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Coronary artery disease (CAD) is the most common type of heart disease in western countries. Early detection and diagnosis of
CAD is quintessential to preventing mortality and subsequent complications. We believe hemodynamic data derived from patient-
specific computational models could facilitate more accurate prediction of the risk of atherosclerosis. We introduce a semiautomated
method to build 3D patient-specific coronary vessel models from 2D monoplane angiogram images. The main contribution of the
method is a robust segmentation approach using dynamic programming combined with iterative 3D reconstruction to build 3D
mesh models of the coronary vessels. Results indicate the accuracy and robustness of the proposed pipeline. In conclusion, patient-
specific modelling of coronary vessels is of vital importance for developing accurate computational flow models and studying
the hemodynamic effects of the presence of plaques on the arterial walls, resulting in lumen stenoses, as well as variations in the

angulations of the coronary arteries.

1. Introduction

Coronary heart disease (CHD), also called coronary artery
disease (CAD), is globally the leading cause of death and is
predicted to remain so for the next 20 years. In 2020, it is
estimated that this disease will be responsible for a total of 11.1
million deaths globally [1]. In Europe, between 1in 5 and 1 in
7 European women die from CAD, and the disease accounts
for between 16% and 25% of all deaths in European men [2].
According to American Heart Association (AHA) statistics,
coronary heart disease alone caused nearly 1 of every 7 deaths
in the United States in 2011. In 2011, 375,295 Americans died
of coronary heart disease. Each year, an estimated 635,000
Americans have a new coronary attack (defined as first
hospitalized myocardial infarction or coronary heart disease
death) and nearly 300,000 have a recurrent attack [3]. In
addition to its mortality burden, CAD is a leading cause of
morbidity and loss of quality of life. This makes CAD a major
public health problem, which exerts heavy economic costs.
The most common cause of CAD is atherosclerosis,
which is caused by the presence of plaques growing in the

coronary arteries until the blood flow to the heart’s muscle
is limited, resulting in lumen stenosis. If the clot becomes
large enough, it can mostly or completely block the flow of
oxygen-rich blood to the part of the heart muscle fed by
the artery. This can lead to angina, myocardial infarction,
or necrosis [4]. Therefore, early detection and diagnosis of
CAD is particularly important for reduction of the mortality
and subsequent complications. The distribution of plaques
within the coronary artery is not homogenous due to local
conditions that induce plaque formation and progression
[5, 6]. Plaque formation is commonly found in areas of low
shear stress or regions of turbulent flow, for example, left
coronary bifurcation [7].

Computational fluid dynamics (CED) allows for efficient
and accurate computations of hemodynamic features of both
normal and abnormal situations in the cardiovascular system
and in vivo simulations of coronary artery flow changes [8, 9].
It also allows for the study of hemodynamic changes of the
coronary artery, even before the plaques are actually formed
in the coronary artery wall or the development of vessel
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occlusion. The current work aims at developing patient-
specific 3D computational models of the arterial tree from
anatomical information provided by 2D monoplane coronary
angiograms, thus facilitating the investigation of hemody-
namic characteristics in simulated coronary models, thus
contributing to the identification of patients with potential
risks of developing coronary artery disease.

In certain circumstances, treatment of coronary disease
can be achieved without surgery. Angioplasty is a nonsurgical
procedure, which is often used to open blocked coronary
arteries. Despite the high resolution images obtained in
cardiovascular imaging using powerful imaging techniques,
such as Multislice Computed Tomography (CT) [10, 11],
Electron-Beam CT [12,13], and Magnetic Resonance Imaging
(MRI) [14, 15], conventional coronary angiography remains
the “gold standard” for the assessment of coronary artery
disease [16]. In this procedure, first, cardiac catheterization
is performed, where a sheath is inserted into an artery. Next,
a catheter is passed through the sheath and guided up the
blood vessel to the arteries surrounding the heart chambers.
A small amount of contrast material is injected through the
catheter and is photographed as it moves through the heart’s
chambers, valves, and major vessels. From the resulting 2D
X-ray images of the contrast material, the surgeon can tell
whether the coronary arteries are narrowed and/or whether
the heart valves are working correctly.

The 2D nature of the images further complicates the
process, as it is, in general, difficult to assess overlapping and
parallel vessels. Furthermore, other important anatomical
characteristics of the arterial tree such as vessel curvature,
torsion, and bifurcation take-off angles may not be reliably
assessed using only 2D angiographic images. As discussed
previously, these latter parameters may be important for
the study of hemodynamic factors related to atherosclerosis
[9, 17]. Therefore, a realistic model of the coronary tree can
alleviate the aforementioned complications, by first providing
a 3D view of the vessels, which makes it significantly easier for
the physician to detect stenoses or aneurisms. Secondly, the
model can be used for further CFD analysis.

There have been a number of studies in the literature
for the quantitative determination of the 3D representation
of the coronary tree based on angiographic views [18-32].
In the former approaches, two or more projection images
from different viewing directions are used to reconstruct the
vessel centrelines in three dimensions. Our research team
has also contributed to the development of 3D coronary
vessel models from monoplane angiogram images [33, 34]
and experimented with fluid flow simulations in the resulting
mesh models of the vessels [35].

In this research, we introduce a semiautomatic method
for reconstruction of coronary vessels in 3D from two mono-
plane angiogram images. The proposed approach incorpo-
rates a new robust edge extraction algorithm, where the user
can choose any pair of start and end points along a vessel
in order to obtain its 3D reconstructed volume, using the
iterative 3D reconstruction approach, proposed previously by
our group [33]. Following the selection of the points by the
user, the process is fully automatic and does not require any
user intervention.
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2. Materials and Methods

We present a methodology for reconstructing realistic
topologies from arterial trees using accurate vessel wall
positions from two conventional monoplane angiograms.
The proposed method involves four main steps: (a) automatic
centreline extraction, (b) a novel automatic edge detection
method, (c) an iterative method for 3D centreline recon-
struction, which results in an accurate representation of the
main components of the arterial tree, namely, Left Anterior
Descending (LAD) or Left Circumflex Artery (LCX), and
finally (d) vessel surface reconstruction using vessel diam-
eter information and intrinsic coordinates. The end result
is a 3D surface representation of the arterial tree, which
can subsequently be meshed using suitable Finite Element
mesh generation software and used in computational fluid
dynamics (CFD) simulations for hemodynamic assessment
in cardiology applications.

2.1. X-Ray Acquisition. The images were acquired using a
Philips Integris 3000H X-Ray C-arm unit with an under
couch tube/over couch image intensifier configuration. The
projections obtained during routine coronary intervention of
5 stenotic patients using pulsed fluoroscopy (12.5p/s) were
LAO, 30° LAO caudal, 30° LAO cranial, anteroposterior with
cranial and caudal angulations, RAO, 30° RAO caudal, and
30° RAO cranial and left lateral. As the image acquisition
process is ECG-gated, the phase of the heart cycle for each
frame can be determined. Other gantry information, such as
the focal spot to image intensifier distance (SID), field of view
(FOV), and gantry orientation, was automatically recorded
and stored with each image file and included in DICOM 3.0
image format. All procedures were performed in accordance
with institutional guidelines, and all patients gave informed
consent before PCI.

2.2. 3D Centreline Reconstruction. The multistage 3D cen-
treline reconstruction procedure consists of the following
steps: (1) vessel enhancement, (2) hysteresis thresholding, (3)
skeletonization, (4) bifurcation and end point detection, and
finally (5) 3D centreline reconstruction. We use an automatic
approach similar to the one proposed by the authors [34] in
order to extract a skeletonized representation of the arterial
tree from projected 2D images.

The algorithm uses a multiscale vessel enhancement
method based on the eigenvalues of the Hessian matrix of the
angiogram images in order to enhance the arterial tree and
following the application of morphological operations, the
final centreline, bifurcation, and end points are automatically
extracted from the angiogram image. A sample centreline
extraction of a patient angiogram is shown in Figure 1. In
the proposed method, the user is only required to select the
start and end points of the vessel sections of interest. This
is shown in Figure 2(a) for a sample selection on the LAD,
LCX, and several branches. The centreline extraction method
starts by finding the closest point on the extracted centreline
of Figure 1(d) to the start and end points, selected by the
user using an interactive tool in the Euclidean distance sense.
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FIGURE 1: Automatic coronary vessel skeletonization: (a) angiogram image, (b) vessel enhanced model, (c) binarized arterial tree, and (d)
skeletonization followed by bifurcation and end point detection for arterial tree branch labelling.

Next, the segment of the vessel which falls in between the
selected points is extracted from the binary centreline image
of Figure 1(d). Finally, spline interpolation is carried out to
obtain a smooth curve, but this time, the bifurcation points
that lie on the path are not used, as they do not fall on
the centre position of the vessel at the point of branching.
However, their coordinates are stored for later usage in the
3D centreline reconstruction stage. The resulting process can
be visualized in Figure 2(b).

Once the centrelines of interest are obtained, a 3D repre-
sentation of the centreline is generated using the concept of
epipolar geometry [33]. This method requires the parameters
of the monoplane imaging system for the 3D reconstruction,
including the distance between each focal spot and the image
plane (source to intensifier distance, SID), the field of view
(FOV) in terms of pixel size, the distance between the focal
spots and the rotation angle, and translation between the
different views taken. Due to the curvature of the arterial
branches, foreshortening is eliminated through an iterative
process. Since two images are not enough to provide non-
cylindrical vessel cross-sectional shapes, the reconstruction
algorithm assumes a circular vessel cross-sectional area.

The final reconstructed arterial tree is obtained by con-
necting the various arterial branches, as shown in Figure 3(a).

The latter method is iterative, which minimizes foreshorten-
ing effect.

2.3. Vessel Edge Extraction. Once the coronary vessel centre-
line points are reconstructed in 3D, knowledge of the vessel
lumen diameter is required in order to construct the 3D vessel
lumen surface. The common method is to use information
about the catheter size and scale accordingly for the diameter
of the vessels. However, foreshortening may affect the vessel’s
diameter on the projected planes. In what follows, we discuss
a novel edge extraction method to address this.

In order to find the vessel walls, starting at the initial cen-
treline point, we build normals to the centreline, comprised of
10 points of equal spacing on each side of the centreline. This
ensures that the vessel walls are covered within this range.
The latter gridding is depicted in Figure 4(a). Next, we use
numerical differentiation in order to calculate the first- and
second-order image derivatives at all of these points. Ideally,
what we aim for is a smooth curve, which is placed correctly
along the boundaries of each of the selected vessels. The
smoothness constraint implies that the local edge direction
differences should be small from pixel to pixel, and the
correct placement of the curve on the vessel walls suggests
that each edge pixel should have a relatively large gradient
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(b)

FIGURE 2: Vessel centreline selection: (a) the user selects points on the arteries on both projections; (b) the corresponding centreline segments
are extracted and are spline-interpolated to yield the final centrelines.

FIGURE 3: 3D vessel reconstruction. (a) Reconstructed 3D vessel centrelines from left and right 2D projections, (b) 3D reconstructed coronary
tree alongside an inside view of the reconstructed vessel at three orthogonal planes. The stenosis can be clearly observed in the middle image
as a sudden reduction in vessel diameter.
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magnitude. A corollary of the latter is that there should be
a small difference between successive edge points in terms
of the magnitude of the gradient and direction of the edge
candidates. In other words, their difference must fall below a
certain threshold (i.e., in terms of optimisation approach, this
should translate to a lower cost). Moreover, to add more accu-
racy to the edge detection algorithm, we include a second-
order derivative component in our cost function. The basic
principle behind this is that the position in an image, where
the second-order derivatives become zero, is also an edge
candidate. Thus, we add the second-order derivative term
as another constraint in our cost function. In other words,
we pose the problem of coronary boundary detection as a
convex optimization problem by minimizing a cost function,
which incorporates both a curvature constraint and a global
constraint that a vessel boundary has to satisfy in order for
the proposed restricted search method to be applicable.

(b)
FIGURE 4: Edge extraction: (a) normals (blue) to the centreline (yellow) are drawn, (b) an edge as a directed graph.

We approach the problem of edge curve extraction in
the angiogram images from a graph theory point of view.
In our approach, the generation of a vessel wall curve from
a start point o, to an end point oy is equivalent to the
generation of a minimum-cost path in a directed graph from
0, to oy, as shown in Figure 4(b). Here, we denote the edge
magnitude of a node o; (where i < N) with e, its second-
order derivative magnitude with ey, and its direction e,
respectively, and define a cost function using the former
constraints on smoothness and edge magnitude. We seek to
optimize the following cost function:
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where 8 is a hyperparameter, which controls the trade-off
between Ist- and 2nd-order edge magnitude and smoothness
(i.e., edge direction), and ¢ is a small positive number, which
prevents numerical instabilities. Finding a minimum-cost
path of the above formula using a brute-force approach
is not trivial in terms of computation. Therefore, we use
dynamic programming to search for the optimal edge nodes
on this graph. In order to do so, we divide the problem
recursively into smaller subproblems, which may need to be
subsequently solved, solving each subproblem and storing
the solutions in a look-up table. In other words, we split the
path between the nodes 0, and oy, into two optimal subpaths
0,0; and o;0,; for any o; lying on the optimal path 0,0y. The
objective function (1) can be written in a recursive form as
follows:

C(01,05... ,0i0) + f(0i150,),  (2)
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Then, the complete optimization problem becomes
C(0,,0,,...,0;) = arg max {C (0y,0,,...,0;)}
” )
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where 0,,...,0; are the optimal nodes selected at each level

of the graph, chosen as the optimal vessel wall point. The
optimal path 0,0; itself can be split into two optimal subpaths
0,0;_, and 0,_,0;, which satisfy the following recursive rela-
tion:

C(ﬁl,ﬁz,...,ﬁi)
= argmax {C (3,3, 01) + f (G0} O
where
C(0,) =e,, (o). (6)

Thus we reduced the optimization of N stages to a two-
variable optimization. As we need single nodes for the initial
start and end nodes, the former are chosen as the nodes
on the normals having the maximum gradient magnitude.
One of the advantages of the proposed vessel wall extraction
method is that it is a sequential edge-oriented approach rather
than a region-oriented one, which takes into account the
spatial context of the vessels, as opposed to a pixel-by-pixel
segmentation that would not be possible in the presence of
noise and loss of coherence in the vessel structures.
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2.4. Three-Dimensional Vessel Wall Reconstruction. The ves-
sel surface reconstruction is based on using intrinsic coor-
dinates by estimating the Frenet frames along the curve at
each centreline point, using the central difference approx-
imation of the derivative among the interior points and
forward/backward differences at the ends. As the geometry of
the centreline trajectory is known, we can, therefore, calculate
the directions of the tangent (T'), normal (N), and binormal
vectors (B), and we can use them to build a tube-like structure
in three dimensions.

Ateach centreline point A along the centreline, we need to
build a 3D circle. Assuming X = (x, y, z) are the coordinates
of the centreline point A, the 3D coordinate of the circle
becomes

X=X+r-(N-cosf+B-sinf), 7)

where 0 is varied between 0 and 360° at intervals L = 2r/s—1,
s being the number of subdivisions.

3. Results

Simulations were run under Matlab R2010a using an Intel
Xeon 5130, 2.00 GHZ processor with 8 GB of RAM. Edge
detection was performed on all the branches selected in the
centreline extraction stage. Based on the results of multiple
simulations, the hyperparameter § was chosen to be 0.75 to
place more weight on the edge magnitudes. In order to better
illustrate the effect of the weighting factor S, the effect of
varying this is shown in Figure 5 for two different values
near the centreline of the vessel. The weighting factor 8 can
be varied between 0 and 1. A weight of one corresponds
to the smoothest path, whereas a weight of zero forces the
path through the brightest pixels (highest edge magnitude)
in the edge image. Simulation times take on average 0.57
seconds to complete including the LAD, LCX vessels, and
three subbranches. The results of the vessel edge extraction
illustrate the robustness of the approach and how branching
points do not alter the shape of the LAD/LCX arteries, as
shown in Figure 6.

In order to validate the accuracy of the edge extraction
results, the results were compared to ground truth segmenta-
tions. However, obtaining ground truth results is not an easy
task and has been known to be a hard problem in image anal-
ysis and pattern recognition systems [36]. The latter is due to
the implicitly subjective nature of image labelling by human
experts. The common approach in vessel segmentation has
often been to approximate ground truth by the creation of a
human expert-generated manual segmentation also known as
“gold standard” to which computer-generated segmentations
can be evaluated. Thus, it seems reasonable that a more robust
approach to the creation of a gold standard is to combine
multiple human generated manual segmentations or choose
the best one among them. Therefore, given a set of manual
segmentations generated by multiple experts, we wish to
obtain a single binary segmentation, which will be considered
the gold standard.

A solution is to use redundancy not only for identifying
the correct vessel annotations for each angiogram image
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FIGURE 5: Effect of the 3 parameter on the smoothness of the final selected vessel: (a) manually drawn centreline shown (white), alongside the
normals (blue), (b) extracted wall boundaries using 8 = 1 (yellow), and 3 = 0.8 (cyan), (c) zoom-in version of rectangular region specified

in (b).

but also for evaluating the labelling quality of the experts.
We use the method proposed in [37], where the authors
use a Maximum likelihood (ML) approach to ground truth
generation.

When using the latter method, we iterate the algorithm
until convergence, following two steps: (1) estimate the
correct label for each vessel branch on each projection, using
labels assigned by three radiologists (1 for edge and 0 for
nonedge), and (2) estimate the quality of the radiologists’
labelling capabilities by comparing the submitted annotations
to the inferred correct answers. The final output is a set of
(estimated) correct vessel edges for each branch on every
projection and a confusion matrix for each radiologist, listing
the error probabilities for each of them. From the confusion
matrix, we can directly measure the overall error rate for
each labeller as the sum of the nondiagonal elements of the
confusion matrix (appropriately weighted by priors). This
results in a single, scalar value as the quality score for each
radiologist. In our studies, the first radiologist turned out to

provide the most accurate annotations. The ROC generated
from the described algorithm is shown in Figure 7.

It is easy to verify that the first curve stretching almost
into the top left corner represents the performance of the
superior model (for a TPR = 0.9, the method commits
virtually no false positives). Next, having obtained the best
labeller, its corresponding labelled edge curves need to be
compared with the extracted curves using the proposed
method. In order to compare the distance between the vessel
edge extraction results to that of the Ist annotator (i.e., ground
truth), we use the Hausdorff distance between the curves to
evaluate the difference. The Hausdorft distance is defined as

S (%, y)
= max {max {mind (x, y)}, max {mind (x, y)}}  (8)
xeX yey,

where d is the underlying metric in the plane, in this case the
Euclidian distance, and X and Y are the two sets of points



ot

——— Edges

— - — Centreline|

P -
~ .

.

Computational and Mathematical Methods in Medicine

| > " ——— Edges

-} — - — Centreline
Yo r »”
.- - .

FIGURE 6: Vessel edge extraction using the proposed dynamic programming method: (a) LAD edge extraction 1st and 2nd projections, left
and right, respectively, and (b) LCX vessel edge extraction 1st and 2nd projections, left and right, respectively.

TABLE I: Discrepancies between ground truth and extracted vessel
walls.

Average Hausdorft distance to ground truth

Patient LAD Ist proj. LAD 2nd proj. LCX Ist proj. L(i))r(o?nd
1 0.0039 0.0041 0.0035 0.0037
2 0.0032 0.0039 0.0031 0.0031
3 0.0041 0.0038 0.0039 0.0042
4 0.0029 0.0031 0.0029 0.0029
5 0.0034 0.0037 0.0033 0.0035

describing the two curves to be compared. The results of the
average distance for the extracted edge curves to the ground
truth curve are shown in Table 1.

As it can be observed from Table 1, there is little dis-
crepancy between the ground truth curves and the extracted
vessel walls obtained using the proposed algorithm. One of
the advantages of the proposed method is its insensitivity

to branching at bifurcations, which further adds to the
robustness of the algorithm.

In order to have another comparison to an existing state-
of-the-art vessel wall delineation method, we compared the
proposed method to the automated vessel contour detection
with manual correction methodology performed with QCA-
CMS version 6.0 (Medis, Leiden, The Netherlands). The
calibration procedure is initiated by the user defining start
and end points in the catheter segment, which are connected
using the Wavepath algorithm [38, 39]. The catheter segment
chosen may be straight or curved, but it must not taper.
The actual contour detection procedure is carried out in two
iterations. In the first iteration, the contours are detected
by defining scanlines perpendicular to the detected pathline
and calculating for each point along the scanline the edge
strength on the basis of the first- and second-order derivative
functions. This process is repeated for each point along
the scanline in increments of approximately 0.l mm. The
contours are then detected using the minimal cost analysis
(MCA) algorithm [40]. In the second iteration, scanlines are
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TABLE 2: Discrepancies between the proposed method and QCA.

Average Hausdorff distance QCA and the proposed method

Patient
LAD Ist proj. LAD 2nd proj. LCX 1st proj. LCX 2nd proj.
1 0.0068 0.0043 0.0052 0.0054
2 0.0051 0.0035 0.0069 0.0057
3 0.0059 0.0045 0.0050 0.0053
4 0.0034 0.0037 0.0035 0.0037
5 0.0062 0.0047 0.0063 0.0047

ROC curve
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FIGURE 7: ROC comparison for the three expert annotators.

defined perpendicularly to each of the individual right and
left contours and the contour detection process is repeated.
During this second iteration, a priori information about the
catheter segment being a cylindrical structure characterized
by parallel, although not necessarily straight, boundaries is
taken into account in the edge detection process. In addition,
the edge detection algorithm is modified by data from the
Modulation Transfer Function (MTF) of the entire imaging
system to correct for its limited resolution. This process
results in two contours which are parallel to each other but
may still be curved. After the boundaries of the catheter have
been detected within an image, the average diameter of the
catheter segment, expressed in pixels, is calculated. Figure 8
shows a comparison between the proposed methodology
and the QCA-CMS. The average Hausdorff distances for the
extracted edge curves using QCA-CMS and the proposed
method are shown in Table 2.

Having obtained the 2D projected vessel wall point
coordinates (i.e., edge curves), the next step is to reconstruct
the vessel walls in three dimensions. As we are only using two
image projections, we assume a circular vessel cross section
at each centreline point. In order to build the vessel surface
in 3D, we proceed as follows. First, we use the 3D centreline
reconstruction algorithm [33] to project the extracted vessel

wall curves onto 3D space. Next, at each centreline point, we
calculate the Euclidean distance of that particular centreline
point to its corresponding edge projected curve points along
its normal. We use the average of the distances as the radius
for building tilted 3D circles in the next stage. Once we
obtained the radii of the vessel at each centreline point, we
build a Frenet frame moving from the start point toward the
end point on each vessel, at each centreline point. Next, we
generate a 3D circle using the binormal and normal vectors,
as described in the previous section. The resulting circles are
meshed, according to the desired subdivision to yield the
projections. In order to obtain the final arterial tree, we carry
out the same procedure for all other vessels and branches
selected in order to obtain the final full three-dimensional
reconstruction. The result of the 3D reconstruction for the
selected branches selected of Figure 2(a) are displayed in Fig-
ure 3(b). The 3D vessel not only allows better quantification
of vessel information but also paves the way for subsequent
tessellation to carry out CDF analysis. The developed GUI
allows the final 3D mesh to be exported as “stl” or “obj”
file. Moreover, other relevant pieces of information such as
torsion and curvature are obtained as outputs for additional
information describing vessel morphology.

4. Conclusions

In this research, we introduced a new edge detection method
for accurate reconstruction of coronary vessel walls in three
dimensions from two monoplane angiogram images. The
multistage approach offers a new automatic paradigm to
reconstruct angiogram images from 2D projections. One of
the main features of the proposed method is the novel robust
edge extraction algorithm for the extraction of vessel edges
using dynamic programming. The latter method is insensitive
to the presence of bifurcation and branching points, which
is a major problem in coronary vessels edge extraction. The
user clicks on the desired segments of vessels and the process
thereafter is fully automatic requiring no user interaction. The
results show the robustness of the approach and its potential
use in coronary image-guided interventions.

We introduced a pipeline for generation of patient-
specific 3D models of coronary vessels using anatomical
information from angiograms. Further work is in progress
on the Finite Element (FEM) mesh models of the resulting
reconstructions by adding boundary and material properties,
with the ultimate goal of creating realistic vessel models.
The resulting vessel models could be further coupled with
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FIGURE 8: Vessel edge extraction comparison using the proposed dynamic programming method and QCA-CMS 6.0, left and right,

respectively: (a) LAD, (b) LCX.

the method of [35], incorporating blood flow in a virtual
environment to carry out hemodynamic analysis of coronary
blood flows in patient coronary arteries.
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