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Abstract: Drowsiness is among the important factors that cause traffic accidents; therefore, a moni-
toring system is necessary to detect the state of a driver’s drowsiness. Driver monitoring systems
usually detect three types of information: biometric information, vehicle behavior, and driver’s
graphic information. This review summarizes the research and development trends of drowsiness
detection systems based on various methods. Drowsiness detection methods based on the three
types of information are discussed. A prospect for arousal level detection and estimation technology
for autonomous driving is also presented. In the case of autonomous driving levels 4 and 5, where
the driver is not the primary driving agent, the technology will not be used to detect and estimate
wakefulness for accident prevention; rather, it can be used to ensure that the driver has enough sleep
to arrive comfortably at the destination.

Keywords: drowsiness; driver monitoring; biometric information; vehicle behavior; graphic information;
autonomous driving

1. Introduction

The National Highway Traffic Safety Administration (NHTSA) estimated that drowsy
driving accounted for 91,000 traffic accidents, which caused approximately 50,000 injuries
and 800 deaths, as reported by the police in 2017. However, individuals in the fields of
traffic safety, sleep science, and public health have unanimously agreed that these figures
underestimate the impact of drowsy driving [1]. The National Sleep Foundation reports
that 54% of adult drivers feel drowsy while driving, and 28% have attested that they fall
asleep while driving. In addition, more than 40% admit falling asleep at the wheel at least
once while driving [2].

Drowsiness is considered a transition from arousal to sleep [3]. The first sign of
drowsiness is the inability to keep one’s eyes open. Frequent closing of one’s eyes makes it
impossible to perform their task effectively. Next, one’s head tends to be shaken back and
forth when they are drowsy. Yawning is also a sign of drowsiness [4]. Driving when one is
sleep-deprived is similar to drunk driving. As one feels sleepier, the response time increases,
the ability to foresee danger decreases, and the durability of attention decrease. Driving
with no sleep for more than 20 h is equivalent to driving with a blood-alcohol level of 0.08%,
which is the legal limit in the United States. Microsleeps (short periods of unconscious
inattention) may also occur in some people [5]. The driver’s state is related to various
psychological, physical, and mental factors [6]. Particularly, fatigue and monotony are
considered to decrease attention and arousal levels, resulting in drowsiness [6]. Drowsiness
can lead to accidents at any time of the day or night. Such accidents due to drowsiness
have the following characteristics [1]:

1. Often occurs between midnight and 6 a.m. or in the late afternoon. During both times,
the circadian rhythm, the body’s internal clock that controls sleep, is reduced;

2. In many cases, a single driver (without a passenger) has run off the road at high speed
with no sign of braking;
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3. Often occurs on local roads and highways.

In some situations, one may be involved in any of these cases. Therefore, one needs
to be careful to avoid being drowsy, not drive when drowsy, and have enough rest when
they feel drowsy. However, one might still drive when drowsy. Thus, in-vehicle systems
that detect and assess drowsiness and alert the driver or adjust the vehicle control if the
driver is about to fall asleep are being developed. Fatigue while driving decreases attention
and reduces the amount of information received by the driver. Moreover, it decreases the
driver’s response and level of understanding of the situation, thus resulting in incorrect
decision-making. In the worst case, the driver’s arousal level may decrease, and sleepiness
might follow, which might cause loss of vehicle control. To prevent these situations, driver
monitoring systems that can detect the driver’s state of drowsiness are necessary. If these
systems are utilized, they can inform the driver or send a signal to the driver’s family
members or friends about the drive’s low arousal level [7].

Nishiyama listed the following six conditions required for detecting drowsiness in
in-vehicle systems [8]:

1. Do not interfere with the driver’s safe driving environment;
2. Can be equipped in a vehicle and withstand hard operating environments;
3. Can detect driver’s drowsiness in real-time;
4. Have a wide detection range from shallow to deep sleep;
5. Consider all drivers are detectable targets;
6. Have low cost and high scalability than other applications.

The physiological index of an in-vehicle system is determined based on whether
it satisfies all the criteria. Research on the detection of drowsiness levels has spanned
laboratory-level setups to in-vehicle setups; however, existing research has been able to
satisfy only some of these six conditions [8]. Generally, it is difficult to detect a driver’s
drowsiness because of surrounding lighting or the driver’s condition or behavioral charac-
teristics, such as sleep apnea, talking, wearing glasses [7]. Various approaches developed
to detect driver’s drowsiness have been applied to some mass-produced vehicles.

Existing approaches for detecting driver’s drowsiness, according to references [8,9],
are categorized in Table 1.

In this paper, according to Table 1, the cases in which the drowsiness detection system
are applied in the vehicle and the tendency of the system are discussed. In this paper, we
refer to recent research trends using Google Scholar and introduce related technologies of
the last couple of years. Indeed, the basic measurement methods for detecting drowsiness
have not changed over the years, but in recent years, machine learning methods, especially
deep learning, have been gaining attention, and more and more research is being done to
apply deep learning to the detection and estimation of drowsiness. This is the reason why
this review focuses on the technologies of the last few years. Since there are many cases
where the technologies of companies have not been published, we introduce them based
on the web survey.

The Society of Automotive Engineering defines the autonomous level [12] and the
SAE’s autonomous level as the following (Figure 1) [13]:

Level 0: No driving automation—the vehicles are manually controlled;
Level 1: Driving automation assistance—the vehicles are equipped with one auto-

mated system (cruise control) for driving assistance, such as steering and acceleration;
Level 2: Partial driving automation—allow drivers to control both steering and accel-

eration/deceleration;
Level 3: Conditional driving automation—these vehicles have “environmental detec-

tion” features that allow them to make decisions on their own, for example, to accelerate
and pass a slower vehicle, but they still need to be overridden by a human. If the system
cannot perform the task, the driver must remain alert and in control at all times;

Level 4: High driving automation—in most cases, it does not require human interac-
tion, but it can be manually overridden by a human;
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Level 5: Full driving automation—it requires no human attention, not even a steering
wheel or accelerator/brake pedal. It will be able to go anywhere and do anything an
experienced human driver can do.
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Table 1. Approaches for detecting driver’s drowsiness.

Methods Measurement
Information Measurement Target Measurement

Method
Measurement

Index Advantages Disadvantages

Contact method Biometric information

Heartbeat, pulse wave,
aspiration, brain wave,

myoelectric, eye
movement, etc.

Heart rate monitor,
pulse wavemeter,

electroencephalograph,
electromyograph,
nystagmus, etc.

Heart rate, chaos analysis, alpha
wave, theta wave, muscle action
potential, vestibular oculomotor

reflex, etc.

High drowsiness
detection

performance can be
obtained [10].

Driver behavior adversely
affects the reliability of the

designed system [10].

Non-contact
method

Vehicle behavior

Steering pattern,
distance between lane

and vehicle,
speed, distance between

vehicles, etc.

Steering angle sensor,
white line recognition

camera, laser radar, etc.

Steering frequency, meandering
rate, steering volume,
monotonous steering

Estimates can be
obtained in a way

that is unobtrusive to
the driver [11].

The accuracy of detection
and estimation depends on

road conditions and the
environment. It is useful
only when the driver is

holding the steering wheel.

Driver’s graphic
information

Open rate of eyes, blink,
pupil, voice, and

expression
Camera, microphone

Opening and closing rates
of eyes, number of blinks, time of

closing eyes, pupil fluctuation,
chaos analysis of speech sound,

drowsy categorization by
expression, etc.

Intuitional index and
easy-to-understand,

high accuracy.

Different lighting conditions
may disrupt the detection

performance [10].
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It is believed that drowsiness detection systems might no longer be applicable to
vehicles driving with the Society of Automotive Engineering (SAE)’s autonomous level
4 [12]. In this paper, we discuss the development of an arousal detection system for the
SAEs autonomous driving level 4 and above. The research and development of drowsi-
ness detection systems using various methods are discussed; the applicability of such
systems to autonomous vehicles is also discussed. As for the research of drowsiness detec-
tion, Rather et al. discussed fatigue and drowsiness detection techniques in driving [14].
Rather et al. categorized the characteristics of fatigue and drowsiness detection systems as
“subjective reporting”, “biological characteristics”, “physical characteristics”, “vehicular
characteristics”, and “hybrid characteristics” [14]. The categorization of the “biological
characteristics”, “physical characteristics”, and “vehicular characteristics” is similar to that
used in our study. The “subjective reporting” characteristic described by Rather et al. is
only used to support the accuracy of the detection or estimation of the system, and its
result is not applied to the in-vehicle system. Therefore, it is omitted from the main method.
Our study differs from the study by Rather et al. because we focus on the perspective
of autonomous driving. In the age of autonomous driving levels 4 and 5 proposed by
SAE, the driver does not need to drive the car, so the purpose of the drowsiness detection
system will change drastically, from “detecting driver drowsiness to avoid traffic accidents”
to “detecting driver drowsiness to let the driver sleep peacefully and have a comfortable
travel time”. Therefore, it is important and meaningful to discuss how driver drowsiness
detection systems should be in the age of automated driving. This paper will contribute to
this point. The classification of approaches for drowsiness detection shown in Table 1 is
from 2011 and 2012; Saini and Rekha [15] and Ramzan et al. [16] present a new approach for
drowsiness detection based on machine learning. These review papers are from 2014 and
2019, respectively. In the last decade, there have been significant advances in machine learn-
ing methods and in autonomous driving technology. Certainly, the review by Saini and
Rekha, Ramzen et al. helps us understand the traditional and new methods of drowsiness
detection. However, their review does not mention the state-of-the-art machine learning
techniques, deep learning, and the emerging role of drowsiness detection systems in the
age of autonomous driving. In addition, previous reviews have not considered sensor
types for in-vehicle detection, but if considering in-vehicle applications, both contact and
non-contact detection types should be considered, and it should be noted that non-contact
drowsiness detection and estimation systems have also made remarkable progress in the
last decade. In this section, we mention drowsiness detection and estimation methods using
deep learning and the future potential of drowsiness detection and estimation methods
in the age of autonomous driving. It also mentions the types of detection that should be
considered for in-vehicle use.

The remainder of this paper is organized as follows. Section 2 explains the purpose
of the subjective evaluation of the drowsiness detection or estimation system. Section 3
explains the three evaluation methods for drowsiness detection or estimation based on
biometric information, vehicle behavior, and graphic information. Section 4 discusses the
prospects of in-vehicle drowsiness monitoring systems in the autonomous driving era. The
conclusions are presented in Section 5.

2. Purpose of Subjective Evaluation for Drowsiness Detection or Estimation Systems

The validity of a drowsiness detection system cannot be detected without a standard
describing how awake the driver is. Subjective evaluation is not used for such a system;
however, to ensure the reliability of the system, the standard is considered a percentage of
agreement between the system’s evaluation result and the driver’s level of arousal. The
subjective evaluation methods described in this section were only used for the criteria
to determine the reliability of the system. The Karolinska sleepiness scale (KSS) [17] and
the High-frequency coupling (HFC) drowsiness scale [18] are often used as the criteria
for sensory evaluation. The observer-rated sleepiness and the trained observer rating,
developed by Kitajima [19,20], are similar to the HFC drowsiness scale. The trained
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observer rating is often used in Japan. The NEDO evaluation method [21], which is also
often used in Japan, is the same as the trained observer rating. The KSS, HFC drowsiness
scale, observer-rated sleepiness, and trained observer ratings have been used in many
studies [22–27].

The KSS represents a subjective evaluation of sleepiness on a 9-point Likert scale.
The sensory meaning of drowsiness is written on the odd-numbered rating points, and
the neutral meaning is written on the even-numbered points, relative to the meaning
listed on each odd-numbered rating point: 1 is “very clearly awake”, 3 is “awake”, 5 is
“neither”, 7 is “sleepy”, and 9 is “very sleepy”, and, for example, 2 is between “very clearly
awake” and “awake”. The reliability of the KSS for drowsy evaluation was determined in
a previous study through subjective evaluation [28]; however, another study showed that
the reliability of KSS is insufficient for drowsiness evaluation or estimation [25].

The HFC drowsiness scale, observer-rated sleepiness, and trained observer rating
were designed to evaluate the level of arousal for which skilled evaluators were asked
to apply the driver’s facial expression to the corresponding part of the scale at regular
intervals using video recordings. The HFC drowsiness scale is classified into nine points,
and the observer-rated sleepiness is classified into two types, D-ORS used for vehicle
behavior and B-ORS used for driver behavior. Each is categorized into three scales [29],
and the trained observer rating is categorized into five scales. The scale points of HFC
drowsiness scale, those of D-ORS and B-ORS, and those of trained observer ratings are
shown in Tables 2–4, respectively. These subjective evaluation methods are all used for
drivers to evaluate their drowsiness, and the answer is used as an index to evaluate the
accuracy of the system.

Table 2. HFC drowsiness scale.

HFC Description

1 Wide awake, vivid attention
2 Highly concentrated, focused attention
3 Attentive but calm
4 No activation, no drowsiness, no pronounced tendency for reactive behavior
5 Slightly dozing, ready to respond
6 Signs of drowsiness but effortlessly awake
7 Obvious drowsiness, but mainly focused on driving tasks
8 Battling with drowsiness. Difficulty with driving tasks, but mainly perceptual

9 Feeling foggy, listless, inactive for long periods of time, microsleep is occurring or
may be occurring

Table 3. D-ORS and B-ORS.

D-ORS0 (Alert) B-ORS0 (Alert)

Awareness: driver’s reactions are high and fast
Driving: normal

Blink: normal
Yawning: no

Body position: sitting still
Body movements: hardly

D-ORS1 (First signs of sleepiness) B-ORS1 (First signs of sleepiness)

Awareness: driver’s reactions are relatively normal and fast
Driving: light steering wheel operation

Blink: sporadic prolonged closure of the eyelids, followed by
increased blinking frequency

Yawning: occasionally
Body position: sometimes change position

Body movements: sometimes

D-ORS2 (Severe sleepiness) B-ORS2 (Severe sleepiness (microsleep))

Awareness: driver reacts slowly
Driving: cannot drive steadily and turns the steering wheel too far

Blink: driver’s eyes are half-closed, and his/her gaze vacant
Yawning: frequently

Body position: frequently change
Body movement: frequently
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Table 4. Trained observer rating.

Level Phenomenon

1 Do not look sleepy at all; gaze moves quickly and frequently, blink at a constant rate
of about 2 times every 2 s, and body movements are active.

2 Slightly sleepy, open lips, slow eye movement.

3 Looks somewhat sleepy, blinks slowly and frequently, mouth moves, sits up straight,
and puts hands on face.

4
Looks quite sleepy and blinks as if conscious. Unnecessary movements of the entire

body, such as shaking the head or moving the shoulders up and down. Frequent
yawning and deep breathing. Slow blinking or eye movements.

5 Looks very sleepy, eyelids closed, head tilted forward or back.

3. Drowsiness Detection and Estimation Based on Biometric Information

Drowsiness can be continuously measured using biometric information as it is an
objective and direct index [6]. Electroencephalography (EEG), electrocardiography (ECG),
and electrodermal activity (EDA) measurements are commonly used for evaluation [30,31].
EEG is the most used method because it is a direct neuro-activity index [32–34]. However,
it is difficult to build an in-vehicle system that uses EEG for driver drowsiness detection
and estimation because it is susceptible to noise. Moreover, electrodes are connected to
the head of the person being evaluated, and the head motion is restricted; thus, EEG is
used for basic consideration of drowsiness detection system, and EEG is not used for
the detection methods of the system. In addition, heart rate variability (HRV) is related
to the autonomic nervous system and used for drowsiness detection or estimation. The
respiration and HRV were recorded and analyzed in some cases. However, it is difficult
to define the direct relationship between physiological characteristics and cognitive state.
These physiological characteristics do not necessarily imply only drowsiness; they also
indicate other conditions, such as emotional or physical fatigue; in addition, what they
reflect depends on the actual driving scenario [6]. For example, Peiris et al. showed that
two professionals who analyze the EEG detect drowsiness do not necessarily make the
same decision for the same participant [35]. In contrast, in some cases, the EDA is affected
by stress [36] or emotion [37]. Therefore, these indicators cannot be considered solely as
adequate and exclusive indicators for the detection or estimation of sleepiness or fatigue.

Satti et al. developed a system that can detect a driver’s decreasing arousal level using
a steering wheel on which electrodes are attached, and electromyography was performed.
They also found that as the driver’s drowsiness level increased, the muscle activity for
gripping the steering decreased with time while driving. In addition, the results of the
frequency domain analysis revealed that the frequency components of the steering shifted
from low frequency to high frequency in an hour’s driving [38]. In one case, the driver’s
states were detected by electrodes attached to the steering [39] for sensing the vitals. The
study by Satte et al. is pioneering in terms of not only vital sensing but also drowsiness
detection. Although no specific evaluation of drowsiness detection has been reported,
Uchenna et al. performed such investigations in terms of development cases alone [40].

Some studies used smartwatches or smartphones for vital sensing in vehicles [41]. For
example, Kindinger et al. applied machine learning only to biometric data acquired by a
wearable sensor for the wrist to show the potential for driver drowsiness detection [42]. The
detection results were compared with the reference data of medical ECG devices. Based on
an evaluation experiment using a driving simulator with 30 participants, they found that
the accuracy was comparable to that of a medical ECG and that a high accuracy (over 92%)
was obtained in the “user-dependent scenario” in the driving simulator. A case study of
estimating sleepiness using physiological data from a wrist-worn smart wearable device
was reported [43]. In this case, a user survey (N = 30) was conducted on a test track with the
SAE level 2 autonomous driving, and the heart rate data from three commercially available
fitness trackers were recorded. Drowsiness was estimated using a machine learning model,
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and tests were conducted to classify drowsiness into binary and ternary categories. In
addition, a high accuracy (over 90%) was achieved.

4. Drowsiness Detection and Estimation Based on Vehicle Behavior

A typical example of mass production is a Subaru’s wobble alarm system [44]. Vehicle
wobble alarms have been installed in trucks and buses, such as Hino’s Selega [45]. In recent
years, Mazda has mass-produced passenger cars that make driver-attention alerts [46]. This
system is activated at speeds above 65 km/h and starts learning the driver’s habits. Then,
when it detects a change in the vehicle’s behavior, suggesting a loss of driver concentration,
it prompts the driver to rest via information from the human–machine interface (HMI).

Honda cars have a driver attention monitor [47]. It uses inputs from an electric power
steering (EPS) to measure the frequency and degree of the driver’s steering inputs for
assessing the driver’s level of awareness. The Volvo system [48] also uses lane information
from cameras. Jaguar’s driver condition monitor uses the steering wheel operation status
as well as brake and throttle movements [49]. There are two detection methods: one uses a
steering angle sensor and the other uses a camera to detect lanes. The method based on
driving behavior can estimate the driver’s level of arousal without the driver’s awareness,
but it is prone to measurement errors in cases of bad weather or inadequate lane markings.
In addition, it is useful only when the driver is holding the steering wheel [25].

In recent years, machine learning has been applied to detect a decrease in the arousal
level. For example, Arefnezhad et al. used the steering angle as input and applied an
adaptive neuro-fuzzy inference system (ANFIS) [10]. This system is useful for optimizing
feature selection based on the correlation index, T-test index, mutual information index
through the wrapper feature selection method. Particle swarm optimization (PSO), an
evolutionary optimization method, was used to understand its parameters. An evaluation
experiment was conducted on 39 bus drivers using a driving simulator. The total driv-
ing time was 53 h, and the correspondence with the sleepiness level using the KSS was
evaluated. To improve the binary classification performance, a KSS of 7 was excluded.
Consequently, a detection accuracy of 98.12% was achieved.

Jeon et al. proposed a new method for detecting drowsy driving using vehicle sensor
data obtained from the steering wheel and pedal pressure [50]. Based on preliminary
experiments, drowsy driving was classified into long-time and short-time drowsy driving
types. Jeon et al. proposed an ensemble network model consisting of convolutional
neural networks that could detect each type of drowsy driving. In this model, each sub-
network was specialized for detecting long-time or short-time drowsy driving using the
features obtained by the time series analysis. To train the proposed network efficiently,
an imbalanced data handling method was adopted, which adjusted the ratio of normal
and drowsy driving data in the dataset by partially deleting the normal driving data.
Consequently, 198.3 h of in-vehicle sensor data were acquired through driving simulations
assuming various road environments, such as urban areas and highways. Using this
dataset, the performance of the proposed model was evaluated. The results showed that
the proposed model was able to detect sleepiness during driving with an accuracy of up
to 94.2%.

5. Drowsiness Detection and Estimation Based on Graphic Information of a Driver

This technique mainly uses cameras to detect the driver’s states. The Toyota Motor
Corporation’s pre-crash safety system with a driver monitoring function is a relatively
old example [51]. This system aims to mitigate the damage caused by a collision by
issuing a warning earlier than when the driver is facing the front, specifically when it
is judged that a collision is highly probable, but the driver is not facing the front. An
example that is currently in operation in mass production is Toyota’s driver monitoring
system (advanced drive specifications). This system uses a general-purpose processor to
implement artificial intelligence (AI). It has greatly improved the detection of gaze, face
direction, eyelid opening/closing. It also has a function to safely stop the car if the driver’s
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driving posture is distorted or the car is unresponsive to warnings [52]. Subaru’s driver
monitoring system (DMS) is another example. In the case of the Forester, a camera installed
on the top of the head-mounted display detects the driver’s face and warns the driver
via the HMI if the eyes are closed or the driver is not focused [53]. A similar system was
installed in Nissan’s skyline [54]. In commercial Hino Selega vehicles, a “driver monitor
II” is installed [45]. In the past, the detection accuracy was low when glasses were worn.
Recent devices have solved these problems and can detect drowsiness even with glasses
worn. In recent years, external driver monitoring systems have been developed; these
systems can be installed even after purchasing a car [55,56]. These systems detect the
opening and closing of the eyelids or looking aside and notify the driver with a buzzer, but
this does not affect the vehicle control. Babusiak et al. developed a smart steering wheel
for detecting drowsiness [57]. This steering detects heart rate, heart rate variability, and
blood oxygenation. In addition, an inertial unit is also integrated to record and analyze a
driver’s behavior pattern.

In actual research and development, the level of arousal is estimated based on various
factors related to the driver’s face by using a camera. Eyelid-related information, which
can be measured using indicators such as the percentage of eyelid closure (PERCLOS)
and blinks, has attracted attention because it can be measured without constraints. The
NHTSA investigated the relationship between PERCLOS and other measures of arousal
and reported a high correlation between them. They also investigated the relationship
between PERCLOS and other indices of arousal and reported a high correlation between
decreased arousal and PERCLOS [58]. For example, a previous study [59] evaluated the
state as arousal when the PERCLOS value in every 3 min was 0% to 9%, suspicious when
9% to 12%, and low arousal when greater than 12%. Tanaka reported that a decrease in the
arousal level increased the blink rate when the arousal level was maintained at a certain
high level and that the blink rate decreased when the arousal level decreased [60]. In other
words, the number of blinks increases when the subject begins to feel drowsy from a state
of clear wakefulness, but it decreases when the subject becomes drowsier after the level
of wakefulness decreases. However, since the PERCLOS is usually calculated from the
visible images of the subject, its evaluation depends greatly on the lighting conditions, and
it cannot be evaluated when the driver is wearing sunglasses [61]. Therefore, the PERCLOS
was applied to visible images obtained by thermal imaging cameras and classified using
machine learning [61]. In this case, the classification of “wakefulness”, “fatigue”, and
“dozing” was performed, and the average classification accuracy was about 65%. There are
other previous studies that use PERCLOS to detect or estimate drowsiness [62].

Similarly, Tashakori et al. conducted a study using temperature information [63]. They
detected driver drowsiness by measuring the forehead and cheek temperatures. About
30 subjects drove on a highway in a driving simulator on two separate occasions. A thermal
imaging camera was used to monitor the temperature patterns of the faces. The sleepiness
level of each subject was estimated by three human observers. The support vector machine,
K-nearest neighbor, and decision tree classifiers were used. From wakefulness to extreme
drowsiness, the absolute values of the forehead skin temperature and cheek-forehead skin
temperature gradient decreased by 0.46 ◦C and 0.81 ◦C, respectively. However, the cheek
skin temperature increased by 0.35 ◦C over the two sessions. These results indicate that
sleepiness was detected in 84% of the cases.

Video-oculography is commonly used to study features, such as blink frequency,
blink moment, and PERCLOS. It is extracted by an image-processing algorithm based on
eye tracking, head, and gaze movements. Therefore, the quality of the estimation highly
depends on the initial signal processing.

The eye aspect ratio is also used in some cases. When the feature points of the eye are
p1–p6, the EAR is expressed by the following equation. Here, the feature points of the eye
are defined in Figure 2.

EAR =
||p2 − p6||+||p3 − p5||

2||p1 − p4||
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Chakkravarthy stated that in an evaluation using the EAR, the correct response rate
was 75% for blinking eyes, 35% when wearing glasses, and 25% when hair was hanging
over the face [64]. Suhaiman et al. implemented the system on a Raspberry Pi 3 + system
such that an alarm would ring when the level of arousal decreased [65]. In this case,
however, the number of subjects was small; thus, the accuracy could not be guaranteed.

Manu reported an example of drowsiness detection using facial feature detection, eye
tracking, and yawn detection using a method developed by Viola and Jones [66]. When a
face is detected, most of the background of the non-face image is removed based on the skin
color. Then, only the skin part is segmented, and only the color component is considered to
remove the effect of lighting. Eye-tracking and yawn detection are performed by template
matching. The feature vectors obtained at each of the above stages are concatenated, and a
binary support vector machine classifier is used to classify successive frames into fatigued
and non-fatigued states. In addition, an alarm is rung when the threshold time is exceeded
for the former. Experiments have shown that this method is very efficient in detecting
drowsiness and alerting drivers [67].

Selvakumar et al. proposed an eye state classification method based on partial least
squares (PLS) analysis and its real-time implementation on a resource-constrained digital
video processor platform to monitor the eye state while driving [68]. Drowsiness was
detected using PERCLOS. In this method, a cascade classifier based on Haar features was
used to detect faces in an infrared image, and the eyes were detected among the faces. To
classify the eyes in a binary manner, PLS analysis was applied to obtain a low-dimensional
discriminative subspace, in which a simple PLS regression score-based classifier was used
to classify the test vectors into open and closed eyes. In in-vehicle testing, they claimed
that the proposed system achieved a significant improvement in the classification accuracy
at approximately three frames per second.

Nowadays, the application of deep learning for detecting and estimating drowsiness
in vehicle seems to be remarkable, and we can say that the use of deep learning is important
and essential to develop drowsiness detection and estimation technology because deep
learning can handle tremendous data and features. In a case study of estimating arousal
from mouth movements, Li et al. introduced an improved YOLOv3-tiny convolutional
neural network to capture facial regions under complex driving conditions, thereby elimi-
nating the inaccuracies and effects caused by artificial feature extraction. The eye feature
vector (EFV) and mouth feature vector (MFV), which are the evaluation parameters of the
driver’s eye and mouth states, were introduced based on the Dlib toolkit. Then, through
offline learning, a driver ID information library, including a classifier library for the driver’s
eye state, a classifier library for the driver’s mouth state, and a biometric library for the
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driver, was constructed. Finally, driver identification and fatigue evaluation models were
constructed via online evaluation. The driver’s eye closure time, the number of blinks, and
the number of yawns were calculated to evaluate the fatigue state. As a result, the fatigue
state could be detected with 95.10% accuracy [69]. Képešiová et al. obtained grayscale facial
image data of 20 collaborators and trained them using the convolutional neural network
(CNN). Celecia et al.’s case study combined measures of sleepiness based on information
about the eyes (PERCLOS, eye closure time) and mouth free time via a fuzzy inference
system on a Raspberry Pi system to enable real-time responses [70]. The system detected
three drowsiness levels (low/normal, medium/drowsy, and high/severe drowsiness),
which were evaluated in terms of their computational performance and efficiency, resulting
in a significant accuracy of 95.5% in state recognition [62]. Dua et al. used four deep
learning models, AlexNet, VGG-FaceNet, FlowImageNet, and ResNet, to detect sleepiness
by considering four different types of features: hand gestures, facial expressions, behavioral
features, and head movements. These models were classified into four classes of output:
“not sleepy”, “sleepy blinking eyes”, “yawning”, and “nodding”. The accuracy obtained
using this system was 85% [71].

In another study, although a camera was not used, nodding was detected using a
long short-term memory (LSTM) autoencoder for data from a radio frequency identifica-
tion (RFID) tag attached to the back of a hat, and fatigue and decreased alertness were
estimated [72].

6. Combining Multiple Types of Data

In many of the cases mentioned so far, deep learning has been applied to a single type
of data. It is particularly used in cases where image processing is involved. However, with
the rapid emergence of deep learning, it has become possible to handle various types of data
simultaneously, and accuracy can be guaranteed. For this reason, in recent years, there have
been few cases of estimating wakefulness using only vehicle and biometric information but
several cases of estimating wakefulness using deep learning methods in combination with
this information and image data. In particular, there might be many combinations, such as
“vehicle information + biometric information”, “vehicle information + image information”,
and “vehicle information + biometric information + image information”.

First, an example of using an artificial neural network to detect sleepiness [6] is
introduced here. In this case, multiple indicators (driver physiology, psychology, behavior,
and vehicle behavior) were used. Different datasets with different sources of information
were tested to determine the indicators that produced the most powerful models. In this
example, two hypotheses were formulated. The first hypothesis is that the sensory-motor,
physiological, and performance measures used to detect sleepiness can be used to predict
when a drop in sleepiness occurs, and the second hypothesis is that adding information,
such as the driving time and participant information, improves the accuracy of the model.

Twenty-one participants (11 male and 10 female) participated in the experiment. They
drove for 90 min on the expressway, 5 min on the route to the city, and 5 min in the city.
Twenty-two cars appeared from the right side of the expressway and disappeared after a
few kilometers to change the driver’s sleepiness level after 2/3rd of the route.

The model with the highest detection and prediction accuracy was the one that used
the information of eyelid closure, eye and head movements, and driving time. This model
was able to predict when the driver’s state would become impaired within 5 min, and
the prediction performance was promising. Furthermore, by modeling drowsiness as a
continuous value, it was possible not only to detect whether a driver is drowsy but also to
develop a more precise detection system.

In a previous study [23], 71 subjects (48 male, 23 female) were included. In another
previous study [23], 71 subjects (48 male and 23 female; age range 22–60 years; mean
age 38 years; standard deviation 10 years) were tested using a driving simulator, and the
results showed a correct response rate of 72.7% in three classifications (awake, suspicious
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drowsiness, and sleepy). In this study, the eye closure index was used. This index is
expressed as follows.

EyeClosure = max
(

1− d
dI

, 0
)

Here, d and di is defined in Figure 3.
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Logistic regression was used with eye closure and head movement, KSS, the incidence
of the HFC and lane departure, and lateral standard deviation as explanatory variables.
Fatima et al. used TensorFlow, Python3, and OpenCV to detect sleepiness in real-time [73].
They used yawning, prolonged eye closure, reduced driver movement, lane change, and
oversteering for training. If these data indicate that the driver is not paying attention,
the alarm sounds in the car, and the driver’s seat begins to vibrate. If the driver does
not respond, the system takes measures such as gradually slowing down the car. Jabbar
et al. [74] developed a drowsiness detection system based on a multi-layered perceptual
classifier, intended to be embedded in Android mobiles and other devices, which can detect
facial landmarks to identify the driver’s state. The accuracy of this system is very good.
The accuracy of this system is said to be 81%, including with or without glasses, and the
state of night or not. Ma et al. [75] introduced a modified hierarchical extreme learning
machine algorithm with particle swarm optimization (PSO-H-ELM) and classified the
driver’s drowsiness by the power spectrum density based on EEG data, and they showed
the accuracy is 83.12%. Ariizumi et al. developed the estimation algorithm by echo state
network (ESN) [76]. ESN is a kind of Recurrent Neural Network (RNN), which is a neural
network adapted for processing time-series data and a kind of deep learning. ESNs are
characterized by their low computational cost, although the impact of computational cost
must be considered when implementing deep learning. In this case study, 40 male and
female collaborators in their 20s to 60s drove on a highway-like environment for about
one hour using a driving simulator. Pulse, respiration, and center of gravity information
were obtained as physiological indicators of the drivers. In addition, drivers were asked to
self-report their sleepiness every two minutes on a five-point scale. In addition, the driver’s
face image was recorded as a movie, and a third party judged the driver’s sleepiness based
on the NEDO evaluation method. The actual level of drowsiness was determined by the
greater of the self-reported result and the result of the NEDO evaluation method. Therefore,
in this case, the physiological indices of the driver were used as explanatory variables, and
the ESN was used to estimate the actual sleepiness level of the driver.
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The actual drowsiness level was estimated by ESN after converting the level 2 or lower
into a binary value of “not sleepy” and the level 3 or higher into “sleepy”. The correct
response rate was 83.3%, the true positive rate (when the ESN estimated that the driver
was also sleepy when the driver was actually sleepy) was 88.7%, and the true negative
rate (when the ESN estimated that the driver was also not sleepy when the driver was
actually not sleepy) was 63.2%. The performance was relatively high when converting
to binary values and estimating “drowsy” and “not drowsy” in this way. On the other
hand, when the original 5-step evaluation was utilized as is and 5-step estimation was
performed, the existence of time periods in which the estimation of sleepiness changed
frequently and a discrepancy between the actual and estimated values were observed,
suggesting that improvements are needed. However, considering the fact that there
are large individual differences in the way sleepiness appears in biological signals, we
believe that the estimation accuracy is quite high for a judgment without tuning to suit
each individual.

7. Summary of Current Technology Trends

Table 5 summarizes the technologies reviewed in this paper. To the best of the author’s
knowledge, the specific detection accuracy of the systems used by manufacturers has not
been disclosed, probably due to patent and confidentiality restrictions. With regard to
the detection and estimation methods discussed in this study, it is considered that the
agreement rate with the level of arousal based on subjective evaluation is approximately
70% to 90% while being dependent on the number of collaborators and the environment. If
a specific method is established, it is likely to be used for mass production. However, no
particular method is currently being used in wakefulness detection and estimation tech-
nology. However, with the recent use of deep learning, if in-vehicle computers and GPUs
can be installed and data from a large number of drivers can be obtained, considerable
accuracy can be guaranteed regardless of the method used. Therefore, research advance-
ments achieved using deep learning will help determine the technology for detecting and
estimating wakefulness in the future. However, since there have been very few examples
of evaluations using actual vehicles, it is believed that the effects of the environment, such
as ambient light, road surface vibrations, and individual differences among drivers, have
not been taken into account.
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Table 5. Summary of the technologies discussed in this paper. NA means that the accuracy could not be ascertained within the reference.

Methods Measurement Information Previous Studies Method Accuracy

Contact method Biometric information

Satti et al. [38]
Electromyogram measurement from electrodes attached to the steering wheel

Electrocardiographic measurements from a wearable sensor on the wrist.

NA

Kundinger et al. [42] =92%

Kundinger et al. [43] =90%

Non-contact method

Vehicle behavior

Subaru [44]
Hino [45]

Mazda [46]
Honda [47]
Volvo [48]
Jaguar [49]

Detects changes in vehicle behavior and warns from HMI. NA

Arefnezhad et al. [10] Apply ANFIS with steering angle as input. 98.12%

Jeon et al. [50] Estimation by ensemble network model using steering and pedal pressure as input. 94.2%

Graphic information (of driver)

Toyota [51]
Subaru [53]
Nissan [54]
Hino [45]

Thanko [55]
Yupiteru [56]

Warnings for closed eyes and side glances.
NA

Toyota [52] Stops the car when the driver is not in a good
posture or does not respond to warnings.

Cardone et al. [61] Applied PERCLOS to visible images obtained by a thermal imaging camera and classified “wakefulness”, “fatigue”,
and “dozing” by deep learning.

Support vector machine, K-nearest neighbor method, and decision tree were used to classify sleepiness based on the
temperature patterns of the forehead and cheeks.

Approximately 65%

Tashakori et al. [63] 84%

Non-contact method Graphic information (of driver)

Celecia et al. [62] Fuzzy inference system to estimate sleepiness from eye and mouth information. 95.5%

Chakkravarthy [64] EAR
75% when blinking, 35% when
wearing glasses, and 25% when

hair is hanging over the face

Manu [67] Correlation coefficient template matching. 94.58%

Li et al. [69] Detecting fatigue from driver’s eye closure time, few blinks, and few yawns. 95.10%

Képešiová et al. [70] Learning grayscale face images with CNN. 98.02%

Dua et al. [71]
Detects drowsiness by considering four different types of features (hand gestures, facial expressions, behavioral

features, and head movements) using four deep learning models: AlexNet, VGG-FaceNet, FlowImageNet,
and ResNet.

85%

Yang et al. [72] Nodding detection using LSTM autoencoder on RFID tag data. =90%

Jabber et al. [74] Facial landmarks from images were detected and estimated by a system based on multilayers perception classifiers. 81%

Ma et al. [75] Classified the driver’s drowsiness by PSO-H-ELM based on the power spectrum density of EEG data. 83.12%

Multiple methods

de Naurois et al. [6] Modeled using the information on eyelid closure, eye and head movements, and driving time.
Logistic regression with Eye Closure, head movement, KSS, HFC, etc., as explanatory variables. MSE of drowsiness level: 0.22

Baccour et al. [27]
Pulse, respiration, and center of gravity information were obtained, and ESN was used for estimation.

72.7%

Ariizumi et al. [76] 83.3%
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8. Arousal Level Detection and Estimation Technology for Autonomous Driving

The technologies for detecting and estimating the level of alertness described so far
are useful for SAE autonomous driving level 3 or lower, where the authority of the driver
is guaranteed. However, in the SAE autonomous driving levels 4 and 5, the driver is not
involved in driving the vehicle. However, it may be possible to use arousal detection and
estimation technology to ensure that the driver sleeps comfortably until the destination.
According to a questionnaire, about 34% of the respondents answered that it is acceptable
to sleep in an autonomous vehicle, and 12.7% answered that they were okay with sleeping,
and it seems that almost 50% of the respondents were okay with sleeping in an autonomous
vehicle [77]. Therefore, for example, by using arousal detection and estimation technology,
when the driver feels drowsy, the seat can be folded down, and the driver can be induced to
sleep. For example, technology to eliminate drowsiness is being developed by having the
driver sleep comfortably for a short period while driving automatically [78]. In addition,
the use of technologies that realize a pleasant awakening by using sound, light, and scent
when the driver is awake [79–81] could allow the driver to sleep comfortably when sleepy
and to wake up pleasantly; this can enable the driver to reach the destination without
feeling any physical or mental burden. In this case, however, because the driver does not
need to drive, vehicle information is not used as an indicator of decreased wakefulness, and
the system is mainly based on the biometric information or driver behavior. In addition,
even if the accuracy of the arousal detection is poor, it can be used to ensure driving
safety. In the current SAE autonomous driving level 0 to 3, if accuracy is not ensured, it
does not lead to accident prevention; this could be dangerous in terms of the use of the
system and the transfer of authority between the driver and the car in autonomous driving
level 3. However, if automatic driving levels 4 and 5 are realized, even if the detection is
delayed, it does not affect the driving itself but could only make a difference in the driver’s
comfort; therefore, it can be applied even if the accuracy is not guaranteed. Therefore,
while improving the accuracy of the current arousal detection and estimation system is
a priority, a system can be developed to provide comfort in a situation of autonomous
driving (SAE levels 4 and 5).

Table 6 summarizes the prospects of arousal level detection and estimation technology
for autonomous driving, as shown above.

Table 6. Summary of the prospects of arousal level detection and estimation technology for au-
tonomous driving.

SAE’s Autonomous Driving Level Purpose of the Technology

0, 1, 2 and 3
Detect and estimate the driver’s drowsiness and
notify the driver of the result to prevent human error
caused by drowsiness.

4 and 5
Detect and estimate the driver’s drowsiness and
makes the driver sleep so that they can comfortably
reach the destination.

9. Summary

In this study, the current mass-produced technologies and main detection and esti-
mation methods used for arousal detection and estimation were summarized, and the
prospects for arousal detection and estimation technologies in levels 4 and 5 autonomous
driving were discussed. Regarding future technologies for detecting and estimating wake-
fulness, the cost of the system in which they are installed will depend on the cost of the
component sensors; however, if the use of machine learning (deep learning) is promoted
by the installation of computers and GPUs, the accuracy of the system can be improved,
and the installation of such systems in vehicles is expected to increase. However, an evalu-
ation in an actual vehicle environment is necessary. Moreover, in the case of autonomous
driving levels 4 and 5, where the human driver is not the primary driver, the technology
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need not be used to detect and estimate drowsiness in the sense of accident prevention.
Therefore, the drowsiness detection and estimation systems in the era of autonomous
driving levels 4 and 5 may lead to drivers feeling more comfortable in their cars. In such a
case, the drowsiness detection and estimation system become an application to detect the
driver’s drowsiness and put the driver to sleep. The system will then help the driver sleep
comfortably and arrive at their destination comfortably. In other words, in the future, the
drowsiness detection and estimation system will function as a system that brings comfort
when traveling so that the driver can reduce the fatigue associated with traveling when
using an automobile and can act without feeling tired after arriving at the destination.
Drowsiness detection and estimation system for autonomous driving levels 4 and 5 will be
applied not only to automobiles but also to other fields and industries related to sleep in
the future, in terms of detecting drowsiness and making people feel comfortable.
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