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Despite the widespread use of genotype imputation tools and the availability of different

approaches, late developments of currently used programs have not been compared

comprehensively. We therefore assessed the performance of 35 combinations of phasing

and imputation programs, including versions of SHAPEIT, Eagle, Beagle, minimac,

PBWT, and IMPUTE, for genetic imputation of completely missing SNPs with a HRC

reference panel regarding quality and speed. We used a data set comprising 1,149 fully

sequenced individuals from the German population, subsetting the SNPs to approximate

the Illumina Infinium-Omni5 array. Five hundred fifty-three thousand two hundred and

thirty-four SNPs across two selected chromosomes were utilized for comparison

between imputed and sequenced genotypes. We found that all tested programs with the

exception of PBWT impute genotypes with very high accuracy (mean error rate < 0.005).

PBTW hardly ever imputes the less frequent allele correctly (mean concordance for

genotypes including the minor allele <0.0002). For all programs, imputation accuracy

drops for rare alleles with a frequency <0.05. Even though overall concordance is high,

concordance drops with genotype probability, indicating that low genotype probabilities

are rare. The mean concordance of SNPs with a genotype probability<95% drops below

0.9, at which point disregarding imputed genotypes might prove favorable. For fast and

accurate imputation, a combination of Eagle2.4.1 using a reference panel for phasing and

Beagle5.1 for imputation performs best. Replacing Beagle5.1 with minimac3, minimac4,

Beagle4.1, or IMPUTE4 results in a small gain in accuracy at a high cost of speed.

Keywords: imputation, phasing, accuracy, quality, speed, DZHK, HRC

1. INTRODUCTION

In typical large-scale genetic association studies, the participants are genotyped using commercially
available genotyping arrays to measure genetic variants across the entire genome. However, these
arrays only type up to 4 million variants, depending on the specific version and producer of the
array. Comparing this with the more than 84 million single nucleotide polymorphisms (SNPs) in
the human genome identified by the The 1000 Genomes Project Consortium (2015), the typically
typed variants therefore only comprise a fraction of the known variants. This is a cost-efficient
strategy, given that more than 90% of known SNPs are highly correlated with at least one typed
variant (Li et al., 2008; Ha et al., 2014).
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However, for many applications, it is desirable to fill in the
genotypes of the untyped variants. For example, meta-analyses
of association studies that used different genotyping arrays are
hampered by the fact that different numbers and selections
of SNPs are available from the different arrays (Anderson
et al., 2008; Marchini and Howie, 2010). A meta-analysis would
therefore lose power due to a possibly small overlap of SNPs.
For this, genotype imputation is used to estimate missing SNPs
with a reference panel appropriate for the population under
investigation. It is thus possible to fill in both randomly missing
genotypes from SNPs which were typed on the array but missing
in some probands, and SNPs which were not part of the array
but present in the reference panel. There are a number of further
advantages to the use of an imputed genotype data set (Li et al.,
2009). First, using a data set containing more SNPs leads to
more power in genome-wide association studies and similar
analyses, because the pool of SNPs and the genetic variety is
larger (Marchini and Howie, 2010; Pei et al., 2010). Second, more
SNPs lead to a higher resolution and thus help to localize areas of
interest in the genome. Third, it is possible that the imputed SNPs
are closer to the disease-causing variant than the genotyped SNPs
and therefore are able to pick up signals that might have been
missed otherwise (Orho-Melander et al., 2008).

The principle of imputation in general is to leverage linkage
disequilibrium to identify shared DNA sequences between the
target data and the reference data from a common ancestor. With
these shared sequences, the missing genotypes are inferred from
the reference panel using different methods. This implies that the
reference panel and the target data set should stem from the same
ethnic population for the imputation to yield accurate results.
The imputation procedure is usually divided into two steps: First,
given genotype data without haplotypic information, the data
needs to be phased first to deduce haplotypes. These estimated
haplotyes are then used in the second step to impute missing
genotypes. Although this separation of the two steps leads to
a small loss in accuracy (Roshyara et al., 2016), it is common
practice for computational efficiency and ability to handle large
data sets.

Several imputation algorithms have been developed and
implemented including different versions of IMPUTE (Howie
et al., 2009, 2011; Bycroft et al., 2017), minimac (Das et al.,
2016), Beagle (Browning and Browning, 2016; Browning et al.,
2018) and the positional Burrows-Wheeler transform (PBWT)
(Durbin, 2014), and a recent review on the role of genotype
imputation in genome-wide association studies was given by
Naj (2019). In addition to software that can be installed and
run on local computers, imputation servers offer automated
remote phasing and imputation pipelines, for example the Sanger
Imputation Service1. The quality of the imputation has been
assessed several times with different focuses using a subset of
the now available programs. Liu et al. (2015) used a subset of
fully sequenced real data to compare the performance of pairs
of phasing and imputation protocols and assessed the quality by
comparison with the originally sequenced genotypes. Of note,
they only considered pairs of phasing and imputation tools

1https://www.sanger.ac.uk/tool/sanger-imputation-service/

developed by the same research group. Das et al. (2016) found
that with larger reference panels, imputation accuracy increases.
Browning et al. (2018) assessed the imputation accuracy of
fairly recent developments with simulated data, finding no large
differences between the used programs in terms of imputation
quality. Shi et al. (2018) used a small fully sequenced sample from
the Chinese population to evaluate several aspects of imputation
quality, including the effect of sequencing coverage, sample size
and SNP density and MAF, showing among other results, that
imputation accuracy is low in rare variants. Schurz et al. (2019)
compared the imputation quality of the current imputation
servers to the same workflow on their own servers in the highly
admixed South African population, finding that a remote PBWT-
based imputation yielded the best results.

However, late developments in imputation and phasing tools
have not been assessed yet.

We therefore compared the performance of 35 combinations
of phasing and imputation procedures including versions of
SHAPEIT (Delaneau et al., 2013), Eagle (Loh et al., 2016a,b),
Beagle (Browning and Browning, 2016; Browning et al., 2018),
minimac (Das et al., 2016), PBWT (Durbin, 2014), and IMPUTE
(Howie et al., 2009, 2011; Bycroft et al., 2017) based on real
sequenced data. With a subset of a fully sequenced data set from
the German population, we emulated the use of a common SNP
array and then imputed completely missing SNPs, thus allowing
for a direct comparison of sequenced and imputed genotypes.
To investigate the advance of the versions, we also included still
frequently used older versions of the imputation programs. In
this analysis, we focus on in-house imputation only, since not all
data can be uploaded to remote servers for reasons of security
or confidentiality. We assessed the imputation quality using a
wide variety of quality measures, including scores that leverage
the known, true underlying genotype, such as the Hellinger score
(Roshyara et al., 2014), and scores which are more commonly
used to estimate the imputation quality based on the estimated
genotypes like the Beagle R2 (Browning and Browning, 2009).
We also investigated the imputation quality depending on the
minor allele frequency (MAF) and the genotype probability of the
imputed genotypes.

2. MATERIALS AND METHODS

2.1. Data
We used a data set from the German Centre of Cardiovascular
Research (DZHK) comprising whole genome sequence data
from 1,149 healthy controls of the German population2.
Individuals were recruited in six centers in Germany.
Participating cohorts are the Gutenberg-Gesundheitsstudie3,
the Hamburg City Health Study4, the Heidelberg Normal
Kontrollen (NOKO) of the University Heidelberg, the project
KORA by the HelmholtzZentrum München5, the Study of

2https://ihg4.helmholtz-muenchen.de/cgi-bin/DZHKomics/search.pl
3http://www.gutenberg-gesundheitsstudie.de/ghs/willkommen.html
4http://hchs.hamburg/
5https://www.helmholtz-muenchen.de/kora/index.html
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Health in Pomerania6 and the resources of the Institut for
Molekularbiologie Kiel7. To avoid systematic differences
between the cohorts, the centers used the same standard operatic
procedures, and all sequencing was performed on the HiSeq-X
platform of the High Throughput Sequencing Unit of the
Deutsches Krebsforschungszentrum (German center of cancer
research) in Heidelberg. The data was processed at the University
Lübeck and the HelmholtzZentrum München. The average
sequence depth is 37.75 with at least 30 for each sample. The
cutoff for single-nucleotide variants in the VQSR analysis is
99.8%. More details on the data set is reported elsewhere (Berutti
et al., 2020).

To emulate Illumina’s Infinium Omni5 array for genotyping
on chromosomes 19 and 22, a subset of 114,487 SNPs was
extracted from this data. Individuals with more than 10% of
genotypes missing and SNPs that did not pass the quality
control conducted by the variant quality score recalibration
(VQSR) included in the Genome Analysis Toolkit (GATK)8 were
removed before further analysis, so the data was further reduced
to 109,874 SNPs.

For both imputation and phasing, we used a reference
panel provided by the Haplotype Reference Consortium (HRC)
comprising 27,165 individuals.

2.2. Phasing and Imputation
The workflow of this analyis is depicted in Figure 1. We
began the imputation and phasing processes in October 2019
and finished in January 2020. Starting from the data set of
SNPs emulating the use of Illumina’s Infinium Omni5 array
for genotyping, we imputed missing SNPs using the following
programs: IMPUTE2 (Howie et al., 2009, 2011), IMPUTE4
(Bycroft et al., 2017), minimac3 (Das et al., 2016), minimac4,
Beagle4.1 (Browning and Browning, 2016), Beagle5.1 (Browning
et al., 2018) and PBWT (Durbin, 2014). Phasing was conducted
with either Eagle2.4.1 (Loh et al., 2016a,b), Beagle5.1 (Browning
and Browning, 2007) or SHAPEIT2 (Delaneau et al., 2013). The
online resources of those tools can be found inTable 1. Eagle2.4.1
and SHAPEIT2 allow phasing with a reference panel, so we
conducted the phasing step with and without the reference data
for both programs. The seven imputation tools and the five
phasing varieties add up to 35 combinations of phasing and
imputation protocols. A later version of SHAPEIT is available,
but was not considered, because SHAPEIT3 is not recommended
for data sets of our sample size.

With the exception of PBWT, the programs use a variation of
Hidden Markov Models (HMMs) to infer haplotypes for phasing
and to infer missing genotypes for imputation. The general idea
in the imputation process is to use the haplotypes of the reference
data set as the hidden states for the observed target data set and
to mimick recombination events with the probabilities defining
the HMM (Li and Stephens, 2003). In contrast, PBWT uses
the positional Burrows-Wheeler transformation to locate shared
sequences between the target data set and the reference panel

6http://www2.medizin.uni-greifswald.de/cm/fv/ship.html
7https://www.ikmb.uni-kiel.de/
8https://gatk.broadinstitute.org/hc/en-us/articles/360035531612?id=39

and infer missing genotypes by overlapping shared sequences
(Durbin, 2014). Details on the implemented algorithm are not
published yet.

Before phasing and imputation, the reference panel was
converted into the .haps/.legend format for SHAPEIT2,
IMPUTE2, and IMPUTE4 as well as into the VCF format for
minimac3 and Beagle4.1. For PBWT, Beagle 5.1 and minimac4,
the reference data had to be transformed into program
specific formats.

The phasing was conducted separately for chromosomes 19
and 22, resulting in five phased data sets for each chromosome,
one phased with Beagle5.1 and two phased with SHAPEIT2 and
Eagle2.4.1 each. To combine every phasing protocol with every
imputation tool, we formated the phased data set accordingly,
if necessary. With the exception of PBWT, IMPUTE2, and
IMPUTE4, the imputation programs were able to use the output
of the phasing programs in the VCF format. While SHAPEIT2
already provides files in the .haps/.sample format as an output,
we used BCFtools9 to convert the output formats of the other
phasing programs into a .haps file for IMPUTE2 and IMPUTE4.
PBWT seems only to impute SNPs that are explicitly marked as
missing, so we added the SNPs of the reference panels as missing
SNPs into the VCF-file before imputation.

We then imputed the missing genotypes in chunks of about
5Mbp with the exception of PBWT, because PBWT does not
support chunking. This translates to 21 chunks, namely 13 on
chromosome 19 and 8 on chromosome 22, to parallelize the
imputation processes where possible. For computational reasons,
we had to divide the data set for the imputation on chromosome
19 with PBWT into two data sets of 574 and 575 individuals,
which were later merged into one data set again. The phasing
and imputation process was parallelized using the R package
batchtools (Bischl et al., 2015; Lang et al., 2017; R Core Team,
2020). The R code we employed is publicly available10.

As output formats, we derived both dosages and best-guess
genotypes from the genotype probabilities.

2.3. Quality Measures
To estimate the accuracy of imputation in terms of comparing
imputed with sequenced genotypes, we used the concordance
rate, the Imputation Quality Score (IQS) (Lin et al., 2010),
the Hellinger score (Roshyara et al., 2014), and the squared
Euclidean norm score (SEN score) (Roshyara et al., 2014). The
concordance rate is calculated as the proportion of correctly
imputed best-guess genotypes of all imputed genotypes. The IQS
is a concordance rate adjusted for chance with a maximum score
of 1 and no theoretical minimum (Lin et al., 2010), while 0
indicates that assigning genotypes randomly according to the true
allele frequencies would yield the same proportion of correctly
imputed best-guess genotypes. Both concordance rates use the
best-guess genotypes and are calculated for every SNP separately.
The raw concordance was also converted into an error rate.

In contrast, the Hellinger score uses the genotype probability.
It is based on the Hellinger distance (Roshyara et al., 2014)

9http://www.htslib.org/doc/bcftools.html
10https://github.com/StahlKt/ImputationComparisonPaper2021
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FIGURE 1 | Workflow for imputation quality assessment. Phasing tools marked with an asterix indicate the use of a reference panel for phasing.

TABLE 1 | Online resources for the phasing and imputation tools considered.

Tool Online resource

Beagle4.1 https://faculty.washington.edu/browning/beagle/b4_1.html

Beagle5.1 https://faculty.washington.edu/browning/beagle/beagle.html

Eagle2 https://data.broadinstitute.org/alkesgroup/Eagle/

Impute2 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Impute4 https://jmarchini.org/software/

minimac3 https://genome.sph.umich.edu/wiki/Minimac3

minimac4 https://genome.sph.umich.edu/wiki/Minimac4

PBWT https://github.com/richarddurbin/pbwt

Shapeit2 https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

and ranges from 0 to 1, with a score close to 1 indicating a
high similarity between the distribution of the imputed genotype
probabilities and the true genotype. Since the score is calculated
for every imputed SNP for every individual, it then needs to
be accumulated across the individuals per SNP. To avoid losing
too much information, we extracted for every SNP the mean,
the standard deviation (SD), the minimum, the maximum, the
median and the quartiles. Thus, the minimum of the Hellinger
score may be interpreted as the worst-case imputation quality.

Finally, the SEN score is based on the dosage and summarizes
the distance between the imputed dosage and the true genotype
(Roshyara et al., 2014). Similar to the Hellinger score, it is
calculated per every individual SNP, ranges between 0 and 1, and
higher scores indicates a higher imputation quality. Again, it is
accumulated across the individuals.

All of the above measures allow for a comparison with
the ground-truth of sequenced genotypes. However, in usual
applications, these are unknown, hence the imputation in
the first place. We therefore included a second category of
quality measures which estimate the imputation quality without
using the sequenced genotypes, namely the MaCH R2, the
Beagle R2 and the IMPUTE Info score. These scores provide
more insight into how confident the imputation program
is in the estimated genotype rather than true imputation
quality in the sense of concordance with the true genotypes.
As the names already suggest, the scores are implemented
in the minimac, Beagle and IMPUTE imputation programs,
respectively. For a better overview, we calculated these for all
imputed genotypes regardless of the programs used, even though
they are highly correlated.

The MaCH R2 estimates the ratio between the observed
variance of the imputed genotypes and the expected variance if
the population was in Hardy-Weinberg equilibrium (Marchini
and Howie, 2010). It approximates the correlation between the
dosage and the true genotype. The Beagle R2 is closely related to
the MaCH R2 and approximates the squared correlation between
the best guess genotype and the true genotype (Browning
and Browning, 2009). The IMPUTE Info score estimates the
ratio between the observed and expected statistical information
(Marchini and Howie, 2010). All these measures depend on the
estimated MAF of the imputed genotypes, resulting in difficulties
of detecting incorrectly imputed genotypes if the imputation
suggests a monomorphic SNP.

To gain insight into the imputation quality in practical
settings, we assessed the concordance depending on the genotype
probabilities. For this purpose, the concordance rate was
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calculated on individually imputed genotypes within a range of
genotype probabilities for each SNP, which was then averaged.
Finally, we assessed the concordance for differentMAFs in minor
allele genotypes, which include heterozygous and alternative
allele homozygous genotypes, discussing possible cutoffs for
MAF and gentoype probabilities to exclude imputed SNPs which
might impair the overall imputation quality.

3. RESULTS

With each program combination 1,389,448 SNPs were imputed.
The overlap between imputed SNPs and SNPs contained in the
original DZHK data set consists of 553,234 SNPs, which we
used to assess the imputation quality. The difference in numbers
between the imputed and overlapping SNPs is most likely caused
by differences in coverage between the reference panel and the
original data set.

As depicted in Figure 2, the overall imputation quality is
very high for most of the imputation and phasing combinations,
indicated by the concordance rate, the IQS, the mean Hellinger
score and the mean SEN score. PBWT is the only imputation
program which yields notably worse results, whereas Beagle4.1,
Beagle5.1, IMPUTE4, minimac3, and minimac4 differ only
slightly in imputation quality. For a practical overview, Table 2
compiles the error rates in detail. Again, using PBWT or
IMPUTE2 for imputation yields a higher error rate compared to
the other programs, although the difference between PBWT and
the other protocols is more pronounced. The lack of difference
between the median error rates of most of the imputation
programs indicates that for practical purposes, the performance
of the programs is of very similar quality. In addition, the
effect of different phasing approaches is only small. As shown
in Table 2, the greatest reduction in error is obtained by using
Eagle2.4.1 for phasing without an additional reference panel, but,
again, the difference is only small. Notable, with the exception
of IMPUTE, the newer versions of the programs do not yield
better results for imputation quality in our dataset. According
to the concordance, the IQS, the minimum and the mean
of the SEN-score, and the minimum of the Hellinger score,
minimac3 is the best imputation program with a mean error
rate of 0.0031401. IMPUTE4 scores highest in the mean of the
Hellinger score, which means that IMPUTE4 assigns genotype
probabilities more accurately than the other programs. Detailed
overviews of all extracted characteristics of the distributions for
both the Hellinger score and the SEN score can be found in the
Supplementary Material.

The quality measures in the second category assessing
the confidence in the imputation without knowing the true
genotypes are shown in Figure 3 and rank the programs
differently. While MaCH R2, Beagle R2 and the IMPUTE Info
score recognize that the imputation quality in general is high,
the programs with low scores in Figure 2 are estimated to have
the best imputation quality with PBWT as the program with the
highest confidence in the imputation.

The concordance of the minor allele genotypes depending on
the MAF is depicted in Figure 4. We excluded genotypes that

would be correctly imputed as homozygous with the reference
allele, because we want to investigate at which point rare variants
are not accurately imputed anymore. This is necessary, because
overall concordance would still be high for monomorphic
imputed SNPs, if their MAF is low enough. We averaged the
concordance of those minor allele genotypes according to their
MAFs, using MAF intervals of 0.001 for the grouping to ensure
a both detailed and clear performance overview. Beagle4.1,
Beagle5.1, IMPUTE4, minimac3 and minimac4 impute the rare
variants slightly better than IMPUTE2, while PBWT tends to
choose the reference allele most of the time in the imputation
process regardless of the MAF. In general, the concordance starts
to decline for all imputation programs for genotypes involving
the minor allele if the MAF is below 0.05. For rare variants
with a MAF below 0.01, the concordance drops drastically. A
detailed view of the area with MAF < 0.05 is included in the
Supplementary Material.

Figure 5 shows the concordance rate depending on the
genotype probability of the best-guess genotype. Similar to
Figure 4, genotypes were grouped using intervals of genotype
probabilities with the length of 0.01. The concordance of PBWT
is generally so low that it is not included but given in the
Supplementary Material. For all other imputation programs the
concordance drops quickly with lower genotype probabilities
with the gradient being most and least severe for Beagle4.1 and
IMPUTE2, respectively.

In response to the question when to discard imputed
genotypes for practical use, Table 3 lists thresholds for MAF
and genotype probabilities for each of the imputation programs
that still maintain an acceptable level of concordance. The MAF
thresholds were derived with theminor allele concordance. These
can be seen as cutoffs to ensure high concordance. PBWT was
excluded from Table 3, because it does not meet the required
level of concordance overall. Because of the only small influence
of phasing, Table 3 depicts the average over the variations
in phasing. deleted statement: A complete overview including
phasing is given in the supplement. It should be noted that we
excluded the local minimum in concordance for a MAF around
0.04, which is depicted in Figure 4. The MAF cutoff is 0.03
for a concordance level of 95% in the minor allele genotypes
for IMPUTE2, while Beagle4.1, Beagle5.1, IMPUTE4, minimac3
and minimac3 hold the same level of concordance with slightly
rarer SNPs still. For the practical use, this means that if the
mean condordance of the minor allele genotypes is to be kept
above 95%, SNPs imputed with IMPUTE2 and with a known
MAF lower than 0.03 should be discarded. The worse results for
IMPUTE2 translate to the lower concordance levels in Table 3 as
well. For all imputation programs lowerMAFs can be included, if
the intended level of minor allele concordance is lowered as well.
Beagle4.1, IMPUTE4, minimac3, and minimac4 impute minor
allele genotypes with a mean concordance of at least 75%, if the
MAF is 0.003 or higher, so the drop in the concordance is not as
steep as the drop in resulting MAF cutoff. As already shown in
Figure 5, the concordance drops rapidly with lowering genotype
probabilities for all genotypes. The genotype probability cutoff
for a 95% concordance level for Beagle5.1, IMPUTE2, IMPUTE2,
IMPUTE4, minimac3, and minimac4 is 0.98, while for Beagle5.1
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FIGURE 2 | Imputation quality measures based on sequenced genotype for comparison. For the Hellinger and the SEN score, the minimum and mean are included.

Phasing tools marked with an asterix indicate the use of a reference panel for phasing.
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TABLE 2 | Error rates as mean across phasing protocols and deviation from mean for every phasing protocol.

Mean Deviation

All phasing Beagle5.1 Eagle2.4.1 Eagle2.4.1* SHAPEIT2 SHAPEIT2*

Beagle4.1 0.0033016 3.0357 × 10−5
−1.2997 × 10−5 8.2931 × 10−5

−9.7560 × 10−5 -2.7316 × 10−6

Beagle5.1 0.0033571 2.7450 × 10−5
−6.6318 × 10−6 6.8414 × 10−5

−9.9092 × 10−5 9.8597 × 10−6

IMPUTE2 0.0042061 4.2378 × 10−6
−4.7412 × 10−5 9.7701 × 10−5

−9.0420 × 10−5 3.5893 × 10−5

IMPUTE4 0.0033572 3.2415 × 10−5
−2.6751 × 10−5 1.0125 × 10−4

−1.1219 × 10−4 5.2721 × 10−6

minimac3 0.0031401 3.0646 × 10−5
−1.7680 × 10−5 8.6474 × 10−5

−9.7262 × 10−5
−2.1784 × 10−6

minimac4 0.0031904 3.0353 × 10−5
−1.7605 × 10−5 8.8464 × 10−5

−1.0018 × 10−4
−1.0363 × 10−6

PBWT 0.1354054 1.6959 × 10−7 1.6959 × 10−7 1.6959 × 10−7 1.6801 × 10−7
−6.7678 × 10−7

Phasing tools marked with an asterix indicate the use of a reference panel for phasing. The median is not included because it has the same value of 0.00087 for every combination of

phasing and imputation with the exception of PBWT, which has a median error rate of 0.00522 for all phasing protocols.

FIGURE 3 | Imputation quality measures usable without knowledge of true genotypes. Phasing tools marked with an asterix indicate the use of a reference panel for

phasing.

the cutoff is 0.99 for the same concordance level. For the 90%
concordance level, IMPUTE2 has lowest cutoff with 0.92. Note,
that the intervals for genotype probabilities were chosen with a
length of 0.01 to ensure clean cutoff values for practical use.

Table 4 depicts the mean concordance of the minor allele
genotypes with a MAF between 0 and 0.001, which is
the rarest category in Figure 4, to showcase the imputation

performance for very rare SNPs. PBWT is not included,
since the concordance is zero. IMPUTE2 has the lowest
concordance for the minor allele genotypes, while Beagle4.1,
Beagle5.1, IMPUTE4, minimac3 and minimac4 have similar
results with the minimac programs at the top. Phasing with
Eagle2.4.1 with a reference panel yields slightly better results
for all imputation programs. With the exception of PBWT and
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FIGURE 4 | Concordance rate for imputed genotypes with true genotypes not homozygous with the reference allele, depending on MAF. Beagle 4.1, Beagle 5.1

Impute4, minimac3, and minimac4 almost perfectly align. Different phasing processes were not considered. For a detailed view of the region with MAF < 0.05, see the

Supplementary Material.

IMPUTE2, the concordance ranges between 0.42 and 0.51 for
very rare variants.

Finally, Table 5 lists the computation times for the imputation
and phasing process. Since there might be differences in
computation time depending on the used processors, we also
converted the raw run time into factors. Note, that this is the
total run time, so the gain of speed from the parallelization
of the chunks is not represented in this table. For imputation,
PBWT was the fastest program with a time of 2.67 h, followed
by Beagle5.1 with 5.81 h (0.28 h/chunk), while minimac3 was the
slowest imputation program requiring 57.29 h (2.73 h/chunk).
Within the phasing protocols, SHAPEIT2 using a reference panel
was the slowest with a runtime of 24.2 h, while Beagle5.1 was the
fastest with a runtime of 3.5 h for both chromosomes.

4. DISCUSSION

To asses the imputation quality of the most recent and
commonly used versions of imputation and phasing tools, we
compared imputed with known sequenced genotypes in a large
German population. In general, the imputation yielded very
good results with a mean error rate below 0.005 for most of
the tool combinations. The median error rates indicate only
small differences in the imputation quality between most of
the imputation programs and even less differences between the
phasing protocols. The slightly better results of the older versions
of Beagle and minimac could be due to adapting the algorithms

for data sets larger than ours. The size of our data set might also
explain the slight differences between the phasing approaches,
and using a reference panel in the phasing process might have
a larger impact for smaller data sets.

The PBWT tool’s imputation quality was lower than expected,
especially considering the high scores shown in Figure 3

which would give a high confidence in PBWT’s imputation
results, if the true genotypes were unknown. Noteworthy is
the median IQS of zero, indicating an imputation quality on
the same level as assigning genotypes randomly according
to the allele frequencies. The reason for this is most likely
that the scores not using true genotypes reward algorithms
for imputing SNPs as monomorphic, while the IQS punishes
this. This also coincides with the concordance of minor allele
genotypes in Figure 4, which might indicate a strong preference
to impute the reference allele, even if the MAF is high. The
performance of PBWT in our evaluation is in contrast to
comparable studies involving the Sanger Imputation Service
that is also based on PBWT and yields very good results in
terms of imputation quality (Schurz et al., 2019). This suggests
that the currently publicly available PBWT program does not
include the latest developed tools for PBWT-based imputation
yet, and the imputation quality might improve drastically in
future releases.

Figure 4 illustrates that even for programs with very
high imputation quality, rare variants are likely to be
underrepresented in imputed datasets, indicating that SNPs
with low MAF should be sequenced and not imputed if they
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FIGURE 5 | Concordance rate of imputed best-guess genotype depending on genotype probability. The interval length of genotype probabilities was set to 0.01 with

the lower border fixed to the x axis. PBWT is not included in this graphic because of its low values. For a broader view including PBWT, see the

Supplementary Material. Phasing tools marked with an asterix indicate the use of a reference panel for phasing.

are of particular interest in the study. However, an incorrect
imputation of the minor allele genotypes for the rare variants will
result in a genotype homozygous with the reference allele, so the
loss of information is mostly one-sided, and strong signals might
still be detected even with a lower number of correctly imputed
minor allele genotypes. A cutoff for SNPs with a low MAF in
genotype imputation, if used at all, should comply with the
aims of the individual study keeping in mind that rare variants
are likely underrepresented, but identifying only a proportion
of the rare variants might still outweigh the drawbacks of low
concordance rate for those genotypes. Additionally, homozygous
genotypes with the reference allele may also be wrongly imputed,
possibly leading to false positive associations, however this
is assumed to be unlikely in rare variants, and would further
emphasize our recommendation of genotyping those areas
directly. If direct genotyping for single variants is practically
possible, it should be considered for SNPs with a MAF of 0.05
and lower, or 0.03 and lower to ensure a concordance of 95%. In
any case, imputation with the minimac programs in combination
with Eagle2.4.1 and a phasing reference panel yields the largest
proportion of correctly imputed minor allele genotypes. The

small drops in the minor allele concordance visible in Figure 4,
such as the local minimum around a MAF of 0.04, are likely due
to single, difficult to impute SNPs and the small size of the MAF
intervals in the figure.

The concordance depending on the genotype probabilities
suggests a rather high cutoff of 0.98 to discard possibly incorrectly
imputed genotypes if the aim is to only impute genotypes
with an error rate of at most 5% on average. We do not
neccessarily suggest implementing a threshold this high to accept
imputed genotypes in general. Since the concordance rate is
not available in a typical imputation setting, this concordance
cutoff is more fit to illustrate the rapidly falling imputation
quality with lower genotype probabilities. It should be considered
for practical use though that the underlying concordance may
be considerably lower than the genotype probability suggests.
However, since the overall concordance is very high, this suggests
that the fraction of genotypes with low genotype probabilities are
comparably small. The observation that IMPUTE2 would require
a less stringent cutoff than other programs to achieve the same
accuracy although the imputation quality is worse might be a
result of the newer programs assigning genotype probabilities
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TABLE 3 | Cutoffs for MAF in imputed minor allele genotypes and for genotype probabilities (GP) in all genotypes to ensure a level of mean concordance.

Cutoff MAF (minor allele genotypes) Cutoff GP

Concordance levels: 95% 90% 85% 80% 75% 95% 90%

Beagle4.1 0.0262 0.0102 0.0062 0.0042 0.0030 0.990 0.950

Beagle5.1 0.0276 0.0108 0.0070 0.0050 0.0032 0.980 0.938

IMPUTE2 0.0300 0.0128 0.0090 0.0060 0.0046 0.980 0.920

IMPUTE4 0.0250 0.0102 0.0062 0.0040 0.0030 0.980 0.940

minimac3 0.0250 0.0100 0.0060 0.0040 0.0030 0.980 0.930

minimac4 0.0250 0.0102 0.0060 0.0040 0.0030 0.980 0.940

Intervals for the grouping, in which the concordance of SNPs is averaged according to MAF, have the length 0.001, while the intervals for genotype probabilities have the length 0.01.

TABLE 4 | Concordance for minor allele genotypes with a MAF between 0

and 0.001.

Imputation Phasing

Beagle5.1 Eagle2.4.1 Eagle2.4.1* SHAPEIT2 SHAPEIT2*

Beagle4.1 0.45 0.46 0.49 0.44 0.48

Beagle5.1 0.42 0.43 0.47 0.40 0.45

IMPUTE2 0.30 0.29 0.34 0.29 0.34

IMPUTE4 0.46 0.47 0.50 0.44 0.49

minimac3 0.48 0.48 0.51 0.46 0.50

minimac4 0.47 0.48 0.51 0.46 0.49

*Indicates phasing with reference panel.

with more weight on the favored genotype, which coincides with
IMPUTE2’s results in the Hellinger score.

The higher mean in the Hellinger score for IMPUTE4
indicates that specifically the estimated genotype probabilities
of this program are more accurate. This is not a contradiction
to minimac3 yielding the lowest mean error rate for best guess
genotypes, since the quality measures differ mostly in penalizing
deviations to the true genotype according to the output format.
The Hellinger score and the SEN score penalize any deviation
from a completely unambiguous imputation, even if the best-
guess genotype is correct (Roshyara et al., 2014). The Hellinger
score using the genotype probabilities is stricter than the SEN
score using the dosage for similar reasons, concurring with the
results shown in Figure 2.

After our analysis was concluded, both IMPUTE and Beagle
released a new version. Beagle5.211 improves speed in phasing,
compared to the earlier version, while IMPUTE5 (Rubinacci
et al., 2020) improves speed in imputation.While including those
newer versions retrospectively would broaden the overview, their
release does not detract from our findings in genotype imputation
quality, since this seemingly did not improve in the later versions.

The practical speed of phasing and imputation is very
dependent on the parallelization and the local available capacities.
For imputation with minimac and Beagle, the number of CPUs to
be used can be specified directly in the call of the program, while

11https://faculty.washington.edu/browning/beagle/beagle.html

TABLE 5 | Runtime (CPU time) in hours and as factors for imputation and phasing.

Tools Runtime in hours Runtime as factors

Imputation Phasing Imputation Phasing

Beagle5.1 5.81 3.50 2.18 1

Beagle4.1 31.65 11.85

Eagle2.4.1* 4.47 1.28

Eagle2.4.1 4.68 1.33

IMPUTE2 34.57 12.95

IMPUTE4 32.73 12.26

minimac3 57.29 21.46

minimac4 48.69 18.24

PBWT 2.67 1

SHAPEIT2 14.07 4.02

SHAPEIT2* 24.20 6.91

For the factors, the fastest tool within imputation and phasing programs was chosen as

factor one. For this table, the gain of speed due to parallelization is disregarded, since it

is highly dependent on the local machines and chunking. Intel Xeon E5-2680 CPUs were

used for phasing and imputation. Phasing tools marked with an asterix indicate the use

of a reference panel for phasing.

for IMPUTE only chunks can be specified, which would have to
be run in parallel by hand or other means such as batchtools.
The minimum recommended chunk length, which depends on
the chosen program, also needs to be considered for effectiveness.

In general, imputation quality is dependent on the size of the
reference panel (Das et al., 2016; Bai et al., 2019). So far, the
largest reference panel, to our knowledge the TOPMed panel,
currently is only available on an imputation server12. IMPUTE5
(Rubinacci et al., 2020) and Beagle5.1 (Browning et al., 2018)
are able to handle next-generation reference panels, which might
become a factor in choosing an imputation tool in the future.
While there is no publication on minimac4 specifically yet, we
assume the higher efficiency in both computation and memory
used, especially the use of the M3VCF format for reference
panels, enables minimac4 to handle larger reference panels
than minimac3.

It should be noted that all results of this analysis are based on a
real data set of a European population, which is overrepresented

12https://imputation.biodatacatalyst.nhlbi.nih.gov
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in the available genetic data. If other ethnicities are present,
other reference panels might be more appropriate (Huang
et al., 2009; Li et al., 2009; Schurz et al., 2019), which might
be considerably smaller for now. If available reference panels
contain less individuals of the target data set’s population, the
imputation quality is very likely suffering in every aspect. Since
we only have European data available, we cannot determine if
the loss of quality is larger for one phasing or imputation tool
compared to another. Likewise, we cannot necessarily extrapolate
our results to data sets containing related individuals. Further,
the Illumina chip we emulated is very dense compared to other
available genotyping arrays. It follows that the initial situation in
this analysis is favorable for good imputation outcomes. Testing
imputation quality with less dense genotyping arrays should be
considered in further research, since differences in imputation
quality between the leading imputation tools might be more
pronounced in less advantageous circumstances.

In conclusion, out of the 35 assessed program combinations,
25 yield similarly high quality imputation results. For practical
use, switching a familiar program setup likely only has a
noticeable impact on the imputation quality if PBWT or
IMPUTE2 are used. Minimac3 is the program with both
the highest accuracy and the longest runtime. IMPUTE4
yields slightly more accurate genotype probabilities and
should be considered if this output format is particularly
required for further analysis. Beagle5.1 with its high
accuracy, inbuilt phasing function, and fast runtime
is arguably the most convenient tool for imputation in
this comparison.
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