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Introduction
TLRs are perhaps the best-studied pathogen-recognition recep-

tors in mammals, and they serve essential functions in mediating 

innate immunity and establishing adaptive immunity (Akira and 

Takeda, 2004). TLRs specifi cally recognize a wide array of mi-

crobial components, referred to as pathogen-associated molecular 

patterns (PAMPs), and upon activation, they engage a signaling 

pathway leading to proinfl ammatory responses against patho-

genic infection. In addition to a well-described role in immunity 

(Hoffmann, 2003), Toll, which is the Drosophila melanogaster 

orthologue of the TLRs, plays crucial roles in establishing the 

dorsoventral axis polarity during embryogenesis (Belvin and 

 Anderson, 1996), in synaptogenesis, and in axon pathfi nding (Rose 

et al., 1997). Such nonimmune functions of this receptor family 

 remain undiscovered in mammals, despite the fact that TLRs are 

evolutionarily conserved across species (Hoffmann et al., 1999).

In the mammalian central nervous system (CNS), TLRs 

are expressed in microglia and astrocytes and activate infl am-

matory pathways in response to pathogenic infection, sterile 

 tissue injury, or in neurodegeneration (Lehnardt et al., 2003; 

Kielian, 2006). The expression of certain TLRs has been re-

cently documented in mammalian neurons (Prehaud et al., 

2005; Wadachi and Hargreaves, 2006), but the functional sig-

nifi cance in this cell type has yet to be elucidated. In this study, 

we defi ne the expression and localization of TLR8 in mouse 

neurons and reveal the dissociable roles for TLR8 in neurite 

outgrowth and neuronal apoptosis.

Results and discussion
Western-blot analysis for TLRs within the developing mouse 

brain revealed a unique expression profi le for TLR8. TLR8 ex-

pression in brain (Fig. 1 A) was detected by embryonic day 12 

(E12), increased in late embryonic and neonatal stages, and then 

declined drastically after postnatal day 21 (P21), which is when 

the basic patterns of neurogenesis and axonogenesis are complete. 

In adult brain, TLR8 expression is low, but detectable (Fig. 1 A). 

The remarkable abundance of TLR8 in embryonic brains, and its 

developmentally regulated expression, was unexpected because 

mammalian TLRs are thought to be expressed predominantly in 

pathogen-sensing tissues and to function in immunity.
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oll receptors in Drosophila melanogaster function in 

morphogenesis and host defense. Mammalian or-

thologues of Toll, the Toll-like receptors (TLRs), have 

been studied extensively for their essential functions in 

controlling innate and adaptive immune responses. We 

report that TLR8 is dynamically expressed during mouse 

brain development and localizes to neurons and axons. 

Agonist stimulation of TLR8 in cultured cortical neurons 

causes inhibition of neurite outgrowth and induces apop-

tosis in a dissociable manner. Our evidence indicates that 

such TLR8-mediated neuronal responses do not involve 

the canonical TLR–NF-κB signaling pathway. These fi nd-

ings reveal novel functions for TLR8 in the mammalian 

nervous system that are distinct from the classical role of 

TLRs in immunity.
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We further examined the expression pattern of TLR8 in 

the developing mouse nervous system by immunohistochemis-

try with an anti-TLR8 polyclonal antibody whose specifi city we 

verifi ed by human embryonic kidney cell transfection and anti-

body absorption (Fig. S1 A, available at http://www.jcb.org/cgi/

content/full/jcb.200606016/DC1). In early embryos, TLR8 is 

highly expressed in peripheral sensory and sympathetic ganglia 

and in postmitotic migrating CNS cells, but not in the periven-

tricular cell proliferation zones (Fig. 1 B and Fig. S1 A, c). 

Whole-mount in situ hybridization with a Tlr8-specifi c probe 

yielded an mRNA distribution signal at E12 that closely ap-

proximates the immunostaining pattern (Fig. 1 C). TLR8 ex-

pression in late embryonic brains was sharply restricted to 

axonal tracts, including the olfactory nerve fi ber layer, cortical 

intermediate zone, internal capsule, anterior commissure, fi m-

bria of hippocampus, optic chiasm, and other major fi ber sys-

tems (Fig. 1 B and Fig. S1 B). Postnatally, TLR8 is diffusely 

expressed in most regions of the brain and localizes mainly to 

neuronal somata (Fig. 1 B). This dynamically changing spatio-

temporal expression pattern implies a role for TLR8 in develop-

ment of the mammalian nervous system.

In neurons isolated from E16 mouse neocortex, TLR8 is 

expressed at a markedly higher level than in macrophages (Fig. 

1 D). TLR8 in cultured cortical neurons localizes to the perinu-

clear cytoplasm and neurites, including their growth cones (Fig. 

1 E). The myeloid differentiation factor 88 (MyD88), which is 

an essential adaptor protein for signaling through all TLRs, 

 except for TLR3 (Akira and Takeda, 2004), was also detected 

in cortical neurons (Fig. 1 D). TLR4 is not present in cortical 

neurons (Fig. 1 D), as we previously reported (Lehnardt et al., 

2003), and indicates the purity of our neuronal cultures, as mi-

croglia are known to express high levels of TLR4 (Lehnardt 

et al., 2003). It is noteworthy that TLR7, a TLR family member 

phylogenetically and structurally related to TLR8 (Du et al., 

2000), is not expressed by neurons (Fig. 1 D).

Mouse TLR8 was previously suggested to be nonfunc-

tional, based on the observation that ligand stimulation of hu-

man, but not mouse, TLR8 induces NF-κB activation (Jurk 

et al., 2002). Because the Tlr8 genomic locus is conserved be-

tween human and mouse (Roach et al., 2005), and because the 

amino acid residues within the TIR domain critical to TLR sig-

naling are identical between human and mouse TLR8 (unpub-

lished data), the mechanism underlying such a species-dependent 

NF-κB activation by TLR8 remains unclear. However, the in-

ability of mouse TLR8 to activate NF-κB does not necessarily 

infer a lack of function, as TLR8 may function in biological 

processes that do not require NF-κB activation, or may alterna-

tively operate in a cell type–specifi c manner.

To investigate the function of TLR8 in neurons, we analyzed 

the morphological response of freshly plated cortical neurons to 

a highly permeable synthetic compound,  resiquimod (R-848). 

Although it is a dual TLR7 and TLR8 agonist (Jurk et al., 2002), 

Figure 1. TLR8 is dynamically expressed during mouse brain development and localizes to axons and neurons. (A) Western blot analysis of TLR8 expres-
sion in the developing mouse brains. Spleen (Sp) and Raw264.7 (Raw) macrophages are positive controls for anti-TLR8 immunoreactivity. β-actin serves as 
loading control. (B) Immunohistochemical analysis of TLR8 expression in sagittal sections of E12 embryo, E18 brain, and P14 cerebral cortex. The images 
of the E12 embryo and E18 brain were acquired by confocal microscopy using the Tile Scan function. (C) Whole-mount in situ hybridization of E12 embryo 
using a digoxin (DIG)-labeled probe specifi c to Tlr8 mRNA. Arrowheads in B and C indicate the sympathetic nerve trunk. (D) Western blotting of TLR4, 
TLR7, TLR8, MyD88, and NF-κB subunit p65 in cortical neurons cultured for 1 (DIV1) and 5 d (DIV5). (E) Immunocytochemistry of TLR8 in cultured cortical 
neurons. MAP2 and neurofi lament 200 kD (NFL) are neuron-specifi c markers. An affi nity-purifi ed anti-TLR8 polyclonal antibody was used in A, B, D, and E. 
P, postnatal day; P12w, 12-wk-old; ic, internal capsule; IMZ, cortical intermediate zone; f1, fi mbria of hippocampus, OC, optic chiasm, ONL, olfactory 
nerve layer. Bars: (B, top, and C) 1 mm; (B, bottom) 100 μm; (E) 50 μm.
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R-848 functions only through TLR8 in neurons, as TLR7 is 

 absent (Fig. 1 D). Primary neurites of neurons stimulated 

with R-848 for 24 h were signifi cantly shorter in length 

(Fig. 2, A and B) and fewer in number (Fig. 2, A and C) com-

pared with controls. A slight, but substantial, increase in 

neuronal death after R-848 exposure was observed by nuclear 

morphology (Fig. 2 D). Anticleaved caspase3 immunostaining 

suggested that the neuronal death was mediated by the classical 

effector caspase pathway (Fig. 2 E). A dose–response (Fig. 2, F 

and G) and time-course (Fig. 2, H and I) analysis revealed that 

the effects of R-848 on neurons were concentration-dependent 

and relatively slow. Corresponding results were obtained with 

R-848 treatment on more mature neurons replated from a 5-d-

in vitro (DIV5) culture (Fig. S2, available at http://www.jcb.

org/cgi/content/full/jcb.200606016/DC1). As controls, the ex-

posure of neurons to lipopolysaccharide (LPS), which is a po-

tent inducer of neuronal death in mixed CNS cultures through 

activation of TLR4 on microglia (Lehnardt et al., 2003), and 

to loxoribine, which is a TLR7-specifi c agonist (Heil et al., 

2003), produced no detectable effect (Fig. 2, A–D), suggest-

ing a lack of contaminating CNS immune cells in the culture 

and a selective role for TLR8 in the R-848–induced neuronal 

responses. The effects of R-848 did not appear to be mediated 

through soluble secreted factors because conditioned medium 

from R-848–stimulated cultures failed to affect morphology 

of freshly plated neurons (Fig. 2, J and K). Thus, R-848 

 specifi cally inhibits neurite outgrowth and triggers apoptosis in 

cultured neurons.

We noted that in R-848–stimulated cultures, �13% of the 

cleaved caspase3-positive neurons exhibited neurite lengths 

comparable to those of untreated neurons, whereas 12% of the 

cleaved caspase3-negative neurons lacked processes (Fig. 3 A). 

This observation, as well as the similar timing for the onset of 

R-848–induced neurite outgrowth inhibition and apoptosis (Fig. 

2, H and I), implies that these events are not necessarily sequen-

tial, but may result from two parallel processes. Therefore, we 

next addressed whether the effects of R-848 on neurons could 

be dissociated. Addition of a pan-caspase (unpublished data) or 

a caspase3-specifi c inhibitor (Z-DEVD-FMK) completely in-

hibited R-848–induced neuronal apoptosis (Fig. 3, B and C). 

Despite this elimination of the apoptotic response, R-848 stimula-

tion still profoundly inhibited neurite outgrowth (Fig. 3, B and D), 

suggesting that R-848–induced inhibition of neurite outgrowth 

is not a consequence of apoptosis. Furthermore, removal of 

R-848 from the culture medium immediately before the appear-

ance of the earliest morphological changes in neurons restored 

neurite outgrowth, but did not prevent apoptosis (Fig. 3, E and F). 

Collectively, these results suggest that R-848–induced neurite 

Figure 2. R-848 inhibits neurite outgrowth and triggers 
apoptosis in freshly cultured cortical neurons. (A) Repre-
sentative micrographs of neurons untreated (control) or 
treated with 500 μM loxoribine (Lox; TLR7 agonist), 100 
μM R-848 (TLR7/8 agonist), or 5 μg/ml LPS (TLR4 ago-
nist) for 24 h. Cells were fi xed and double-immunostained 
with anti–βIII-tubulin (green) and anti-cleaved caspase3 
(red) monoclonal antibodies. (B–D) Quantifi cation of the 
effects of PAMPs on neurite length (B), neurite number (C), 
and cell death (D) as characterized by condensed nuclei 
(<50 ± 25 μm2). (E) Representative micrographs of 
R-848–treated cultures show a neuron (βIII-tubulin/TUJ1) 
with a condensed nucleus (DAPI; arrowhead) stained by 
anti-cleaved caspase3. Dose–response curve (F and G) 
and time-course (H and I) of R-848 effects on neurite out-
growth (F and H) and apoptosis (G and I). In F and G, 
neurons were treated for 24 h; in H and I, neurons were 
exposed to 100 μM R-848. (J and K) Quantifi cation of 
neurite length (J) and apoptosis (K) of neurons cultured for 
24 h in normal or conditioned medium with or without 
100 μM R-848. In a separate culture, neurons grown in 
normal medium were fi rst stimulated with 100 μM R-848 
for 18 h, washed thoroughly to eliminate trace amounts of 
R-848, and further incubated in fresh normal medium for 
12 h, after which the supernatant was collected as the 
conditioned medium. Statistical analysis was done by 
t test. *, P < 0.05; **, P < 0.01 versus controls (untreated, 
0 μM or 0 h). Data are the mean ± the SEM for triplicate 
determinations. Bars: (A) 100 μm; (E) 50 μm.
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outgrowth inhibition and apoptosis likely occur independently 

of one another.

To determine whether TLR8, which is intracellularly lo-

calized in neurons (Fig. 1 E), specifi cally mediates the observed 

effects of R-848, we introduced an anti-TLR8 polyclonal anti-

body with validated specifi city (Fig. S1 A) into freshly cultured 

neurons by using Chariot, which is a protein-transduction re-

agent previously demonstrated to deliver antibodies effi ciently 

into postmitotic neurons (Coulpier et al., 2002). As protein de-

livery bypasses the transcription–translation process associated 

with conventional transfection techniques, it provides the op-

portunity to study early and rapidly proceeding cellular events, 

such as neurite outgrowth. Anti–TLR8-transduced neurons 

 exhibited substantially longer neurite lengths (Fig. 4, A and B) 

and reduced apoptosis (Fig. 4, A and C) in response to R-848 

compared with control IgG-transduced neurons. Similar results 

were obtained with an anti-TLR8 monoclonal antibody (unpub-

lished data). The attenuating effect of anti-TLR8 antibody was 

abrogated by co-delivery of an inhibitory peptide specifi c to the 

antibody (unpublished data). These results show that R-848 in-

hibits neurite outgrowth and triggers apoptosis through TLR8. 

The partial blocking effect of anti-TLR8 antibody may be at-

tributed to incomplete inhibition of TLR8, or alternatively, to 

the implication of other, yet unknown, mechanisms. R-848 was 

recently shown to activate caspase 1 in macrophages through 

cyropyrin/Nalp3 in a MAPK/NF-κB/TLR7-independent  manner 

Figure 3. Neurite outgrowth inhibition and neuronal apoptosis induced by R-848 are dissociable. (A) Neurite length distribution of the cleaved caspase3-
positive (C3+; n = 64) and the cleaved caspase3-negative neurons (C3−; n = 338) in cultures treated with 100 μM R-848 for 24 h. Cells with neurite 
length of <10 μm are defi ned as having no neurites, and cells with neurites longer than the average neurite length of the untreated neurons (56.4 ± 5.9 
μm) are considered as having normal neurites (indicated by the horizontal bar). The insert shows a representative fi eld of R-848–treated cultures. Asterisk 
and arrowheads indicate a C3+ cell with normal neurites and C3− cells with no neurites, respectively. Cells were fi xed and double-immunostained with 
anti–βIII-tubulin (green) and anti-cleaved caspase3 (red) antibodies. (B) Representative micrographs of neurons untreated (control) or treated with 100 μM 
R-848 for 24 h in the presence of vehicle control (1% DMSO) or caspase3 inhibitor (20 μM Z-DEVD-FMK). (C and D) Quantifi cation of the effects of block-
ing caspase3 activity on R-848–induced apoptosis (C) and neurite outgrowth inhibition (D). (E and F) Quantifi cation of neurite length (E) and apoptosis (F) 
of neurons that were initially exposed to 100 μM R-848 for 12 h (the time when the R-848–induced morphological changes become detectable), then 
switched to R-848–free or –containing medium for a further incubation of 36 h. Control cultures were never exposed to R-848. Statistical analysis was done 
by t test. **, P < 0.01 versus controls. Data are the mean ± the SEM for triplicate determinations. Bars, 50 μm.

Figure 4. R-848 effects on neurons are attenuated by a 
polyclonal antibody specifi cally against TLR8. (A) Repre-
sentative micrographs of nonimmune IgG- and anti-TLR8 
(α-TLR8)–transduced neurons that were either untreated 
(control) or treated with 100 μM R-848 for 18 h. Cells were 
fi xed and double-immunostained with anti–βIII-tubulin 
(green) and anti-cleaved caspase3 (red) antibodies. Bar, 
50 μm. (B and C) Quantifi cation of the anti-TLR8–
 mediated blocking effects on R-848–induced neurite out-
growth inhibition (B) and apoptosis (C). Statistical analysis 
was done by t test. *, P < 0.05 versus nonimmune IgG-
transduced neurons treated with R-848. Data are the 
mean ± the SEM for triplicate determinations.
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(Kanneganti et al., 2006), and future work will determine whether 

this cyropyrin pathway mediates R-848 effects on neurons and 

if it relates to TLR8 signaling.

To dissect the mechanism underlying TLR8-activated 

neuronal responses, we investigated whether TLR8 in neurons 

signals through its conventional pathway, the MAPK and NF-κB 

cascades (Akira and Takeda, 2004). A highly sensitive ELISA-

based analysis revealed that R-848 did not induce NF-κB 

(Fig. 5 A) or AP-1 (unpublished data) transactivation in cul-

tured neurons. Furthermore, IκBα (Ser32) phosphorylation and 

other characteristic hallmarks of TLR signaling, including the 

phosphorylation of ERK1/2, SAPK/JNK, Akt, and GSK3β, 

were not detected in neurons (Fig. 5 B). In contrast, these sig-

naling molecules were readily activated by R-848 in macro-

phages (Fig. 5 B). As additional evidence that neuronal TLR8 

signaling occurs independently of the canonical TLR–MyD88–

NF-κB pathway, MyD88 defi ciency did not confer resistance 

to R-848 effects on the morphology of cultured neurons (unpub-

lished data).

Interestingly, two essential components of the canoni-

cal TLR pathway, IκBα and interleukin 1 receptor–associated 

 kinase 4 (IRAK4), were markedly down-regulated in cultured 

neurons after prolonged (9 h) R-848 stimulation (Fig. 5, B–E). 

A transient reduction of IκBα was also observed 5 min after 

R-848 administration (Fig. 5, B and C). The decrease of IκBα 

likely occurred through a previously described (O’Connor 

et al., 2005) phosphorylation-independent degradation process 

because IκBα (Ser32) phosphorylation was not detected in 

R-848–stimulated neurons (Fig. 5 B). Prolonged TLR stimula-

tion was shown to cause IRAK4 degradation in macrophages 

(Hatao et al., 2004). Notably, the timing of the down- regulation 

of IκBα and IRAK4 coincided with the onset of R-848–

induced neurite outgrowth inhibition and apoptosis (Fig. 2, H 

and I), suggesting a possible link between these events. IκBα 

may be important in neuronal TLR8 signaling, in light of 

its capacity to regulate gene transcriptional activity indepen-

dent of NF-κB (Viatour et al., 2003). It is also interesting to 

note that a proapoptotic role has been recently suggested for 

IRAK4 (Salaun et al., 2006). R-848–induced down-regulation 

of IRAK4 may provide a feedback mechanism to prevent ex-

cessive neuronal death.

Our results suggest that, fundamentally different from in 

immune cells, TLR8 in neurons functions in a NF-κB–independent 

manner. Similarly, our work with neuron cultures from Tlr3-

 defi cient mice suggests that TLR3 stimulation by polyinosinic-

polycytidylic acid inhibits neurite extension, but does not activate 

NF-κB (unpublished data). As NF-κB activation has been 

 implicated in promoting both neurite outgrowth and neuronal 

survival (Foehr et al., 2000), it is conceivable that TLR-signaling 

in neurons leading to neurite suppression and apoptosis does 

not involve the NF-κB pathway.

Although the physiological relevance of TLR8 in neuro-

development is yet to be determined, its role may involve pro-

cesses negatively regulating axonogenesis and neuron number 

in the developing nervous system, in light of the developmen-

tally regulated expression of TLR8 in axons and neurons, as 

well as the capability of TLR8 to inhibit neurite outgrowth and 

induce neuronal apoptosis. Our fi ndings also add important evi-

dence supporting the emerging concept that traditional  “immune 

molecules” may possess distinct functions in neuronal processes 

(Boulanger and Shatz, 2004).

Materials and methods
Animals
Swiss-Webster mice were obtained from Taconic Farms. All animal proce-
dures were conducted in accord with the National Institutes of Health and 
the Harvard Medical School guidelines.

Chemicals and antibodies
R-848 was purchased from GL Synthesis; LPS was purchased from List Bio-
logical Laboratories; Z-DEVD-FMK was purchased from Biovision;  loxoribine 

Figure 5. TLR8 stimulation in neurons does not activate 
the canonical TLR–NF-𝛋B signaling pathway, but rather 
down-regulates I𝛋B𝛂 and IRAK4. (A) ELISA assay for NF-κB 
(p65) transactivation using nuclear extracts from corti-
cal neurons stimulated with 100 μM R-848, 500 μM 
loxoribine, 5 μg/ml LPS, or 10 ng/ml TNFα for the indi-
cated times. LPS and TNFα serve as negative and positive 
controls, respectively. (B) Western blotting of the hallmarks 
of the conventional TLR-signaling pathway with lysates 
from neurons and Raw264.7 macrophages treated with 
100 μM R-848 for the indicated times. (C) Quantifi cation 
of changes in IκBα levels in R-848–stimulated neurons by 
band densitometry. A representative blot is shown in B. 
(D) Western blotting of IRAK4 in neurons stimulated with 
100 μM R-848 for the indicated times. Note that TLR8 
 levels remain unchanged. (E) Quantifi cation of changes 
in IRAK4 levels by band densitometry. A representative 
blot is shown in D. Data in C and E, expressed as percent-
age normalized to controls (100%), are the mean ± the 
SEM for pooled Western-blots from three independent cul-
tures. Statistical analysis was done by t test. *, P < 0.05 
versus controls.
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was obtained from Invivogen; rabbit anti-TLR7 polyclonal antibody, rabbit 
anti-TLR8 polyclonal antibody, and synthetic inhibitory peptide were 
 obtained from Invitrogen; rabbit anti-TLR4 and rabbit anti–NF-κB p65 (C-20) 
polyclonal antibodies were purchased from Santa Cruz Biotechnology, 
Inc.; rabbit anti-MyD88 polyclonal, mouse anti-neurofi lament (200 kD) 
monoclonal, and mouse anti–MAP-2 monoclonal antibodies were obtained 
from CHEMICON International, Inc.; recombinant mouse TNFα, mouse 
anti–β-actin monoclonal antibody, cytosine arabinoside (Ara-C), and 
avertin (2,2,2-Tribromoethanol) were purchased from Sigma-Aldrich; 
mouse anti-neuronal class III β-tubulin (TUJ1) monoclonal antibody was ob-
tained from Covance; rabbit anti-cleaved caspase3 (Asp175) monoclonal 
(5A1), rabbit anti-IκBα polyclonal, rabbit anti–phospho-IκBα (Ser32) poly-
clonal, rabbit anti-p44/42 MAPK polyclonal, rabbit anti–phospho-p44/42 
(Thr202/Tyr204) polyclonal, rabbit anti–phospho-SAPK/JNK (Thr183/
Tyr185) polyclonal, rabbit anti–phospho-Akt (Ser437) polyclonal, and rab-
bit anti-GSK3β (Ser9) polyclonal antibodies were obtained from Cell Sig-
naling Technology; rabbit anti-IRAK4 polyclonal antibody was purchased 
from Millipore; goat anti–rabbit/mouse IgG-HRP was obtained from GE 
Healthcare; and goat anti–rabbit/mouse–FITC/Cy3 was purchased from 
Jackson ImmunoResearch Laboratories.

Whole-mount in situ hybridization
The nucleotide sequence C A T G G A T T C T G A C G T G C T T T T G T C T G C T G T C C T-
C T G G A A C C A G T G CCA located within the N terminus of mouse Tlr8 (nt 
81–128; GeneBank accession no. NM_133212) was selected as the 
probe, of which specifi city was assessed by BLAST. The 48-bp oligonucle-
otide antisense and sense probes were synthesized and labeled with 10 
optimally spaced DIG molecules by GeneDetect.com Ltd. Whole-mount 
in situ hybridization with E12–12.5 embryos was performed following the 
manufacturer’s protocol. The anti–DIG-AP Fab fragment was purchased 
from Roche.

Primary neuron culture and stimulation
Neocortical neurons from mouse E16–17 embryos were prepared as pre-
viously described (Lehnardt et al., 2003). Typically, >97% cells generated 
from the procedure were neurons, as estimated by neuron-specifi c βIII-
 tubulin (TUJ1) staining. Cells were seeded at a density of 4 × 104 cells/
well on poly-L-lysine–coated 12-mm coverslips or at a density of 2.5 × 106 
cells/well on 6-well plates, and cultured in neurobasal medium (Invitrogen) 
supplemented with B-27 (Invitrogen), 0.5 mM L-glutamine, and 1% antibi-
otic/antimycotic solution. Neurons freshly cultured for 4 h or transduced 
with antibodies (see the following section) were treated with various stimuli 
and further incubated for the times indicated. When applicable, 20 μM 
Z-DEVD-FMK or 1% DMSO (vehicle control) was added into the culture 1 h 
before the application of R-848. For all assays, including ELISA, morpho-
logical, and Western blot analysis, every condition studied was performed 
in triplicate wells.

Chariot-mediated delivery of antibody
The antibody delivery procedure was performed with Chariot reagents 
(Active Motif) following the manufacturer’s instructions. In brief, 2 μg anti-
TLR8 polyclonal antibody or nonimmune IgG was incubated with 2 μl of 
the Chariot reagent for 30 min at RT. The formulated antibody–Chariot 
complex was then applied onto neurons (which had been grown for 4 h 
 after isolation) for 4 h of incubation to allow antibody internalization. When 
needed, 2 μg inhibitory peptide specifi c to the anti-TLR8 polyclonal anti-
body was transduced together with the anti-TLR8 antibody. The antibody- 
or nonimmune IgG–transduced cells were either cultured under normal 
conditions or subjected to R-848 stimulation.

Preparation of lysates and Western blotting
For tissues, adult spleen or mouse brains at designated developmental 
stages were dissected out under a stereomicroscope from the timed-
 pregnant or postnatal mice. 3–20 brains (depending on stages) from the same 
developmental stage were pooled together to eliminate the discrepancy 
between individuals. For cell cultures, primary cortical neurons and 
Raw264.7 macrophages (American Type Culture Collection), which were 
untreated or treated with various stimuli, were collected at the times indi-
cated. The collected tissues or cells were lysed in RIPA buffer (150 mM 
NaCl, 50 mM Tris, 1% NP-40, 0.25% sodium deoxycholate, and 1 mM 
EGTA) supplemented with protease inhibitor cocktail tablet (Roche) and 
phosphatase inhibitors sodium orthovanadate (1 mM) plus NaF (1 mM). 
The protein concentration was determined using a Bradford-based assay 
(Bio-Rad Laboratories). The equally loaded protein samples were sepa-
rated by SDS-PAGE using 10–20% linear Criterion gels (Bio-Rad Laboratories) 

and then electro-transferred onto a polyvinylidene difl uoride membrane 
(Bio-Rad Laboratories) at 4°C overnight. The membrane was incubated in 
blocking solution (5% nonfat dry milk and 0.1% Tween-20 in Tris-buffered 
saline) at RT for 1 h, and then incubated with primary antibodies diluted 
(anti-TLR8 polyclonal antibody 1:1,000; other primary antibodies 
1:1,000–2,000) in the blocking solution at 4°C overnight, followed by 
a thorough washing procedure and subsequent incubation with HRP-
 conjugated goat anti–rabbit or goat anti–mouse IgG (1:4,000 dilution) at 
RT for 1 h. Finally, ECL Plus reagents (GE Healthcare) were applied onto the 
membrane to detect the antibody-bound bands according to the manufac-
turer’s instruction, and the resultant chemiluminescent signals were visual-
ized with Kodak X-OMAT fi lm (Kodak). Band densitometry was performed 
using IPLab3.5 software (Scanalytics) for Western-blots from three indepen-
dent experiments.

Preparation of nuclear extracts and ELISA assay of NF-𝛋B activation
Nuclear fractions from the stimulated neurons were prepared using the Nu-
clear Extract kit (Active Motif), and NF-κB assay was performed using the 
TransAM ELISA kit (Active Motif) according to the manufacture’s protocols. 
In brief, 5 μg nuclear proteins were incubated in a 96-well plate coated 
with the oligonucleotide containing the NF-κB–binding sequence (5′-G G G-
A C T T T C C -3′). The activated transcription factor specifi cally bound to the 
immobilized oligonucleotide was detected using the antibody against p65 
and followed by HRP-conjugated secondary antibody detection. The color-
developing solution was applied in the sample wells, and the absorbance 
was quantifi ed at 450 nm by spectrophotometry using a microplate reader 
(Spectra MAX250; Molecular Devices).

Immunohistochemistry and immunocytochemistry
For tissues, whole embryos or embryonic brains were dissected out and 
fi xed by immersion in 4% PFA overnight at 4°C. Postnatal and adult mice 
were perfused transcardially with 4% PFA after anesthetization with avertin, 
and tissues were subsequently removed and postfi xed overnight at 4°C. 
The collected tissues were then embedded in paraffi n and cut into 5-μm-
thick sagittal sections, which were deparaffi nized using a standard histol-
ogy protocol immediately before immunohistochemical staining. For 
cultures, cells grown on coverslips were fi xed with either methanol for 10 
min at –20°C or 4% PFA for 10 min at RT for immunocytochemistry. In the 
staining procedure, tissue sections or cell coverslips were permeabilized 
with 0.5% Triton X-100 (Sigma-Aldrich) for 10 min, and then blocked with 
the buffer containing 10% normal goat serum (Sigma-Aldrich), 1% (wt/vol) 
BSA, and 0.2% (vol/vol) Triton X-100 for 2 h at RT, followed by incubation 
with primary antibodies that were diluted (anti-TLR8 polyclonal and anti-
neurofi lament 200 kD monoclonal antibodies 1:50 for immunohistochem-
istry, 1:100 for immunocytochemistry; anti-MAP2 monoclonal antibody 
1:50; and anti-βIII-tubulin and anti-cleaved caspase3 monoclonal antibod-
ies 1:100) in the dilution buffer (2% normal goat serum, 1% BSA, and 
0.1% Triton X-100) overnight at 4°C. Samples were subsequently incu-
bated with FITC- and/or Cy3-conjugated species-specifi c secondary anti-
body/antibodies in the dilution buffer (1:200 dilution) for 1 h at RT. 
V E C T A S H I E L D  Mounting Medium with DAPI (Vector Laboratories) was used 
to mount the fl uorescently labeled samples and to stain cell nuclei.

Microscopic imaging analysis
The stained sections or coverslips were visualized and the images were 
digitally acquired using a fl uorescence microscope (Eclipse 660; Nikon) 
equipped with a Spot cooled charge-coupled device camera (Diagnostic 
Instruments). In some cases, a confocal microscope (LSM510; Carl Zeiss 
MicroImaging, Inc.) was used.

To evaluate apoptosis, images were captured with a 10× objective 
lens (Plan Fluor; Nikon) in an unbiased manner. As the majority of cells that 
display condensed nuclei (visualized by DAPI), which is a characteristic 
morphology of apoptotic cells, were clearly stained by anti-cleaved cas-
pase3 (Asp175) monoclonal (5A1) antibody, the rate of apoptosis was ex-
pressed as the percentage of the cleaved caspase3-positive cells relative to 
the total cells within a given fi eld (300–400 cells/fi eld). The apoptosis rate 
presented in the fi gures was obtained as a mean from 12 fi elds randomly 
chosen from the triplicate wells of each condition studied (n = 12 fi elds).

To determine neurite outgrowth, images were acquired with a 20× 
objective lens (Plan Fluor; Nikon) from two randomly chosen fi elds in 
each well, triplicate wells of every condition. Neuron-specifi c βIII-tubulin 
(TUJ1) and the cleaved caspase3 were stained to visualize the neuronal 
somata and processes and to identify the apoptotic cells, respectively. 
Unless indicated, only the neurites of the cleaved caspase3-negative cells 
were used for measurement to eliminate the impact of the apoptotic cell 
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morphology on the outcome of statistical analysis for neurite parameters. 
A primary neurite was defi ned as a process extending from the cell body 
by at least one cell diameter (�10 μm). The primary neurites of nonapop-
totic cells were individually traced using Spot software (Version 4.6) with 
the Curve tool for 20–30 cells within a given fi eld for all fi elds acquired 
for every condition (n = 100–180 cells/condition). The length of indi-
vidual neurites was automatically calculated according to the calibrated 
scales using the same software. The total number of the measured pri-
mary neurites was counted. The measurement data were then exported 
into Excel 2003 (Microsoft) for statistical analysis. The average neurite 
length and neurite number were obtained by dividing the total neurite 
length and total number of neurites, respectively, by the total number of 
the cleaved caspase3-negative cells (including cells bearing no neurites) 
measured for each condition.

Representative images shown in the fi gures were modifi ed using the 
Level tool in Photoshop (Adobe) to enhance detail and contrast. The same 
adjustment was applied over the image as a whole for all original images.

Statistical analysis
The signifi cance of difference for quantitative analysis was assessed by 
pair-wise comparisons with t-test. Data are presented as the mean ± the 
SEM. Unless indicated, all cell culture experiments were performed with 
samples from three independent cell preparations.

Online supplemental material
Fig. S1 shows the specifi city of the affi nity-purifi ed anti-TLR8 polyclonal an-
tibody and the axon-specifi c expression of TLR8 in the embryonic brain. 
Fig. S2 shows that R-848 inhibits neurite outgrowth and triggers apoptosis 
in neurons developed in vitro. There is also a Supplemental materials and 
methods. Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200606016/DC1.
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