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Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs

of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover,

based on the clinical signs and symptoms and the rise of the obesity epidemic, the

number of patients developing HFpEF is increasing. From recent molecular and cellular

studies, it becomes evident that HFpEF is not a single and homogenous disease but a

cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity

superimposed on aging drives the number of inflammatory pathways that intersect with

metabolic dysfunction and suboptimal inflammation. Here, we compiled information

on obesity-directed macrophage dysfunction that coincide with metabolic defects.

Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation

in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of

studying pervasive and unresolved inflammation in animal models to understand HFpEF.

A broad and system-based approach will help to study major translational aspects of

HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages

in the clinical setting. Here, we covered experimental models that target HFpEF and

emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime

sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to

the development of spontaneous obesity, impaired macrophage function, and triggered

kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging

experimental model.
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EVOLUTION OF MULTIDIMENSIONAL METABOLIC HEART
FAILURE WITHIN THE OBESITY EPIDEMIC

Obesity serves as an incubator for many cardiometabolic and cardiorenal defects. Hypertension,
insulin resistance, diabetes, and dysplasia are major metabolic diseases that are strongly linked
to obesity. The prevalence of metabolic defects is exponentially rising parallel to the trend of
obesity epidemic (1). Epidemiological reports indicate the development of metabolic syndrome
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that is documented based on body mass with fat localization in
intra-abdominal sites, including ectopic fat in the liver, pancreas,
and heart (2).

In this minireview, first, we highlight inflammation-mediated
pathogenesis in the emerging heart failure with preserved
ejection fraction (HFpEF) syndrome. Second, we cover the
concept of non-resolving and multiorgan chronic inflammation
with an updated list of experimental animal models of
HFpEF syndrome.

In the last five decades, epidemiological and systemic
research helped in clarifying that obesity is closely associated
with multiple changes in the structure and function of
the heart of obese individuals. Clinicians and scientists
described HF as a pathological remodeling of left ventricle
(LV) cardiomyocytes. This remodeling is a result of heart
adaptation to blood hemodynamics along with the increase
in fat mass accumulation. With the advances in ultrasound
and magnetic resonance imaging techniques, a clear evolution
of LV shape remodeling was observed ranging from one-
dimensional view to multidimensional subtypes of HF
with specific nomenclature that reflects the corresponding
remodeling (Figure 1). Furthermore, in extreme obesity, the
main contributors of end-stage HF are dysfunction of the
right ventricle as well as prominent diastolic dysfunction
with LV stiffness, lung edema, and low-grade and suboptimal
systemic inflammation.

From the one-dimensional perspective, HF is classified into
three types based on geometry metamorphosis of the LV: (1)
atrophy of the heart (contractile dysfunction), (2) concentric
hypertrophy of the LV (thick wall), and (3) eccentric hypertrophy
of the LV (thin wall) or ischemia-induced wall thinning.
However, some rare cases of cardiac angiosarcoma can also lead
to HF (3, 4). This report emphasizes the evolution of HFpEF
syndrome due to possible obesity-directed metabolic defects and
multiorgan inflammation.

Atrophy of the Heart
Atrophy of the aging heart is a consequence of sarcopenic heart
remodeling following muscle wasting. In the elderly, the size
of a tissue or organ decreases due to cellular shrinkage (5).
The prevalence of sarcopenia in chronic HF patients amounts
to up to 20% and may progress into cardiac cachexia. Muscle
wasting is a strong predictor of frailty and reduced survival in
HF patients (6). Basically, heart atrophy can lead to reduced
cardiac workload; however, complex inflammatory disease can
result also in heart atrophy (7). Cardiac dysfunction is the
outcome of the molecular changes resulting from cardiac atrophy
and fibrosis (8). Molecular and cellular signaling pathways that
underlie heart atrophy are not fully understood. However, some
putativemechanisms for cardiac atrophy were observed in cancer
patients (9). In some cases, atrophy of the heart can also
be observed as a consequence of oncological drug treatments.
Experimental and clinical studies showed that anthracycline
chemotherapeutics, such as doxorubicin, induced heart atrophy
in patients and mice (10). Mice treated with doxorubicin
developed myocardial fibrosis, displayed splenic contraction,
increased myocyte apoptosis, and impaired pumping of the heart

(11). This latter has been connected to the release of myostatin
by the atrophic heart muscle, which induces muscle wasting in
HF (12).

Cardiac atrophy can occur not only in pathological conditions
(13) but also after prolonged horizontal bed rest that may occur
after short-term space flights, due to a decrease in unload volume
to less activity or to the impact of microgravity in astronauts
(14). Recent clinical studies are trying to better understand the
paradigm of how the heart shrinks, to become atrophic, but
increases its strength as observed with exercise (15).

Hypertrophy of the Heart
Enlargement of the left ventricle (LV) is an adaptive process
that evolves into maladaptive remodeling, which has long been
recognized as one of the prime dysfunction mechanisms leading
to HF. The heart is an extremely plastic organ and changes its
geometry to compensate for either pressure or volume overload,
normally resulting from exercise or obesity-related mechanical
impact. This compensation has often been viewed as a feedback
loop (16). Concentric hypertrophy, which develops in pressure
overload, normalizes wall stress. However, eccentric hypertrophy
that develops in volume overload as a result of ischemic insult
allows for an increase in total stroke volume leading to defective
physiological regulation (17). Therefore, ejection fraction (EF)
as a measurement of the heart capability of pushing out the
blood to the organs has emerged as a clinically useful phenotypic
marker, indicative of unique pathophysiological mechanisms
(18) and, most importantly, as tangible response to therapies
(19). As selection and classification criteria, patients with EF
≤40% are classified as HF with reduced EF; however, when
EF is ≥50%, patients are diagnosed with preserved EF (20,
21). In simplified terms, there is no “single” straightforward
clear cause or trigger of HF in patients. Several cellular and
molecular pathways have been observed as direct or indirect
consequence of the development or/and aggravation of the
disease depending on the diverse root cause for HF (22). Due
to sedentary lifestyle and lack of physical activity, different signs
of HF are caused by defective fatty acid oxidation signaling
and metabolic syndrome in the setting of obesity. At the
molecular level, most observed changes in signaling pathways in
cardiac hypertrophy relate to the decrease in PI3K–Akt signaling
thereby inhibiting eNOS activation and its downstream signaling,
which is reflected by endothelial dysfunction (23). Another
common observed metabolism disturbance is the increase in
PPARα activity, which simulates a cascade of transcriptional
coactivators, such as peroxisome proliferator-activated receptor-
α coactivator (PGC-1α) and peroxisome proliferator-activated
receptor-β coactivator (PGC-1β), that form active transcriptional
complexes with CREB-binding protein (CBP/p300) and steroid
receptor coactivator 1 (SRC-1) (24, 25). Another cellular and
molecular consequence of excess of fatty acid flux in HF patients
is the increase in free radical production (26).

Heart Failure With Reduced Ejection Fraction

Even though LV geometry is at the center of heart remodeling in
HF, the LV EF is taking over on clinical classification of HFrEF or
HFpEF (27). Both forms of heart pathology are well-established

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 August 2021 | Volume 8 | Article 695952

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tourki and Halade Inflammatory and Metabolic Phenotypes of HFpEF

FIGURE 1 | Evolution of one-dimensional to multidimensional view of cardiovascular disease and heart failure. (A) One-dimensional view of heart failure (HF).

Classically, HF emerges in a homogenous population based on geometry, structure, and function. The progress from being a phenotypically normal to abnormal

structure accompanied with a decrease or increase in the (cardiomyocyte) heart size due to eccentric or concentric remodeling or following ischemic injury with

dilation of the chambers and wall-thinning effect. HF specifically with preserved ejection fraction evolves from one-dimensional view to multidimensional view. (B)

Metabolic defects directed the multidimensional view of heart failure with preserved ejection fraction (HFpEF). Heterogeneous metabolic comorbidities are a primary

confounder in HFpEF patients like obesity, hypertension, kidney dysfunction, diabetes, aging, etc. The complexity of the HFpEF syndrome resulted in cardiometabolic

and cardiorenal defects with signs of suboptimal inflammation without any current treatment.

and explained in previous reviews. Multiple original reports
described the morphologic and the hemodynamic differences
in animal models (28, 29) and clinical settings (17, 30, 31).
The etiology of HFrEF is associated mostly with idiopathic
dilated cardiomyopathy (DCM) and ischemic insult, resulting
in systolic dysfunction of the heart (32). However, diastolic
dysfunction is linked to HFpEF pathology (33). Commonly,
HFrEF is a result of ischemic insult due to myocardial infarction
(MI) caused by artery occlusion with signs of plaque formation.
The plaque formation is an accumulation of lipid, especially
cholesterol, infiltration of monocyte/macrophages, proliferation
of smooth muscle cells, and accumulation of connective tissue
components, thereby, forming a thrombus. This phenomena of
atherogenesis depict a complicated stage of atheroprogression in
the presence of inflammatory milieu as reported in obesity (34).
After thrombosis, NO release is impaired, or there is a decrease in
NO-(cGMP) signaling bioavailability to the cardiomyocytes. The
decrease in NO is believed to be ultimately related to low-grade
systemic inflammation and reduced cardiac perfusion (35–37).
Despite the progress in the treatment of HFrEF (38), the initial
point that leads to the development and progression of HFrEF is
still convoluted, and more information is needed to understand
the genesis of the disease (39, 40). From a metabolic point of
view, abnormalities in myocardial energy metabolism in HFrEF
have been reported but remain unclear due to the large number
of metabolites/lipid mediators that control cardiac bioenergetics
(41). At the cellular level, the disruption of electrical activity is
present in both patients and animal models due to abnormalities

in fat quality/quantity intake, sodium, and potassium channels on
the myocardial membrane, which can lead to arrhythmias as well
as cellular calcium dysregulation and altered calcium kinetics,
thereby, leading to pathological heart contraction (42–45).

Heart Failure With Preserved Ejection Fraction

Technically, if the EF is preserved, evidence of altered
cardiac structure and function should be sought to provide
further objective evidence toward HF syndrome. At the
functional level, Doppler echocardiographic evidence of diastolic
dysfunction is appearing as a digital biopsy. This is reflected in
echocardiography by slow ventricular relaxation and increased
diastolic stiffness or elevated left atrial pressure, which is common
in HFpEF (27) with multiple cardiometabolic defects (46);
however, clear targets and their molecular mechanisms remain
to be identified.

In the USA, more than 50% of HF patients have HFpEF with
primary signs of obesity and heterogeneous metabolic syndrome
(hypertension, insulin resistance, diabetes, and hyperlipidemia)
(35, 47). In other words, the progress in the understanding
of HF syndrome is not only based on structure/function of
the heart but also includes heterogeneous arms of lifestyle-
related triggers that promote HFpEF syndrome. As the etiology
of HF syndrome is based on comorbidities and risk factors
like aging, obesity, hypertension, and diabetes, the term
multidimensional approaches needs to be considered in the
development of preclinical HFpEF model and clinical treatment
strategy (Figure 1) (48).
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HEART FAILURE SYNDROME

HFrEF and HFpEF are end-stage disease pathologies with
many confounding and overarching metabolic defects, thus,
termed here as heart failure syndrome rather than disease.
The pathophysiology of HFpEF is multifaceted signatures
and heterogeneous, complex, and progressive. The increasing
prevalence of HFpEF patients with aging and obesity defines
a burden on healthcare systems (49). In the current clinical
practice, HFpEF is reported as single disease abnormalities
with LV diastolic dysfunction, chronotropic incompetence,
and arterial stiffening (35). However, obesity or metabolic
syndrome-driven endothelial dysfunction appeared as strongly
related to HFpEF syndrome with multiorgan inflammation.
Currently, obesity and inflammation are not considered as
an epiphenomenon or prominent comorbidities for HFpEF
but are intimately linked to its pathogenesis with progressive
advancement (Figure 1) (50, 51). To recapitulate multiorgan
etiologies, the development of accurate animal models is critical
for the development of HFpEF targets (Table 1).

Sterile Inflammation Resolution in Cardiac
Repair and Suboptimal Inflammation in
Heart Failure With Preserved Ejection
Fraction
In response to an ischemic event, unresolved inflammation after
cardiac injury is one of the common causal contributors in
HFrEF (60). In the last two decades with high incidence of
metabolic defects, it has been proven that inflammatory markers
and array of cytokines may improve HF risk stratification and
are considered predictors of HFpEF incident (61, 62). To date,
different studies are ongoing to understand the cellular and
molecular mechanisms by which the inflammatory response
ends up in sustained inflammation that triggers unresolved
inflammation leading to HFpEF. Recent preclinical studies in
mice dissect the macrophage’s role in HFpEF therapy and
open up previously unexplored treatment options (63). Post-
MI, macrophage temporal expression during the initiation of
inflammation is a critical determinant of cardiac repair. However,
we must note that progression and resolution of inflammation
are overlapping and active processes aimed to control undesirable
long-term inflammation. These overlapping processes are a
hallmark of macrophage function and characterized by the
production of the specialized proresolving mediator (SPM)
biosynthesis. A recent report suggests that the deletion of
resolution sensor ALX/FPR2 develop age-related obesity and
diastolic dysfunction in mice with HFpEF (Figure 2) (52).
After cardiac injury, ALX/FPR2 null mice induced macrophage
dysfunction thereby lowering SPMs biosynthesis in the infarcted
myocardium with defective activation of leukocytes in the
spleen and heart (28, 52). Thus, macrophages are key in SPM
biosynthesis from one side to resolve inflammation but also
perform as master regulators during inflammation if they are
pre- or overactivated before cardiac injury. Over the years,
the dichotomy of M1/M2 macrophage spectrum is limited
to describe macrophage function and amalgam of these key

TABLE 1 | List of current heart failure with preserved ejection fraction (HFpEF)

animal models with coexistence of metabolic phenotype.

Animal model Phenotype References

FPR2KO X Obesity

X Cardiac dysfunction

X Aging

X Renal dysfunction

X Systemic inflammation

X Immunometabolism dysfunction

Hypertension?

Diabetes?

Mouse (28, 52)

HFD+L-NAME X Obesity

X Hypertensive stress

X Systemic inflammation

X Cardiac dysfunction

X Hypertension

Aging?

Renal dysfunction?

Immunometabolism dysfunction?

Mouse (53)

Ob/ob or db/db X Obesity

X Diabetes phenotype

Aging?

Renal dysfunction?

Systemic inflammation?

Immunometabolism dysfunction?

Mouse (54, 55)

ZF/ZDF X Obesity

X Diabetes phenotype

Cardiac dysfunction?

Renal dysfunction?

Aging?

Systemic inflammation?

Immunometabolism dysfunction?

Rat (56, 57)

SKO X Diabetes phenotype

X Cardiomegaly

X Cardiac dysfunction

Aging?

Obesity?

Hypertension?

Immunometabolism dysfunction?

Mouse (58)

Dahl

salt-sensitive

and ZSF1

models

X Obesity

X Aging

X Hypertension

X Metabolism dysfunction

X Cardiac dysfunction

Systemic inflammation?

Renal dysfunction?

Rat (59)

(v) indicates experimental animal model that recapitulate HFpEF aspects. (?) indicates that

the experimental animal model has not been studied for the indicated aspect. FPR2KO,

formyl peptide receptor 2 knock out; Ob/Ob, obese mouse; db/db, db gene knock out,

responsible for leptin receptor; ZF/ZDF, Zucker fatty/Zucker diabetic fatty; SKO, seipin

knock out; ZSF1, Zucker spontaneously fatty hypertensive heart failure F1 hybrid.

players required for myocardium homeostasis (64). During the
resolution phase, reparative (M2) macrophages secrete high
levels of TGFβ1, which drives the transcription of alpha smooth
muscle actin (α-SMA) in the resident fibroblasts. Hence, it
leads to the stiffness of the heart due to increased fibrosis,
which reduces diastolic relaxation if it is over sustained (65).
The explanation of macrophage dysfunction is described by
many reports as pointing once inflammation is activated; a
crosstalk is initiated between leukocytes, especially macrophage,
and different types of cells such as endothelial and fibroblast cells,
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FIGURE 2 | Resolvin D1 and lipoxin receptor-deficient mice (FPR2/ALXKO) complement the criteria of HFpEF with profound age-associated endothelial dysfunction

and inflammation in the spleen, heart, and kidneys with signs of chronic inflammation. (A) Left panel indicates the heterogeneous, multidimensional, and multiorgan

metabolic defects that contribute to HFpEF. (B) Right panel indicates the dysfunction of the resolution receptor FPR2/ALX in mice that develops spontaneous obesity

with diastolic dysfunction along with limited changes in systolic function when obesity is superimposed on aging as signs of preserved ejection fraction. Suboptimal

inflammation indicated with profound activation of IL1β gene expression in the heart, kidneys, and lungs in FPR2/ALXKO mice exemplifies the age-associated cardiac

strain dysfunction, myocardium dissynchronicity, and amplified inflammation. *p < 0.05 compared to control WT group.

in a paracrine relationship. After cardiac injury, the crosstalk
of activated macrophages and fibroblasts is necessary for ECM
generation and reparative scar formation indicative of safe
clearance of inflammation (66, 67). These findings emphasize the
macrophage role in physiological or pathological inflammation
in the development of HFpEF especially the source of a ripple or
stream effect in the disease pathogenesis depending on the time,
the location, and the milieu.

The other side of HFpEF is systemic inflammation and is an
inherent phenotype in HFpEF patients. In clinical trials, in a
group of patients with HF, it was confirmed that TNFR 2 plasma
levels were significantly associated with the degree of diastolic
dysfunction in patients with HFpEF but not HFrEF (68, 69).
Besides myocardium inflammation, several cell types and tissues
could contribute to systemic inflammation in patients with
chronic HF as leukocytes and tissuemacrophages and endothelial
cells (70). The precise root cause of multiorgan inflammation
is unclear, however, postulated from the intrinsic lifestyle
factors such as imbalanced diet, sleep, and activity. Whether
inflammation is a cause or consequence in the progression of the
disease is still under investigation. Recent reports indicate that
abdominal obesity is associated with an increased risk of all-cause
mortality in patients with HFpEF (93). Aging, hypertension,
diabetes, kidney, and endothelial dysfunction are a cluster of
non-cardiac metabolic risk factors that are causal contributors to

suboptimal inflammation with consequent HFpEF and further
mortality in HFpEF patients (71, 72). Based on these facts, it
is becoming clear that the presence of suboptimal or low-grade
inflammation related to metabolic defects is behind the delay or
worsening the start/progression of resolution of inflammation in
HF. The sensor of resolution of inflammation as FPR2 receptors
and SPMs were partially studied in experimental models of
obesity superimposed on aging or “obesogenic aging.” However,
Toll-like receptor (TLR) pathways have not been studied in
animal models with multiple risk factors. TLRs are one of
the main innate immune receptors that serve as mediators
of sterile inflammatory conditions (73, 74). Activated immune
cells release damage-associatedmolecular patterns (DAMPS) that
activate cardiomyocytes that switch on to TLR4-mediated cardiac
apoptosis (75).

HFrEF patients are prone to pathogen-directed systemic
inflammation like sepsis (76). There are some contradicting
clinical reports suggesting that obesity can prevent mortality rate
in septic patients with chronic heart failure (CHF) (77) with
limited supportive evidence and explanation. The paradigm is
how obesity influences the immune response of septic patients, by
increasing the whole proinflammatory response, but at the same
time improving survival rate (78). One common explanation of
this outcome is that lipid mediators/metabolites act as scavengers
in circulatory blood and bind to endotoxins/leukocyte receptors
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and perform as antagonists (79). Future prospective studies
should quantify adipose tissue at or before sepsis diagnosis to
accurately identify true association between obesity and septic
HF etiology (80). The presence of suboptimal inflammation plays
a pivotal role in the initiation/progression of the disease. From
this perspective, here, we emphasized the evolution of HFpEF
from the concept of one-dimensional to multidimensional view
where suboptimal inflammation serves as the hallmark in HFpEF
progression due to the cluster of metabolic defects.

Immune Metabolism and Macrophage
Dysfunction
Based on the integrative function of leukocytes and metabolism,
we discovered that splenic leukocytes dysregulation due
to obesity or age-related unresolved inflammation is a
primary mechanism of HFpEF in obesogenic aging. Immune
cells, particularly leukocytes, operate for the resolution of
inflammation and tissue repair. Cardiac injury site operates in
the inflammation-resolution program with a supply of necessary
energy nutrients and oxygen demand to accomplish processes
of phagocytosis and microbial killing (81, 82). At the cellular
level, if there is a metabolic defect, the phagocytosis mechanism
would be certainly affected, which is common in obesity
(83), in addition to the fact that changes in nutritional status
impact immune cell metabolism and function due to Treg cells,
which induces a significant shift in immune cell populations
and cytokine production toward a proinflammatory state
(84). Recent data showed that a resolution sensor FPR2/ALX
plays a central role in metabolic homeostasis interaction with
immune metabolism. Intriguingly, FPR2/ALX is essential for
safe clearance of inflammation postcardiac injury (85, 86).
In fact, FPR2/ALX receptor agonists lipoxins and resolvins,
known as specialized proresolving mediators, decreased after
ischemia in resolution receptor-deficient mice. In addition, the
pharmacological inhibition of FPR2/ALX by WRW4 impaired
leukocyte recruitment and elicited non-resolving inflammation
in acute HF by limiting leukocyte mobilization to the injured
site (87). Furthermore, in the absence of ischemic injury,
young and aging mice show signs of metabolic defects after
deletion of the FPR2/ALX receptor (Figure 2). Moreover, the
immune response coordination of the leukocyte reservoir from
the spleen to the heart (splenocardiac axis) was disrupted
in these mice because of macrophage dysfunction (28, 52).
Recent reports indicate that infiltrating macrophages undergo
metabolic re-programming in cardiac repair process to increase
oxidative phosphorylation post-MI (88–90). Increased oxidative
phosphorylation in addition to fatty acid synthesis and oxidation
is a signature of reparative (M2) phenotype (91). In the clinical
setting, HF failure is marked with the presence of unresolved
inflammation after MI with multiple risk factors. This notion
regained interest in the last three decades after the discovery
of the resolution of inflammation concept where elevated
levels of tumor necrosis factor-α (TNF-α) were observed in
HFpEF patients (92). As a therapeutic approach, blockade of the
inflammatory cytokines and chemokines turned out as a negative
outcome in the clinical settings. However, modulating the fate

map of leukocytes, particularly macrophages, representing up
to 50% of all cell types within the hypertrophic obese adipose
tissue of mice and humans, appear to be potentially successful
procedures (93–96). Over the years, there has been a growing
recognition on how initiation, activation, and programming of
the immune cell lead to the on/off of the inflammatory response
in cardiac tissue repair. Since immune cell activation and its
phenotypes are related to the metabolism, studies are focusing
in defining the metabolic plasticity of immune cells after an
injury. Research reflects the complexity of immune-metabolic
signaling, networks, and the cellular and molecular events that
can determine either the return to homeostasis or failure of
the heart. The impact of metabolic disturbance, due to obesity
with defective immune metabolism, misalign the activation
of immune cells by enabling them to access the extracellular
environment. From one side, in obese mice, the fat mass
alters the integrity of the architecture of the immune tissue,
thereby, impacting leukocyte roles postcardiac injury (97, 98).
From another side, emerging evidence shows that activation
of the immune response in the setting of obesity is activated
through free fatty acid (FFA) metabolic signals by different
molecular signaling pathways leading to stimulation of critical
inflammatory signaling cascades (99). In fact, in vivo studies
have shown that increasing plasma FFA levels activate NF-κB in
human skeletal muscle, which leads to an increased expression
of proinflammatory cytokines and elevated circulating levels of
MCP-1 (100). Also, circulating FFAs impair insulin sensitivity
through binding to the plasma membrane receptor Toll-like
receptor 4 (TLR4) in tissues of obese animals, resulting in the
activation of signaling proteins, such as inhibitor of nuclear
factor-κB (IκB) kinase (IKK), c-Jun N-terminal kinase (JNK),
and mitogen-activated protein kinase (MAPK), that negatively
dysregulate the metabolic axis of macrophage polarization
favoring chronic inflammation (101, 102). Overall, physiological
studies strongly support a reciprocal relationship between the
FFAs and respective receptors (FFARs) that helps in regulating
the metabolic–inflammatory axis in HFpEF.

Endothelial Dysfunction in Heart Failure
With Preserved Ejection Fraction
Chronic inflammation is strongly linked to endothelial
dysfunction (103, 104), since inflammatory signals activate
the endothelial cells and fibroblasts resulting in subsequent
concentric cardiac remodeling and dysfunction (105).
Endothelial dysfunction is portrayed as one of the cellular
mechanisms underlying HFpEF syndrome. In fact, the decline
in endothelial NO bioavailability is observed in 90% of patients
with HFpEF along with the decrease in intracellular cGMP
and protein kinase G activity kinases that contribute to LV
filling pressures and triggers the delay of myocardial relaxation
(106, 107). Recent studies observed that the microvascular
endothelial dysfunction is primed essentially by activated
macrophages due to suboptimal inflammation (52, 108, 109).
In obese animal models, targeting CCR2 helps to avoid
accumulation of macrophages in the vascular wall thereby
reducing endothelial dysfunction and oxidative stress (109, 110).
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Moreover, in experimental model of aging, it has been reported
that endothelial senescence and inflammation are associated
through the senescence-associated secretory phenotype. Age-
related inflammation contribute to the development of HFpEF
early stage marked by hemodynamic and structural changes
evolving to a typical HFpEF phenotype (111). Besides aging and
inflammation inducing endothelial dysfunction, the deficiency
of protease-activated receptor 2 (PAR2) is associated with
extracellular matrix remodeling, which might be an alternative
contributor to HFpEF pathophysiology (112). In addition,
emerging explanation for endothelial dysfunction in HFpEF
is the endothelial metabolic reprogramming. Recently, it
has been shown that the impairment of silent mating type
information regulation 2 homolog (SIRT3)-mediated endothelial
cell metabolism may lead to a disruption of communications
between myocyte adjacent cells and coronary microvascular
rarefaction (113). In this context, a model of cardiac metabolic
disorder due to the dysfunction of ALX receptor, essential
for the resolution of inflammation in cardiac repair (114),
shows a pronounced cardiorenal endothelial dysfunction in
the mice along with diastolic dysfunction and preserved EF
(52) (Figure 2). In an age-related study, ALX/FPR2KO mice
decreased protein and gene expressions of eNOS and CD31 in
the heart and kidneys with lower distribution of both endothelial
markers in tissues compared with age-matched controls (28, 52).
In addition, recent findings highlighted an improved endothelial
function in Zucker spontaneously fatty hypertensive heart
failure F1 hybrid (ZSF1) obese rats, a recent model qualifying
for HFpEF studies including hypertension and diabetes. In this
study, supplementation of the NAD+ precursor nicotinamide
(NAM) elicited an antihypertensive effect correlated with
improved endothelial function, as indicated by an enhanced
vasodilatory response to acetylcholine in isolated aortic rings
(59) (Table 1).

PREVENTION AND TREATMENT
PERSPECTIVE

The recent PARAGON clinical trial resulted in FDA approval
to the Entresto drug, a sacubitril/valsartan combination, as
the first treatment for HFpEF patients. However, due to
the diversity and complexity of HFpEF patient phenotype,
a large proportion of HFpEF patients will remain without
meaningful treatment options considering the exclusion criteria
in the actual treatment (115). This brings insights into the
fundamental foundation for HFpEF treatment that remains
supported by primary preventive treatment that focuses on
lifestyle. As of today, no treatment is patient specific that target
multiorgan and system-based approach due to heterogeneous
pathology. Based on sedentary lifestyle, new terminology
emerged termed as lifestyle-associated inflammatory diseases
and their corresponding immune-stimulatory lifestyle-associated
molecular patterns (LAMPs) (116). LAMPs are third generation
after classical pathogen-associated molecular patterns (PAMPs)
as lipopolysaccharide (LPS) or infection and damage-associated
molecular patterns (DAMPs) as serum amyloid A or TLRs,

FIGURE 3 | Fundamental and lifestyle-associated prime factors that control

inflammation (left arm of figure) in contrast to risk factors that drive suboptimal

inflammation in HFpEF and integration with lifestyle-associated molecular

patterns (LAMPs). The main four aspects of daily life to consider as prime

strategy for prevention of HFpEF (diet/nutrient, sleep/wake up rhythm,

exercise, and choice of active life and limited sedentary lifestyle). Adoption of

optimal age-related lifestyle would be helpful to balance the genesis of LAMPs

in cardiovascular disease that will help to limit the progression to heart failure.

known to induce inflammation-related disease. However, LAMPs
impair the sterile inflammation due to our lifestyle-associated
risk factors. As a self-choice avoiding known risk factors
like sleep cycle regulation (117) (respecting body clock),
diet/nutrient [healthy food with eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) food intake], and exercise (118)
(maintaining active lifestyle) might entail a balanced metabolism
and help in delaying the inevitable decline in various body
systems and physiological processes of aging. For total health,
it is obvious to avoid or limit smoking (both passive and active
smoke), and control psychological stress and alcohol intake
(Figure 3). Thus, third-generation novel LAMPs are manageable
and should be considered strongly to reduce the burden of
prevalence of HFpEF in obesogenic aging (119, 120). Molecular
and cellular mechanism of LAMPs is warranted after extensive
research on PAMPs and DAMPs.

CONCLUSION

Like every area of life sciences, change is not permanent, and
likewise, the HF pathophysiology evolved from one-dimensional
homogenous pathology to heterogeneous multiorgan
dysfunction particularly in obesity/metabolic syndrome
superimposed on aging. From a prevention perspective,
primary focus on diet/nutrition intake (quality/quantity),
sleep–wake up cycle (circadian rhythm), and physical activity
(exercise/sedentary lifestyle) are key determinants of total
health and specifically for cardiovascular health (Figure 3).
Recent ongoing clinical trials for HFpEF are targeting metabolic
diseases like type 2 diabetes/insulin resistance/hyperglycemia
with improvement in cardiovascular outcome that underline
the strength of metabolic disorder and HF-related suboptimal
inflammation. However, the major missing point in HFpEF
is the multitude of phenotypes in HF syndrome of which half
of the patients are either obese or aging or both, which make
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the clinical cases deeply complicated; thus, innovative animal
model and treatment strategy are extensively warranted to study
lifestyle-associated molecular patterns (LAMPs).
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