public awareness of the harmful effects of exposure to cigarette smoking.

However, although substantial progress has been made in tobacco control, cigarette smoking

remains one of the most challenging global health issues to date [50, 51]. Postmenopausal

smokers are at an increased risk of developing osteoporosis and osteoporotic fractures than

non-smoking females [52]. Moreover, smoking-induced genetic alterations influence hor-

mone secretion and bone metabolism in women [53, 54]. The molecular mechanism of occur-

rence and development of SRPO is incompletely understood, and identifying new biomarkers

for SRPO diagnosis and treatment is crucial.

Fig 4. Protein-Protein Interaction (PPI) network of genes from the blue module. (A) Screening of hub genes. The screening

criteria were degree centrality>28, betweenness centrality>158.81, and closeness centrality>0.48. (B) Core PPI network with 113

hub genes and 1831edges. The color of the nodes represented the value of degree. The darker (red) the color, the higher the degree.

https://doi.org/10.1371/journal.pone.0257343.g004
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We determined the gene expression profiles in circulating B cells from 20 postmenopausal

smokers with low or high BMD. First, WGCNA was performed to select the gene modules

with the strongest correlation with SRPO. Then, 1078 genes in the selected module were used

to construct a PPI network. Topological network analysis identified a core PPI network and

113 hub genes. Functional enrichment analysis showed that these hub genes were closely asso-

ciated with the development of SRPO via the control of several biological processes, including

the regulation of RNA transcription and translation, hormone receptor binding, and NF-

kappa B signaling pathway. Previous studies have shown that these biological processes and

signaling pathways are implicated in bone metabolism and osteoporosis [55, 56]. The risk of

missing important features was minimized by incorporating genes using two machine learning

algorithms. SVM-RFE and RF were performed to screen six characteristic variables from these

hub genes. Diagnostic efficiency analysis showed that the genes HNRNPC, PFDN2, PSMC5,

RPS16, TCEB2, and UBE2V2 were potential biomarkers for SRPO.

In a cigarette smoke-induced chronic obstructive pulmonary disease (COPD) animal

model, HNRNPC was overexpressed in the lungs of cigarette smoke-exposed mice [57]. The

dysregulation of HNRNPC is associated with telomere shortening in lung cells and circulating

lymphocytes, impairing lung function and increasing COPD severity and mortality [58, 59]. In

addition, the dysregulation of HNRNPC may increase the expression of the urokinase plasmin-

ogen activator receptor, resulting in inflammation and immune activation [60]. TCEB2 plays

an essential role in the development of acquired resistance to anti-angiogenic therapy in ovar-

ian cancer cells via suppressing VEGF-A expression and promoting HIF-1α degradation [61].

The vascularization of bone tissue is tightly linked with bone formation in a spatial and

Fig 5. Functional enrichment analysis of hub genes. (A-C) Gene ontology enrichment analysis. (D) Kyoto Encyclopedia of

Genes and Genomes pathway enrichment analysis. BP, biological process; CC, cellular component, MF, molecular function.

https://doi.org/10.1371/journal.pone.0257343.g005
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temporal relationship known as angiogenesis-osteogenesis coupling [62]. Many factors,

including HIF-1 and VEGF, regulate bone vascularization and angiogenic-osteogenic coupling

in the bone microenvironment [63]. In this respect, the dysregulation of TCEB2 may contrib-

ute to SRPO by impairing this coupling. PSMC5 regulates ERK1/2 signaling transmission by

remodeling the Shoc2 scaffold complex [64]. The activation of the ERK1/2 signaling cascade

regulates the function of osteoblasts and osteoclasts, promoting inflammation and osteogene-

sis [65, 66]. PFDN2 is closely associated with several diseases, such as Alzheimer’s disease,

colon cancer, and myelodysplastic syndromes, via different mechanisms [67–69]. The presence

of antibodies against PFDN2 is associated with an increased risk of type 2 diabetes through

autoimmune activation and/or pro-inflammatory signals, which are involved in the regulation

of bone homeostasis [70]. UBE2V2 contributes to the development and progression of many

cancers, including prostate, oropharyngeal, and breast cancers, via promoting cell prolifera-

tion, suppressing cell apoptosis, and regulating immune signaling [71–73]. Moreover,

UBE2V2 is an independent prognostic indicator for lung adenocarcinoma, which is closely

Fig 6. Feature genes selection. Using support vector machine-recursive feature elimination (SVM-RFE) (A) and random

forest (RF) (B). (C) Venn plot of feature genes selected by RF and SVM-RFE.

https://doi.org/10.1371/journal.pone.0257343.g006
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Fig 7. Diagnostic efficiency evaluation of feature genes. (A) Gene expression of six feature genes (HNRNPC, PFDN2, PSMC5,

RPS16, TCEB2, and UBE2V2) in women with smoking-related postmenopausal osteoporosis and controls. (B) Receiver operating

characteristic curve analysis.

https://doi.org/10.1371/journal.pone.0257343.g007
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related to the mutational processes of cigarette smoking [74, 75]. RPS16 contributes to facili-

tate tumor progression of glioma via the PI3K/AKT signaling [76]. Previous studies have indi-

cated that the PI3K/AKT signaling pathway is an important factor in the occurrence of

osteoporosis by regulating the activity of osteoblasts and osteoclasts [77, 78].

WGCNA can identify genes with clinical significance and cluster genes associate with path-

ological processes based on medical and biological background. Machine learning algorithms

have shown objective assessment and optimal accuracy in feature selection. The present study

is the first to perform a comprehensive strategy of machine learning algorithms and WGCNA

to identify potential biomarkers of SRPO. Although our results are consistent with the litera-

ture, the reliability of this study needs to be verified by further experiments. This study has lim-

itations. First, the smoking history, frequency, and status of individuals in the study were not

well known, which might cause uncontrolled factors in data analysis. Second, the identified

biomarkers were not functionally and externally validated. Third, the small sample size may

have limited the power of the study. Additional studies on the association of these biomarkers

with SRPO are warranted.

5. Conclusion

The present study identified six genes (HNRNPC, PFDN2, PSMC5, RPS16, TCEB2, and

UBE2V2) as potential biomarkers for SRPO using WGCNA and machine learning algorithms,

providing a novel insight into the diagnosis and treatment of SRPO. However, these biomark-

ers need to be validated by clinical trials.
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