
ORIGINAL RESEARCH
published: 25 October 2021

doi: 10.3389/fnhum.2021.713692

Frontiers in Human Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 713692

Edited by:

Weihui Dai,

Fudan University, China

Reviewed by:

Yonghui Dai,

Shanghai University of International

Business and Economics, China

Tao Liu,

Zhejiang University, China

*Correspondence:

Zuhua Jiang

zhjiang@sjtu.edu.cn

Specialty section:

This article was submitted to

Cognitive Neuroscience,

a section of the journal

Frontiers in Human Neuroscience

Received: 23 May 2021

Accepted: 09 September 2021

Published: 25 October 2021

Citation:

Wang F, Jiang Z, Li X, Bu L and Ji Y

(2021) Functional Brain Network

Analysis of Knowledge Transfer While

Engineering Problem-Solving.

Front. Hum. Neurosci. 15:713692.

doi: 10.3389/fnhum.2021.713692

Functional Brain Network Analysis of
Knowledge Transfer While
Engineering Problem-Solving

Fuhua Wang 1, Zuhua Jiang 1*, Xinyu Li 2,3, Lingguo Bu 4,5 and Yongjun Ji 1

1Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai, China, 2College of

Mechanical Engineering, Donghua University, Shanghai, China, 3 School of Mechanical and Aerospace Engineering, Nanyang

Technological University, Singapore, Singapore, 4 Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR),

Shandong University, Jinan, China, 5 School of Software, Shandong University, Jinan, China

As a complex cognitive activity, knowledge transfer is mostly correlated to cognitive

processes such as working memory, behavior control, and decision-making in the human

brain while engineering problem-solving. It is crucial to explain how the alteration of the

functional brain network occurs and how to express it, which causes the alteration of the

cognitive structure of knowledge transfer. However, the neurophysiological mechanisms

of knowledge transfer are rarely considered in existing studies. Thus, this study

proposed functional connectivity (FC) to describe and evaluate the dynamic brain network

of knowledge transfer while engineering problem-solving. In this study, we adopted

the modified Wisconsin Card-Sorting Test (M-WCST) reported in the literature. The

neural activation of the prefrontal cortex was continuously recorded for 31 participants

using functional near-infrared spectroscopy (fNIRS). Concretely, we discussed the prior

cognitive level, knowledge transfer distance, and transfer performance impacting the

wavelet amplitude and wavelet phase coherence. The paired t-test results showed

that the prior cognitive level and transfer distance significantly impact FC. The Pearson

correlation coefficient showed that both wavelet amplitude and phase coherence are

significantly correlated to the cognitive function of the prefrontal cortex. Therefore,

brain FC is an available method to evaluate cognitive structure alteration in knowledge

transfer. We also discussed why the dorsolateral prefrontal cortex (DLPFC) and occipital

face area (OFA) distinguish themselves from the other brain areas in the M-WCST

experiment. As an exploratory study in NeuroManagement, these findings may provide

neurophysiological evidence about the functional brain network of knowledge transfer

while engineering problem-solving.

Keywords: knowledge transfer, functional connectivity, brain network, wavelet phase coherence, functional

near-infrared spectroscopy, cognitive structure

INTRODUCTION

Simulating the thinking pattern of the human brain is an attainable way to
break through the bottleneck of artificial intelligence (Mohammad and Ali, 2020;
Naghshvarianjahromi et al., 2020; Bin et al., 2021). Transfer learning, inspired by
knowledge transfer, is a paradigm in machine learning to recognize and apply
knowledge/skills learned in previous domains to the novel but related domains
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(Zhuang et al., 2021). Annotated data or knowledge frameworks
were transferred from related fields to specific target fields or
tasks situation. The rapid development of transfer learning is
dependent on the exploration of knowledge transfer (Khan
et al., 2019). Knowledge transfer is considered one of the
most effective strategies for enterprises in knowledge-based
theory. It has received considerable attention from academics
and corporate governance, aiming to research what common
knowledge can be transferred between different domains or tasks
(Prescott et al., 2014). However, limited literature focused on
the cognitive structure and brain network of knowledge transfer.
The ambiguity of the neurophysiological substrates of cognitive
processing cause the poor innovation performance of enterprises
(Jian et al., 2019; Sungsoo et al., 2019).

Knowledge transfer is the process whereby individual
skills/knowledge in one situation impacts the skills/knowledge
in another situation (Ishizaka et al., 2020; Li et al., 2021a).
Individual knowledge transfer builds the cognitive structure
learned on prior experiences, not involving intra-organizational
and inter-organizational interactions (Sadita et al., 2020).
Engineers constantly review previous knowledge and learn new
skills while engineering problem-solving, usually accompanied
by multiple knowledge transfers (John et al., 2019; Vieira et al.,
2020). The efficiency of knowledge transfer usually depends
on the individual cognitive level when engineers solve specific
problems (Li et al., 2017, 2021b). The cognitive level is concerned
with the mastery of knowledge, which is a concept in cognitive
psychology based on the cognitive structure of the human
brain. The cognitive level is influenced by three factors: the
complexity of the knowledge contained in the learning materials,
the organization rules or presentation methods of the learning
materials, and the experience of the learner (Macpherson and
Stanovich, 2007). Bloom’s Taxonomy of Cognitive Development
identified six levels within the cognitive structure, i.e., knowledge,
comprehension, application, analysis, synthesis, and evaluation.
The cognitive level starts from the simple recall or recognition
of facts, through increasingly more complex and abstract mental
levels, to the highest order classified as evaluation (Rahbarnia
et al., 2014). Learners with high cognitive levels could more
rapidly utilize prior experience when facing a new situation,
optimizing their learning footwork and elevating the learning
efficiency of new knowledge (Sitzmann and Ely, 2011; Li
et al., 2018). Generating and transforming representations
in design ideation plays an indispensable role in engineering
problem-solving (Galati and Bigliardi, 2019). Knowledge transfer
enhances the conceptualization of knowledge and consequently
generates critical thoughts and advanced design ideas (Spuzic
et al., 2016).

The cognitive factors of knowledge transfer are mainly
comprised of the prior cognitive level, transfer distance, and
transfer performance (Galati and Bigliardi, 2019; Zhuang et al.,
2021). Prior cognitive level, a series of theories or methods that
individuals have acquired in their past engineering experience
before solving the current technological problems, is an indicator
in evaluating the validity and integrity of prior cognitive
structures (Wang et al., 2021). Referring to a similar scenario in
information retrieval (IR), the prior cognitive level was quantified

by precision (the right predicted positive value in predicted
positive examples) and recall (the right predicted positive value
in all actual positive examples) (Hu et al., 2017; Li et al.,
2019). Transfer distance is divided into near and far transfers,
indicating the difficulty of knowledge transfer while engineering
problem-solving (Sapuarachchi, 2021). Near transfer refers to the
similar cognitive structure between the target and prior domains,
while the far transfer is the opposite (Brunyé et al., 2020).
The nature of near knowledge transfer is the recall and reuse
of similar problem features, similar application contexts, and
similar knowledge elements. With opposite connotations during
far transfer, individuals draw on dissimilar knowledge learned
in previous scenarios to solve current engineering problems.
The manifestations of the far transfer problems are pretty
distinct from prior experience, but their knowledge elements
are relevant in the deep structure of knowledge. The WordNet-
based semantic similarity in natural language processing has
been used to measure the similarity of the two cognitive
structures and to quantify the transfer distance of empirical
engineering knowledge under different technological paradigm
shifts (Wang et al., 2021). Transfer performance evaluated the
ability of engineers to solve new technological problems after
knowledge transfer (Wang et al., 2018). The validity, integrity,
and availability of the cognitive structure dominate the process
and performance of knowledge transfer. Questionnaires and
scales assessed the performance of knowledge transfer, such
as Montreal Cognitive Assessment (MoCA), Mini-Mental State
Exam (MMSE), or Cognitive Reserve Scale (CRS) (Bu et al.,
2018a).

The brain is a computational and decision-making system
that contains complex networks. Executing a particular cognitive
activity requires synergizing several functional brain regions and
sophisticated functional networks consist of these connectivities
in the human brain system (Bu et al., 2020b). Knowledge
transfer, a complicated cognitive activity, is usually correlated
to cognitive processes such as working memory, control, and
decision-making in the human brain. It is crucial to explain how
the alteration of the functional brain network occurs and how to
express it, which causes the alteration of the cognitive structure
of knowledge transfer (Kulasegaram et al., 2017). With the
development of cognitive science and neuroimaging technology,
functional connectivity (FC) analysis provides an executable
method to reveal the neural activity and connectivity of brain
function (Bu et al., 2018a). Resting-state functional connectivity
(rsFC) indicates the flow of information among brain regions
and measures the strength of its connection (Bu et al., 2018b;
Tozzi et al., 2021). Related works have used wavelet phase
coherence (WPCO) to characterize the rsFC between different
brain regions. The WPCO assessed the impaired cognitive
function of subjects with hypertension (Brunyé et al., 2020). The
WPCO evaluated dynamic cerebral autoregulation in neonatal
hypoxic-ischemic encephalopathy (Zhang et al., 2020). Analyzing
the functional connectivity of knowledge transfer allows an in-
depth detection of the neurovascular coupling mechanisms while
engineering problem-solving. Related works found rsFC in the
prefrontal cortex (PFC), whether in the resting state or task
state (Antzoulatos and Miller, 2014). The reasons focusing on
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rsFC in this study are as follows. First, there are few studies on
task-state FC (Cole et al., 2021), but presently, the rsFC method
has been a thorough and popular analysis method on brain
networks. Second, task-state and resting-state FC use completely
different algorithms. Hence, the research mode is different.
Some classical experimental paradigms can adopt task-state FC
because their stimuli are generic and regular. Nevertheless, due
to the exceedingly complex knowledge transfer process, the
existing research cannot be studied through classical technology
paradigms, complicating the task-state FC (Zhang et al., 2020).
As far as the current researches on the neural substrates of
knowledge transfer are concerned, it is difficult to analyze and
explain the causes/mechanisms of the generation/defect of task-
state FC in the knowledge transfer process.

In recent years, functional near-infrared spectroscopy (fNIRS)
has been widely used in FC in complex cognitive processing
(Arun et al., 2020; Bu et al., 2021). Grounded on the optical
properties of biological tissues and the modified Beer-Lambert
law, fNIRS acquires the biochemical information in 650–900 nm
light after a series of absorption and scattering (Bu et al., 2020a).
Oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) quantify
the concentration of chromophores. It provides convenient and
authentic monitoring indicators for clinical research by collecting
fNIRS data related to tissue and physiological function (Bu
et al., 2019; Nakamura et al., 2020). Compared with functional
magnetic resonance imaging (fMRI) and electroencephalogram
(EEG), fNIRS can provide a non-destructive brain region
detection and a high temporal and spatial resolution. fNIRS
is also portable, low constraints, and longtime repeated
measurement. Hence it has gotten more attention in cognitive
neuropsychology (Bu et al., 2017; Udina et al., 2020).

The existing studies on knowledge transfer were widely
researched in pedagogy (Bae et al., 2019; Lombardi, 2019),
management (de Wit-de Vries et al., 2019; Li et al., 2020),
and information science (Bacon et al., 2019; Sun et al.,
2020). However, the literature mainly focused on bibliometrics
analysis (Prihodova et al., 2019) and behavioral measurement
(Marques et al., 2019). Their conclusions were affected by the
subjective willingness of subjects, resulting in the reduction
of interpretability (Vasudev and Pooja, 2020; Xie et al.,
2020). Moreover, the related works did not involve how the
dynamic alteration of the functional brain network occurs and
how to reveal it. Modified Wisconsin Card-Sorting Test (M-
WCST) and FC analysis provide feasibility for quantifying the
alteration. The WCST is a neuropsychological test, which was
put forward to assess abstract thinking and learning ability
(Grant and Berg, 1948). This neuropsychological method is
sensitive in the PFC especially the dorsolateral prefrontal cortex
(DLPFC) (Shirayama et al., 2010; Steinke et al., 2021). It
measures the cognitive capability of abstract generalization,
material extraction, working memory, and knowledge transfer
by utilizing prior experience. The test was modified by
different scholars given the different experimental needs (Kopp
et al., 2019; Gómez-de-Regil, 2020). This study adopts a
proven feasible M-WCST to evaluate the concept classification
ability of subjects after knowledge transfer (Wang et al.,
2021).

This study is a follow-up to the study of Wang et al. (2021).
In the mentioned study, the significantly activated brain regions
in knowledge transfer were revealed by statistical parametric
mapping (SPM treatment), which was an initial but essential
step for researching the neural underpinnings of knowledge
transfer by fNIRS. However, the brain is a computational and
decision-making system that contains complex networks. The
SPM treatment has limitations because this method isolates the
connection between the brain regions. It cannot analyze or
reveal the synchronization and synergy of networks among the
brain regions.

This study proposes neurophysiological evidence about the
brain network underlying rsFC, thus is one step further in
promoting knowledge transfer research in engineering problem-
solving. The cognitive level of knowledge transfer from brain
activity was analyzed in different situations (near transfer and
far transfer). We discussed the prior cognitive level and transfer
distance affecting functional brain connectivity in knowledge
transfer. Wavelet amplitude and WPCO were applied to evaluate
the FC. Transfer performance analysis showed that the FC
trustworthily assessed the cognitive level of subjects. The three
groups of hypotheses are as follows:

H1: The distance of knowledge transfer is significantly
correlated to FC;

• H1a: The distance of knowledge transfer is significantly
correlated to the wavelet amplitude of FC;

• H1b: The distance of knowledge transfer is significantly
correlated to the WPCO of FC;

H2: Prior cognitive level is significantly correlated to FC;

• H2a: Prior cognitive level is significantly correlated to the
wavelet amplitude of FC;

• H2b: Prior cognitive level is significantly correlated to the
WPCO of FC;

H3: The transfer performance is significantly correlated to FC.

• H3a: The transfer performance is significantly correlated to
the wavelet amplitude of FC;

• H3b: The transfer performance is significantly correlated to
the WPCO of FC;

MATERIALS AND METHODS

Subjects
A total of 33 subjects were recruited at the School of
Mechanical Engineering, Shanghai Jiao Tong University, China.
The experiment was finished by 31 subjects (age: 21.0526 ±

1.8995) (excluding two participants, who did not follow the
requirements), of which 24 are males and 7 are females. All
participants satisfied the following criteria: (1) no structural
abnormalities, (2) no neurological or psychiatric disorders, (3)
no use of medication, (4) right-handed, and (5) healthy vision.
Before the experiment, all participants signed an informed
consent approved by the Institutional Review Board (IRB) of the
Shanghai Jiao Tong University. It was in accordance with the
ethical standards specified by the Helsinki Declaration of 1975
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(revised in 2008). Anonymous information on the subjects was
recorded before the test, such as gender and age.

Experimental Measurements
The M-WCST experiment assessed the functional brain network
of knowledge transfer while engineering problem-solving. It was
divided into three phases, namely, prior technological paradigms
(TP), near-transferred TP, and far-transferred TP, each phase
taking about 30min. In each phase, the subjects needed to solve
specific design problems about three engineering products. The
engineering products are as follows: a cylindrical speed-reducer
gearbox (prior TP), a planetary speed-increaser gearbox (near-
transferred TP), and an involute gear pump (far-transferred TP)
(Wang et al., 2021). The stimulus materials were extracted from
the glossary of terms in the authoritative monographs of the
Handbook of Machine Design and Hydrodynamics and Hydraulic
Transmission. Therefore, all the stimulus materials exhibited on
the screen were knowledge concepts about engineering design,
and all the concept-sorting tests were the specific problems to be
solved for the subjects.

The cylindrical speed-reducer gearbox is a traditional and
representative transmission mechanism. Most students who
major in mechanical design or designers whose occupations are
mechanical design are familiar with this gearbox design. The
TP covers the commonly used and basic concepts. Therefore,
it can measure the cognitive level of the subject with regards
to the prior TP. The planetary speed-increaser gearbox with
a multi-stage epicyclic gear train increases the difficulty and
complexity of the design task. Compared with the cylindrical
speed-reducer gearbox, the planetary speed-increaser gearbox
increases the similarity and availability of knowledge, but it
still belongs to the category of gear transmission. Hence, it
can measure the cognitive level of the near-transferred TP.
Compared with the two mechanisms above, designing an
involute gear pump requires basic concepts of gears transmission
and even the knowledge of hydrodynamics and hydraulic
transmission. Hence, the low similarity increases the difficulty
of knowledge transfer. Although the two products are different,
the common element, “external gear,” is related to the deep
structure of knowledge. Therefore, it can measure the far
transfer performance.

It can be seen above that the experiment consists of
three different TPs depended on the distance of knowledge
transfer. Furthermore, several experienced domain experts
divided engineering concepts into three groups through the
Delphi method and the WordNet-based semantic similarity.
These specific concepts were exhibited to subjects in each
design stage of the M-WCST experiment. Half of them are
related/unrelated concepts to each design problem in each stage.

The flowchart of the experiment is shown in Figure 1. In
the M-WCST experiment, the 1HbO concentration in the
brain area was measured by fNIRS. The prior cognitive level,
transfer distance, and transfer performance were tested using
the concept-sorting tests, which were proposed in previous
research (Wang et al., 2021). Then the two parameters
of wavelet amplitude and phase coherence were calculated
after pre-processing and wavelet transform. The significant

FIGURE 1 | Flowchart of the functional brain network analysis of knowledge

transfer.

correlations of prior cognitive level and transfer distance on
functional connectivity were analyzed by a paired-samples t-
test. Through Pearson correlation coefficient, we confirmed the
feasibility of FC to explore the neurophysiological substrates of
knowledge transfer.

As shown in Figure 2, in the prior TP (design task of the
cylindrical speed-reducer gearbox), the subjects finished the
concept-sorting test under the prior TP to collect the prior
cognitive level. In the near-transferred TP (design task of the
planetary speed-increaser gearbox), they learned new knowledge
from the near knowledge transfer. Then they kept their resting
state after the learning task for about 10min, and we collected the
1HbO concentration using fNIRS during this time. Afterward,
they finished a concept-sorting test to collect the performance
of near knowledge transfer. In the far-transferred TP (design
task of involute gear pump), they learned new knowledge from
the far knowledge transfer, and then the 1HbO concentration
of resting-state after learning task was collected. Afterward, the
performance under the far-transferred technological paradigm
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FIGURE 2 | Stimulus sequences and stimulus materials.

FIGURE 3 | Stimulus materials we provided for the subjects. (A) Learning tasks; (B) concept-sorting tests.

was collected. The exhibiting order of the near-transferred and
far-transferred TP was random.

In the learning tasks, the subjects watched 13 trials of
stimulus materials. As shown in Figure 3A, the stimulus
materials we provided for the subjects are the learning
contents in the new technology paradigm, including
text or image. Each stimulus had a different duration,
such as 5 or 30 s. The two learning tasks lasted for
5 min.

In the concept-sorting tests, as shown in Figure 3B, first,
we introduced the research purpose, operation procedure, and
precautions to the subjects. Second, they read the scenario
to comprehend the objects, parameters, and constraints of
the current design task. Finally, they finished 30 concept
classification trials independently and submitted all the results
in the formal experiment. According to the discernibility of
their cognitive structure, the subjects selected the concepts
solving current design problems. Therefore, those concepts
were divided into two categories, “related to design intention”
and “unrelated to design intention.” The human-computer
interaction system recorded a timestamp in the background
(synchronously marking the fNIRS data) then took a 10 s
break. The three concept-sorting tests lasted for about
25 min.

Experimental Data Acquisition and
Processing
A multichannel fNIRS device measured the blood oxygen
level-dependent (BOLD). After the data pre-processing, the
FC was calculated using the wavelet transform (wavelet
amplitude and phase coherence). Pearson correlation analysis
sustained the relevance between transfer performance and
functional connectivity.

Data Acquisition
The experiment of knowledge transfer was conducted in
an enclosed and quiet laboratory environment, as shown
in Figure 4A. A Shimadzu LIGHTNIRS device (Shimadzu
Corporation, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto
604-8511, Japan) was used to detect 1HbO and 1HbR
concentrations in the PFC at the sampling rate of 13.33 Hz.
The three wavelengths of near-infrared light were 780, 805,
and 830 nm. The 22 channels (CHs) comprised 8 × 2 optode
probes (8 emitters and 8 detectors), which covered the PFC.
The exact positions of the optode emitters and detectors are
shown in Figure 4B, following the standard international 10/20
system. A three-dimensional (3D) digitizer determined the
spatial registration of the fNIRS channels on the MNI space.
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FIGURE 4 | Experimental environment and channel layout. (A) The experimental situation of subjects; (B) configuration of optode emitters (red), detectors (blue), and

channels (yellow).

TABLE 1 | ROI-channel mapping.

# Brain regions CHs

10 FOA (frontopolar area) L: CH02, CH03, CH04, CH10, CH11

R: CH04, CH05, CH06, CH12, CH13

11 OFA (orbitofrontal area) L: CH18, CH19

R: CH19, CH20

45 PTBA (pars triangularis Broca’s area) L: CH08

R: CH15

46 DLPFC (dorsolateral prefrontal cortex) L: CH01, CH09, CH17

R: CH07, CH14, CH21

47 IPFG (inferior prefrontal gyrus) L: CH16

R: CH22

(Shimadzu Corporation, Nishinokyo Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan)

The brain regions covered by fNIRS are shown in Table 1, also
the regions of interest (ROIs) in this experiment.

Data Pre-processing
The pre-processing of the cerebral oxygen signal will eliminate
outliers and increase the signal-to-noise ratio so that the overall
filtered signal is convenient for subsequent calculation and
analysis. First, like all experimental instruments or equipment,
the fNIRS equipment chose in this experiment (Shimadzu
LIGHTNIRS) also has high-frequency noise during data
acquisition, such as system noise and ambient light interference.
Second, the subject’s head movement and other reasons will
bring low-frequency noise to the signal. Hence signal pre-
processing also aims to detrend drift noise and movement

artifacts, and the filtered signal can be used as the actual fNIRS
signal. In this study, the raw data acquired by fNIRS was pre-
processed through the NIRS_SPM toolbox of MATLAB R2013b,
which included:

(1) registration of MNI coordinates;
(2) construction of the design matrix based on General

Linear Model (GLM);
(3) low-pass filter based on hemodynamic response function

(HRF) with time derivative;
(4) high-pass filter based on Discrete Cosine Transform (DCT)

detrending algorithm.

Afterward, SPSS 22.0 software supports statistical analysis and
hypothesis tests to behavioral and pre-processed data.

Frequency Intervals of Blood Oxygen
Signal
The different frequency intervals of blood oscillation signify
different physiological connotations, specifically in the frequency
intervals (0.0095–2.0Hz). To extract the target signals from the
filtered fNIRS signals, the spontaneous blood oscillation signal
was divided into six frequency intervals (Shiogai et al., 2010): I,
0.6–2Hz, cardiac activity; II, 0.145–0.6Hz, respiration; III, 0.052–
0.145Hz, myogenic activity; IV, 0.021–0.052Hz, neurogenic
activity; V, 0.0095–0.021Hz, endothelial metabolic activity; and
VI, 0.0005–0.0095Hz, endothelial activity.

In this study, the inherent frequency of the neurogenic
activity of the PFC in the resting state was 0.021–0.052Hz;
on the other hand, the stimulus frequency of the experiment
was about 0.014–0.085Hz for the learning phase and 0.011–
0.056Hz for the testing phase. Combining the frequency
of the neurogenic activity and stimulus exhibition, we
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focused on the 0.01–0.1Hz frequency intervals correlated
to the functional connectivity of knowledge transfer while
engineering problem-solving.

Functional Connectivity
Functional connectivity refers to the dynamic synchronization
of neural signals, revealing synergies among different brain
regions. Since the functional brain network is dynamically
altering, functional connectivity requires time-frequency signal
processing methods. In previous studies, WPCO has been
extensively used for interactive FC analysis, elaborating the
phase correlation between the two blood oxygen signals (Bu
et al., 2018b). The WPCO can appraise neural activation in
different regions that are independent of amplitude. This study
adoptedWPCO to calculate the phase synchronization value. The
calculation process of wavelet amplitude and phase coherence are
briefly described below.

Wavelet Amplitude
Previous studies reported the wavelet transformmethod in detail,
transforming non-stationary blood oxygen signals from the time
domain to the time-frequency domain (Bandrivskyy et al., 2004).
It allows time-varying signals to decompose amplitude and phase
with the time-frequency cardinal (Arun et al., 2020). For a
discrete signal x (ωk, tn) at a certain frequency ωk ∈ {I,VI} and a
certain moment tn ∈ (0, T) from different channels measured
by fNIRS, we can get its complex spectral function through
wavelet transform.

Many types of wavelet basis functions are available, such as
the Haar, Daubechies, Gaussian, Meyer, Mexican Hat, Morlet,
Coiflet, Symlet, and Biorthogonal. There is no golden standard
to determine which wavelet function will be appropriate for
a specific task. In actuality, the type of wavelet is determined
according to the characteristics of the collected signals. In this
study, the Morlet wavelet we selected in this experiment, mainly
referring to related studies (Bu et al., 2018b; Mahadevan et al.,
2021). Following the related studies, the non-orthogonal basis
function we chose in this experiment is the complex Morlet
wavelet to decompose the fNIRS signal to calculate the WPCO.
Investigating the existing research, we also used the Morlet
wavelet in the data processing. The bandwidth of 2 and center
frequency of 0.5 used in this study are the empirical values
obtained through the debugging of the MATLAB program (The
MathWorks, Inc., Natick, Massachusetts, USA). As a result, the
data processing using Morlet achieves a positive effect and meets
the needs of the fNIRS signal decomposition in this study.

The wavelet coefficients are complex in the
time-frequency domain.

x (ωk, tn) = |Xk| e
iφk,n = ak,n + ibk,n (1)

The wavelet phrase φk,n is defined as

φk,n = arctan

(

bk,n

ak,n

)

(2)

The wavelet amplitude |xk| at ωk averaged in the time domain for
the whole time series is defined as

|xk| =
1

T

T
∑

n=0

√

a2
k,n + b2

k,n (3)

After wavelet transform, we obtained the amplitude-
frequency correlation.

Wavelet Phase Coherence
The amplitude-independent WPCO is assessed in this section
(Lees et al., 2021). For the two discrete signals from two different
fNIRS channels, wavelet-transformed to the time series xi (ωk, tn)
and xj (ωk, tn), one gets two corresponding instantaneous
phases φi (ωk, tn) and φj (ωk, tn) in Equation 2. Then, the
relative phase difference 1φk,n = φj (ωk, tn) − φi (ωk, tn)
can be computed. Subsequently, the trigonometric coefficients
cos1φk,n and sin1φk,n are averaged in the time domain for
the whole time series. Finally, the time-averaged WPCO was
defined as

WPCO (ωk) =

√

√

√

√

√

(

1

T

T
∑

n=0

cos1φk,n

)2

+

(

1

T

T
∑

n=0

sin1φk,n

)2

(4)

0≤ WPCO (ωk) ≤1.WPCO (ωk) can assess the strength of phase
coherence between two signals in different brain regions. If the
coherence coefficient is close to zero, then, the two regions are
uncorrelated. WPCO (ωk) = 1 would correspond to complete
coherence between the two regions.

However, WPCO (ωk) does not accurately indicate the
synchronization of the two signals since it is easily disturbed
by frequency. Concretely, in a signal with finite length, the low-
frequency component can be represented by fewer periods than
the high-frequency component (Antzoulatos and Miller, 2014).
Hence, the phase difference of the signal has a minor variation at

FIGURE 5 | Wavelet phase coherence. Original (red) and Alternative (blue)

signals, subject #12, channel #01, channel #02.
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low frequency, which artificially increases the phase coherence
of the low-frequency component. Therefore, the coefficient of
the phase coherence increases monotonically as the frequency
decreases, even though the two signals are entirely asynchronous
(Marusak et al., 2017).

To ensure the consistency between the WPCO and the
synchronization of two signals, the amplitude adjusted Fourier-
transform (AAFT) method was used to produce alternative
signals to verify the coherence coefficients values (Tóth et al.,
2017). Specifically, 100 alternative signals were generated from
the original signal by the AAFT transform. Suppose the WPCO
of the original signal is higher than the sum of themean and twice
the SD of the WPCO of the alternative signals. In that case, it
indicates significant coherence between the two channels of the
original signal, and the value of its WPCO is valid. valid (ωk) is
defined as

valid (ωk) = WPCOorigin (ωk) −
(

1

100

100
∑

m=1

WPCOAAFT
m (ωk) + 2 ∗ td

(

WPCOAAFT
m (ωk)

)

)

> 0,

(5)

whenever ωk ∈
(

0, fI∼VI,
)

. The coherence curves (original and
alternative signals) from one subject are shown in Figure 5.
Therefore, the whole calculating procedure of the FC is as
follows: (1) wavelet transforming the signals of each channel; (2)
calculating theWPCO (ωk) between the two channels separately;
(3) generating alternative signals using the AAFT method, and
checking the valid (ωk) of WPCO in Equation (5).

Functional Brain Network Analysis
As mentioned above, we obtained the valid coefficients of WPCO
between the two channels. If valid (ωk) > 0, the WPCO of
the brain regions is the mean of the WPCO of the related
channels. Contrarily, if valid (ωk) ≤ 0, the WPCO of the brain
regions is 0. The heatmaps of wavelet phase coherence and
functional brain network of brain regions (subject #12) are shown
in Figure 6.

In Figures 6A,B, not all WPCO between the two channels are
valid due to the missing connectivity. The heatmaps show that
the FC is sparse. Through the ROI-Channel mapping shown in
Table 1, we can average the WPCO values of the channels on the
same region and then obtain the brain network in Figures 6C,D.
The map of the functional brain network intuitively shows the
dynamic synchronization of neural signals and reveals synergy
between brain regions.

RESULTS

The five functional regions are divided into 10 ROIs in the
left and right brain. As shown in Figure 7, the functional
brain network consists of mean WPCO over all subjects.
The wavelet amplitude between brain regions averaging

over all subjects is shown in Figure 8. The significant
activation of connectivities between these ROIs is shown
in Figure 9.

Different Distances of Knowledge Transfer
According to the distance of knowledge transfer in M-WCST,
we analyzed the wavelet amplitude and WPCO of blood
oxygen signals in the near-transferred TP and far-transferred
TP. For all subjects, the functional brain network of near
transfer is shown in Figure 7A, and the brain functional
network of far transfer is shown in Figure 7B. A paired sample
t-test was used to contrast the near-transferred TP group
with far-transferred TP group. The significant differences in
wavelet amplitude under different transfer distances are shown
in Figure 8A. The results of the WPCO between the two
brain regions under different transfer distances are shown in
Figure 9A.

Comparing the near-transferred and far-transferred groups,
we found significant difference in the wavelet amplitude of
LDLPFC (t = 5.713, p = 0.0243 < 0.05, df = 30) under
different transfer distances. It indicates that far transfer distances
decreased the activation of the partial brain regions.

Comparing the WPCO of the two groups above, we found
that LOFA-ROFA (t = 1.920, p = 0.0398 < 0.05, df = 30),
LIPFG-RDLPFC (t = 1.991, p = 0.0285 < 0.05, df = 30),
and RFOA-RDLPFC (t = 2.726, p = 0.0472 < 0.05, df =

30) were significantly different. It indicated that the transfer
distance impacted the elaboration of the brain network in
the PFC.

Notably, the DLPFC had significant activation under both
near and far knowledge transfer. Cognitive results also illustrated
a similar neurophysiological mechanism in both near and far
transfer when the engineers were solving design problems
since their activated brain regions partially overlap in different
transfer distances.

Different Prior Cognitive Level
According to the cognitive level in the prior TP of M-WCST, the
subjects were divided into the high cognitive level (top 27%, nine
people) and low cognitive level (bottom 27%, nine people). We
analyzed the wavelet amplitude and WPCO in the two groups.
For all the subjects, the functional brain network in the high-
level group is shown in Figure 7C, and the functional brain
network in the low-level group is shown in Figure 7D. The
relationship between the two groups was analyzed by a paired
samples t-test. The significant differences in wavelet amplitude
under different prior cognitive levels are shown in Figure 8B.
Moreover, the statistical results of the WPCO between the two
brain regions under different prior cognitive levels are shown in
Figure 9B.

Comparison between the high-level and low-level
groups showed a significant difference in the wavelet
amplitudes of ROFA (t = 6.141, p = 0.0421 < 0.05, df
= 8) under different prior cognitive levels. It indicated
that the two groups with different prior cognitive levels
had different activation in brain areas. While facing some
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FIGURE 6 | Heatmaps of wavelet phase coherence and functional brain network of ROIs (subject #12). (A) Heatmaps of WPCO between channels; (B) heatmaps of

WPCO between ROIs; (C) map of the functional brain network between channels; (D) map of the functional brain network between ROIs.

complicated problems in the concept-sorting test, the
subjects with a high cognitive level could utilize more
brain regions to learn knowledge than those with weak
basic skills.

Comparing the WPCO of the two groups above, we
found that RFOA-LOFA (t = 2.334, p = 0.0198 < 0.05, df
= 8), LFOA-LOFA (t = 1.092, p = 0.0189 < 0.05, df

= 8), LFOA-LDLPFC (t = 2.559, p = 0.031 < 0.05,
df = 8) were significantly different. The statistical results
showed that the WPCO of the functional connectivity was
significantly different depending on the prior cognitive level. It
indicated that subjects with high prior cognitive levels usually
hold complex brain networks in the PFC while engineering
problem-solving.
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FIGURE 7 | Maps of the functional brain network between brain regions averaging over all subjects. (A) Near-transferred group; (B) far-transferred group; (C) low prior

cognitive level group in far transfer; (D) high prior cognitive level group in far transfer.

Pearson Correlation Analysis Between the
Performance of Knowledge Transfer and
Functional Connectivity
To verify the effectiveness of FC and explore the neurocognitive
underpinnings of knowledge transfer, the Pearson correlation
coefficient analyzed the associations among wavelet
amplitude, WPCO, and transfer performance. As shown in
Figure 10, the scatter diagram only draws the significantly
activated brain areas or connections to prevent the
confusing exhibition.

The transfer performance and wavelet amplitude of LOFA

(r = 0.545, p = 0.002 < 0.01) and LPTBA (r = 0.377,

p = 0.036 < 0.05) showed significant positive correlation.
Moreover, significant positive correlation was observed in the
performance and WPCO of LIPFG-RIPFG (r = 0.623, p =

0.006 < 0.01), LPTBA-RIPFG (r = 0.542, p = 0.017 <

0.05), and LFOA-LIPFG (r = 0.564, p = 0.008 < 0.01).
Correlation analysis also revealed that the performance was
significantly negatively correlated with the WPCO of LFOA-

RPTBA (r = −0.564, p = 0.018 < 0.05) and RFOA-LDLPFC

(r = −0.369, p = 0.041 < 0.05). These statistical results
certified that the procedure of knowledge transfer for engineering
problem-solving involves the activation and inhibition of partial
brain interconnectedness.
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FIGURE 8 | Box diagram of significant differences in wavelet amplitude. (A) At different knowledge transfer distances; (B) at different prior cognitive levels. ***Sig. <

0.001; **Sig. < 0.01; *Sig. < 0.05.

FIGURE 9 | Box diagram of significant differences in wavelet amplitude. (A) At different knowledge transfer distances; (B) at different prior cognitive levels. ***Sig. <

0.001; **Sig. < 0.01; *Sig. < 0.05.

DISCUSSION

This section interprets the results of the wavelet amplitude and
WPCO of FC in the M-WCST experiment while engineering

problem-solving (near transfer and far transfer). We discuss
whether the functional brain network is an efficacious and
trustworthy evaluation tool to study the neurocognitive
underpinnings of knowledge transfer.
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FIGURE 10 | Scatter diagram of Pearson correlation analysis between transfer performance and functional connectivity. (A) Wavelet amplitude; (B) wavelet phase

coherence.

Effects of Transfer Distance on Functional
Connectivity While Engineering
Problem-Solving
Different Distances of Knowledge Transfer section shows that the
wavelet amplitude and WPCO of FC are significantly different
with the altering transfer distance. Therefore, the hypothesisH1a

and H1b cannot be rejected, i.e., FC is significantly different due
to different knowledge transfer distances.

Transfer distance disturbs the process of information
extraction and the attention time to the effective stimulus
materials of subjects, thereby affecting the brain functional
connectivity (Maksimenko et al., 2019). In near-transferred TP,
the current learning contents are highly similar to those in prior
TP. Hence, the engineers absorbed less new knowledge, drooping
the brain activation of ROI (wavelet amplitude) and increasing
the complexity of the functional brain network (wavelet phase
coherence). With the growing distance of knowledge transfer
in far-transferred TP, there is a big gap between their current
learning contents and basic skills. With the new knowledge
increasing significantly, the activation of brain regions ascends,
and the FC becomes intricate (Cartwright et al., 2020). It indicates
that there is a significant positive correlation between transfer
distance and FC.

Many previous studies substantiated that the functional brain
network was a reliable method to assess neurocognitive results
(Marusak et al., 2017; Lees et al., 2021). The β value of
statistical parametric mapping (SPM) in related works was used
to represent the cognitive load of knowledge transfer while
engineering problem-solving (Wang et al., 2021). Those results
indicated that a higher cognitive load means a higher significant
activation of brain regions (Thees et al., 2020). The results of
the wavelet amplitude in this study are consistent with the
previous research. Therefore, wavelet amplitude may evaluate the
cognitive load of knowledge transfer.

We analyzed the functional brain network of knowledge
transfer from the perspective of knowledge networks in different

TPs. Different distances of knowledge transfer denoted different
TPs, which may activate the different default spontaneous
activities and connectivity patterns of the brain network (Dai
et al., 2015; Tóth et al., 2017; Shine, 2021). As a standard TP
to mechanical design engineers, we know that the knowledge
structure of the prior TP (cylindrical speed-reducer gearbox)
and near-transferred TP (planetary speed-increaser gearbox)
is remarkably similar. The assimilating concepts are called
“knowledge transfer points” (Cartwright et al., 2020). Related
works on the N-Back task showed that working memory
significantly affected the near transfer effect mode of knowledge,
which was superimposed by cognitive structures and learning
strategies (Soveri et al., 2017). Due to the considerable tolerance
to the prior TP, engineers can easily remold the initial knowledge
structure and transfer it from a cylindrical speed-reducer gearbox
to the new knowledge framework of reducer design. However,
it is relatively complex for engineers to transfer the design
knowledge from gear transmission to the hydraulic drive device
for an involute gear pump. Therefore, compared with the near
transfer, engineers need more brain interconnectedness to solve
complex engineering problems, thus the corresponding brain
network is complicated.

Effects of Prior Cognitive Level on
Functional Connectivity While Engineering
Problem-Solving
From the experimental results in Different Prior Cognitive
Level section, it can be seen that when the subjects have
different knowledge reserves, the wavelet amplitude and WPCO
of functional connectivity show significant differences. The
hypotheses H2a and H2b cannot be rejected, i.e., the brain
network is significantly different due to the different prior
cognitive levels while engineering problem-solving.

Engineers with high prior cognitive levels hold more
knowledge reserves and exploited more knowledge they have
memorized. Thus, the wavelet amplitude increases significantly
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due to the activation of brain regions (Arun et al., 2020).
Oppositely, engineers with low prior cognitive levels hold sketchy
knowledge reserves (Hochberger et al., 2018). They cannot
accurately mobilize prior knowledge to solve the engineering
problems in the new design situation. Few brain regions
participate in knowledge transfer and design activities, and the
neural activation of brain regions descends.

The theory of cognitive structure held that learning a new
paradigm is underlying the prior cognitive structure (Ausubel
et al., 1968). An integrated cognitive structure (prior cognitive
level) can effectively facilitate knowledge transfer. Therefore,
we generally perceive that engineers with high prior cognitive
levels own high stability, availability, and discriminability of
cognitive structure. The intact cognitive structure improved
their knowledge reserve of engineers. A previous fNIRS study
showed that the brain synchronization of the PFC was greatly
affected by the cognitive level in subjects with mild cognitive
impairment (Udina et al., 2020). The cognitive level caused
the interaction from the myogenic activity of smooth muscle
and sympathetic/parasympathetic nervous systems, furthermore
resulting in the decreasing coordination and synchronization of
functional connectivity (Marusak et al., 2017).

Moreover, self-directed learning willingness is also a
cognitive factor affecting knowledge transfer through behavioral
measurement in psychology and management (Li et al., 2019).
Engineers with high prior cognitive levels usually retain learning
initiative and creativity. It is possible to construct new knowledge
networks and switch suitable learning methods in the brain
simultaneously. The complexity of their FC is significantly
higher than those subjects with lower prior cognitive levels.

Assessing the Effectiveness of Functional
Connectivity in Knowledge Transfer
Related works corroborated that transfer distance and prior
cognitive level significantly impact transfer performance using
behavioral measurement (Li et al., 2019; Wang et al., 2021). In
this study, the FC method based on fNIRS also confirmed the
above views. Whether the statistical results of FC are significantly
consistent with the results of behavioral measurement, this
matter determines the effectiveness of the our proposal.
According to the Pearson correlation analysis in Pearson
Correlation Analysis Between the Performance of Knowledge
Transfer and Functional Connectivity section, along with the
increase of the knowledge transfer performance, the neural
activity of LOFA and LPTBA also increases significantly. It
indicates that the wavelet amplitude of FC is consistent with the
behavioral measurement.

Meanwhile, the WPCO of LIPFG-PIPFG, LPTBA-RIPFG,
LFOA-LIPFG were positively correlated with transfer
performance. It shows that the multiple brain regions of
the engineers cooperate to achieve knowledge transfer and
design decisions. It is noteworthy that the connections in
functional brain networks are not all beneficial to engineering
design during engineering problem-solving. There are some
connectivities, LFOA-RPTBA and RFOA-LDLPFC, whose
WPCO are negatively correlated with transfer performance.

Wrong association learning, incorrect analogy learning, set
patterns of thinking, and distraction can produce this negative
correlation, which will decrease the performance of knowledge
transfer and the quality of the final design task (Macpherson and
Stanovich, 2007). Therefore, the WPCO of FC is also consistent
with the behavioral measurement.

The analysis above denotes that hypotheses H3a and H3b

cannot be rejected. The results testify that brain FC is an
effective method to evaluate the neurocognitive underpinnings of
knowledge transfer. These two indicators are wavelet amplitude
and WPCO. Note that only some brain regions and connections
are significantly correlated with transfer performance, as shown
in Figure 10, and the others are involved in knowledge transfer is
unknown. Furthermore, complex cognitive processing is usually
affected by the task situation, called context-dependent. Brain
regions and functional connectivity in cognitive processing
may be inconsistent in different situations, such as engineering
design and art design (Vieira et al., 2020). Therefore, the FC of
knowledge transfer in different design contexts can be further
explored in future studies.

About the Dorsolateral Prefrontal Cortex
(DLPFC)
The experimental results of the wavelet amplitude, WPCO,
and network complexity were analyzed. It was seen that
LDLPFC and RDLPFC show different levels of activation and
network connectivity, affected by either transfer distance or
prior cognitive level, especially RDLPFC. Three main reasons are
as follows:

• The M-WCST is more sensitive in detecting the prefrontal
cortex, especially the DLPFC (Ni et al., 2017). The PFC is
concerned in this study, and the concept-sorting tasks meet
our requirements. The results also verify DLPFC is a crucial
cortex in the functional connectivity of knowledge transfer.

• The DLPFC is associated with some brain functions, such
as working memory, learning, decision, attention, and
motivation (Boschin et al., 2017; Nakamura et al., 2020). An
fMRI study showed that the changes in working memory tests
were responsible for the different activation of the left and
right PFC (Bomyea et al., 2018; Barbosa et al., 2020). In this
study, the design situations of gearbox and gear pump involve
these brain functions, which become necessary conditions for
triggering the activation of DLPFC. The strong activation and
functional connectivity in RDLPFC may be related to the
distinctive functions of the right brain, such as intuition, space,
and imagination (Tozzi et al., 2021).

About the Orbitofrontal Area (OFA)
According to the above analysis, we can find that OFA plays an
essential role in knowledge transfer while engineering problem-
solving. It may be related to the distinctive functions of OFA, such
as behavior decision, behavior control, behavior inhibition (Rolls,
2019).

• Behavior decision: Modality-independent decision-making is
underlying the accumulation of sensory evidence and the
duration of stimuli, mastermind by the frontal lobe network
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(de Winkel et al., 2017; Ma et al., 2021). In the learning task
of knowledge transfer, the subjects decided on the beneficial
contents frommany stimulus materials. In the concept-sorting
test, the subjects divided the concepts into two categories:
“related-intention” and “unrelated-intention.”

• Behavior inhibitory control: A combined EEG-fNIRS study
elaborated that the effect of fitness on inhibitory control
was mediated by conflict monitoring. Additionally, the
brain circuitry of inhibitory control sometimes improve
concentration and gain higher rewards (Becker et al., 2017;
Ludyga et al., 2019). The subjects avoided their unnecessary
body movements to promote their concentration on the
learning task. In the concept-sorting test, the subjects read the
task situation according to the guidance text of the screen,
and they need to inhibit irrelevant content and set patterns of
thinking. In the formal test period, the subjects operated the
mouse to classify concepts and exclude interference options.

Limitations
First, due to the narrow scope of the investigation, the recruited
subjects in this researchwere college students and young scholars.
The sampling bias may impact the conclusions regarding
knowledge transfer, and a future study will be carried out in
the actual industrial situation. However, the difficulties of the
design tasks in this study are entry-level. College students and
young scholars have enough knowledge reserves to finish the
experiment. Hence the sampling bias is within an acceptable
range. Second, the learning willingness of the subjects affects
the brain function connection. We did not discuss the specific
correlation between the brain function networks and the six
facets (efficiency, emotion, motivation, initiative, individuality,
and creativity) of the self-directed learning readiness scale
(SDLRS) (Hoban et al., 2005). Third, due to the physiological
noise in fNIRS, Mayer waves may disturb the statistical results
of the functional connectivity (Izzetoglu and Holtzer, 2020). To
avoid the obstacle of single equipment on neurophysiological
data acquisition, we will develop multimodal experiments with
EEG-fNIRS to further explore the brain functional network of
knowledge transfer.

CONCLUSION

In this study, the neurocognitive mechanism of knowledge
transfer while engineering problem-solving was evaluated by the
functional connectivity. The results from 31 subjects showed that
transfer distance, prior cognitive level, and transfer performance
impacted the wavelet amplitude and WPCO. Concretely,

the transfer distance and prior cognitive level significantly
positively correlated to FC. Afterward, a significant correlation
was observed between transfer performance and functional
connectivity by a Pearson correlation analysis. Therefore, FC is
an available method to assess the neurophysiological substrates
of knowledge transfer. The DLPFC and OFA made many
contributions to knowledge transfer while engineering problem-
solving, owed to the specific brain functions or features of
M-WCST. Statistical results demonstrated that the knowledge
transfer procedure involves both the activation and inhibition of
brain interconnectedness.
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