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Recent years of research have shown that the complex temporal structure of ongoing
oscillations is scale-free and characterized by long-range temporal correlations. Detrended
fluctuation analysis (DFA) has proven particularly useful, revealing that genetic variation,
normal development, or disease can lead to differences in the scale-free amplitude modu-
lation of oscillations. Furthermore, amplitude dynamics is remarkably independent of the
time-averaged oscillation power, indicating that the DFA provides unique insights into the
functional organization of neuronal systems. To facilitate understanding and encourage
wider use of scaling analysis of neuronal oscillations, we provide a pedagogical explana-
tion of the DFA algorithm and its underlying theory. Practical advice on applying DFA to
oscillations is supported by MATLAB scripts from the Neurophysiological Biomarker Tool-
box (NBT) and links to the NBT tutorial website http://www.nbtwiki.net/. Finally, we provide
a brief overview of insights derived from the application of DFA to ongoing oscillations in
health and disease, and discuss the putative relevance of criticality for understanding the
mechanism underlying scale-free modulation of oscillations.

Keywords: long-range temporal correlations, criticality, ongoing oscillations, detrended fluctuation analysis,
scale-free dynamics

INTRODUCTION
When investigating nature we often discard the observed vari-
ation and describe its properties in terms of an average, such
as the mean or median (Gilden, 2001). For some objects or
processes, however, the average value is a poor description, because
they do not have a typical or “characteristic” scale. Such systems
are broadly referred to as “scale-free” (Bassingthwaighte et al.,
1994). There is growing evidence that physiological processes can
exhibit fluctuations without characteristic scales and that this
scale-free dynamics is important for their function (Bassingth-
waighte et al., 1994; Bak, 1996; Goldberger et al., 2002; Stam,
2005; Ghosh et al., 2008; He et al., 2010; West, 2010). Detrended
fluctuation analysis (DFA; Peng et al., 1994), a method for ana-
lyzing scaling behavior in time series, has played a critical role
in this success. We believe, however, that DFA could prove valu-
able to a wider community of neuroscientists than its current
users. Thus, the aim of this paper is to promote and facilitate
investigations of the scale-free amplitude modulation of ongoing
neuronal oscillations with the use of DFA (Linkenkaer-Hansen
et al., 2001).

Our paper is structured as follows. First, we provide a beginner’s
introduction to the Section “Fundamental Concepts Required to
Understand DFA.” This is followed by the presentation of “The
DFA”and the special requirements regarding“DFA applied to neu-
ronal oscillations.” With the theory covered, the reader is referred
to MATLAB code and tutorials in the Section“Try it Yourself Using
the Neurophysiological Biomarker Toolbox (NBT).” Finally, we

illustrate the value of DFA in “Insights from the application of
DFA to neuronal oscillations.”

FUNDAMENTAL CONCEPTS REQUIRED TO UNDERSTAND DFA
To understand how the DFA algorithm quantifies some of the
properties of scale-free fluctuations, we introduce the concepts of
self-affinity and stationarity and show how they apply to scale-free
signals.

SELF-AFFINITY
Self-affinity is a property of fractal time series (Mandelbrot, 1967;
Turcotte, 1997). It is a special case of self-similarity, according to
which a small part of a fractal structure is similar to the whole
structure. When this small part is an exact replica of the whole
then the fractal is exact, which is the case for purely mathematical
and geometrical fractals (e.g., the van Koch curve and the Mandel-
brot tree; Peitgen et al., 1992). When the self-similarity is expressed
in terms of statistical properties (e.g., the mean and standard devi-
ation for a portion of a fractal are scaled versions of the mean and
standard deviation of the whole) then the fractal is a statistical
fractal. Whilst the self-similarity property is isotropic and applies
along all the dimensions of a fractal object, self-affinity describes
anisotropic scaling where statistical properties of the fractal scale
differently along different dimensions. In the case of a time series,
the time dimension is rescaled.

Nature hosts some intriguing examples of self-similar struc-
tures, such as the Roman cauliflower (Romanesco broccoli), in
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FIGURE 1 |The Roman cauliflower is a striking example of
self-similarity in nature. (A) The cauliflower is composed of flowers that
are similar to the entire cauliflower. These smaller flowers, in turn, are
composed of flowers that are similar to the smaller flowers. The
self-similarity is apparent on at least four levels of magnification, thereby
illustrating the scale-free property that is a consequence of self-similarity
(bottom left ). A hypothetical distribution of the likelihood of flowers on a
cauliflower having a certain size. This property is captured by the power-law
function. The mean or median of a power-law, however, provide a poor
representation of the scale-free distribution (and in a mathematical sense is
not defined) (bottom right ). The power-law function makes a straight line in
double-logarithmic coordinates. The slope of this line is the exponent of the
power-law, which captures an important property of scale-free systems,
namely the relationship between the size of objects or fluctuations on

different scales. (B) As the size of apples shows smaller variation they are
well described by taking an average value such as the mean or median.
(bottom left ) Hypothetical distribution showing the likelihood of apples
having a certain size. Both the mean and median are good statistics to
convey the size of the apples. (bottom right ) Plotting the normal distribution
on double-logarithmic coordinates has little effect on the appearance of the
distribution, which still shows a characteristic scale. (C) Time-signals can
also be viewed as self-affine as they can be transformed into a set of
sine-waves of different frequencies. In a 1/f signal the lower frequency
objects have larger amplitude than the higher frequency objects which we
can compare with there being fewer large cauliflowers than there are small
cauliflowers. (D) A white-noise signal is also self-affine, but now the lower
frequency objects have the same amplitude as the higher frequency objects
meaning that only the high-frequency fluctuations are visible in the signal.

which almost exact copies of the entire flower may be recog-
nized on multiple smaller scales (Figure 1A). Physiological time
series may exhibit statistical self-affine properties (Eke et al., 2000,
2002). Self-affine processes and self-similar structures have in
common that the statistical distribution of the measured quan-
tity follows a power-law function, which is the only mathematical
function without a characteristic scale. Self-affine and self-similar
phenomena are therefore called “scale-free.”

Considering again the example of the Romanesco broccoli, we
can say that it is a “scale-free” structure, because there is no typical
size of flower on the cauliflower, with the frequency of a certain size
of flower being inversely proportional to its size. A scale-free time
series will in a similar fashion be composed of sine-waves with
amplitudes inversely proportional to their frequency (Figure 1C),
seen as a straight line when the power spectrum is plotted on
double-logarithmic axis. This is in contrast to the wide variety of
objects that have a typical scale, e.g., the size of the apples on a
tree. None of them will be very small or very large; rather, they
will form a Gaussian distribution centered on some characteristic
size, which is well represented by the mean of the distribution.
Qualitatively, the characteristic scale is present at the expense of
rich variability. Similarly, a time series in which all frequencies are
represented with the same amplitude will lack the rich variability
of the scale-free time series and is referred to as “white-noise”

(Figure 1D). Whereas phenomena with characteristic scales are
well defined by their mean and standard deviation (Figures 1B,D),
scale-free phenomena are better described by the exponent of a
power-law function, because it captures the relationship between
objects or fluctuations on different scales (Figures 1A,C).

Let us now introduce the mathematical definitions:
A non-stationary stochastic process is said to be self-affine in

a statistical sense, if a rescaled version of a small part of its time
series has the same statistical distribution as the larger part. For
practical purposes, it is sufficient to assess the standard deviation.
Thus, the process, Y, is self-affine if for all windows of length t :

Y (Lt ) ≡ LH Y (t ) (1)

where:

• “Y (Lt )” and “Y (t )” are values of a process at time windows of
length Lt and t, respectively.
• “L”: window length factor
• “H ”: Hurst parameter, dimensionless estimator of self-affinity
• “≡”: the standard deviation on both sides of the equation are

identical (Beran, 1994).

To illustrate the implications of this definition for the property
of a self-affine process, we consider a self-affinity parameter of
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0.75 and derive the standard deviation for two and three times the
length of the time-scale. To double the time-scale, we set L= 2;

Y (2t ) ≡ 20.75Y (t )

Y (2t ) ≡ 1.68Y (t )

Therefore, the standard deviation of a signal twice the length
of y(t ) is 1.68 times larger than that of the original signal y(t ).

Tripling the window size with L= 3 gives;

Y (3t ) ≡ 30.75Y (t )

Y (3t ) ≡ 2.28Y (t )

The standard deviation increases by a factor of 2.28. In other
words, with a self-affinity parameter H = 0.75, the standard devi-
ation grows with increasing window size according to the power-
law, LH. This mathematical formulation shows another property
of self-affine processes which is scale-invariance: the scaling of
the standard deviation is not dependent on the absolute scale.
A signal exhibiting the described behavior is also said to exhibit
“scale-free” fluctuations with a “power-law scaling exponent” H.
H is the Hurst-coefficient (Mandelbrot and Wallis, 1969) and
ranges between 0 and 1. H approaching 1 describes a signal of
smooth appearance, typically meaning that high values are fol-
lowed by high values (i.e., there are dependencies over time),
while H close to 0 is a signal with rough, “hairy” appearance,
which typically means faster switching between high and low
values.

The estimation of the scaling exponent is particularly inter-
esting for neuronal oscillation dynamics, because it can reveal
the presence of long-range temporal correlations (LRTC) in neu-
ronal network oscillations (Linkenkaer-Hansen et al., 2001). In the
following sections we will show you how.

STATIONARY AND NON-STATIONARY PROCESSES
Definition: a process X(t ) is stationary if the distribution of X(t ) is
independent of t, the joint distribution of X(t 1+ τ) and X(t 2+ τ)
is independent of τ and similarly – for all k – for the joint
distributions of X(t 1+ τ) . . . X(tk+ τ) (Mandelbrot, 1982).

When performing scale-free analysis of a time series, it is essen-
tial to have a model of whether the underlying process is stationary.
This is because many of the methods used on a time series to esti-
mate H make assumptions about whether the process is stationary
or not. For example, self-affinity as described above only applies
to non-stationary processes, because by definition the variance of
a stationary process does not alter with the amount of time looked
at (Beran, 1994).

Scale-free processes which are stationary are usually modeled
as fractional Gaussian noise (fGn), and non-stationary processes
are modeled as fractional Brownian motion (fBm). Nevertheless,
there is a strong relationship between these two types of processes
in that, by definition, the increments of a fBm process are mod-
eled as a fGn process with the same Hurst parameter, for more
details on these models (see Mandelbrot, 1982; Eke et al., 2000).
This relationship allows us to apply the definition of self-affinity
given above to a stationary fGn process, by first converting it into
its non-stationary fBm equivalent as follows. Given the time series

y(t ), we define the signal profile as the cumulative sum of the
signal:

x (t ) =
t∑

k=1

y (k)− 〈y〉 (2)

where (y) is the mean of the time series. The subtraction of the
mean eliminates the global trend of the signal. The advantage of
applying scaling analysis to the signal profile instead of the signal,
is that it makes no a priori assumptions about the stationarity of
the signal. When computing the scaling of the signal profile, the
resulting scaling exponent, α, is an estimation of H. If α is between
0 and 1, then x was produced by a stationary process which can be
modeled as a fGn process with H = α. If α is between 1 and 2 then
x was produced by a non-stationary process, and H = α− 1 (Eke
et al., 2000).

SCALING OF AN UNCORRELATED STATIONARY PROCESS
We now show that the scaling of a so-called random walk
process can be used to infer whether a time series is uncorre-
lated. A random walk is a non-stationary probabilistic process
derived from the cumulative sum of independent random vari-
ables, where each variable has equal probability to take a value
of 1 or −1. Imagine a walker that at each time step can
either take one step left (−1) or right (+1) with equal prob-
abilities (Figure 2A). The sequence of the steps representing
independent random variables forms a stationary time series
as it can only take two values which do not depend on time
(Figures 2B,D). If we calculate the standard deviation of this
time series for differently sized time windows we will not see a
scaling effect as there will always on average be an equal num-
ber of 1’s and −1’s. As the probability of taking either action
does not depend on any previous actions, the process is said to
be “memory-less.”

Now, if we compute the cumulative sum of this time series,
using Eq. 2 for obtaining the random walk, we can calculate the
distance that the walker deviates from the zero line where it started
(following a given number of steps; Figures 2A,C,E). This dis-
tance changes with the number of steps that the walker has taken.
Therefore, it is possible to calculate how the standard deviation of
distance from the origin (referred to as random walk fluctuations)
changes depending on the number of steps that the walker has
taken.

We can calculate this by working out the relationship between
the displacement, x, at time t and time t + 1. If at time t the walker
is at position xt then at time t + 1 the walker will be at position
xt− 1 or xt+ 1 with equal likelihood. Therefore, we can calculate
the mean square displacement at time t + 1:

〈
x2

t+1

〉
=

〈
(xt + 1)2

+ (xt − 1)2
〉

2

=

〈
x2

t + 2xt + 1+ x2
t − 2xt + 1

〉
2〈

x2
t+1

〉
=

2
〈
x2

t

〉
+ 2

2
=
〈
x2

t

〉
+ 1

(3)
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FIGURE 2 |The “random walk”: the signal profile of a stationary time
series may reveal self-affinity. (A) At each time step a walker moves
randomly to the left (−1) or right (+1) with equal probability. At any time
step the probability of being at a certain displacement from the origin
depends on the number of different paths that could take the walker there.
(B) The walker’s steps form a time series that is stationary as its value does
not depend on time. (C) The signal profile can take arbitrarily large values as
the time increases. (D) Looking at the walker time series on a longer
time-scale the standard deviation does not change as the signal cannot take
larger values. (E) The cumulative sum, or random walk process, on a longer
time-scale shows larger variance than on the shorter time-scale (C)
therefore the walker may exhibit self-affinity or scale-free behavior.

Let us define the starting position to be 0, i.e., the mean square
displacement at time 0 is:

〈x2
0 〉 = 0

Now, we can calculate the mean square displacement after an
arbitrary number of steps by applying Eq. 3 iteratively:

〈x2
1 〉 = 〈x

2
0 〉 + 1 = 0+ 1 = 1

〈x2
2 〉 = 〈x

2
1 〉 + 1 = 1+ 1 = 2

〈x2
3 〉 = 〈x

2
2 〉 + 1 = 2+ 1 = 3

. . .(
x2

L

)
= L

Thus, the mean square displacement after a walk of length L
steps, or equivalently, the root-mean-square displacement after L
steps is the square root of L:

(〈
x2

L

〉)0.5
= L0.5 (4)

For a zero mean signal, x, the root-mean-square displacement
is the standard deviation. Thus, the cumulative sum of a randomly
fluctuating zero mean signal will have the standard deviation grow-
ing with window length, L, according to a power-law with the
exponent of 0.5. Now, recall from Eq. 1 that if the standard devi-
ation of a signal scales by a factor LH according to the length
of the signal, L, then the process exhibits self-affinity with Hurst
exponent H. Thus, we have derived that a stationary randomly
fluctuating process has a signal profile, which is self-affine with a
scaling exponent α= 0.5.

SCALING OF CORRELATED AND ANTI-CORRELATED SIGNALS
What happens to the self-affinity of a process when we add mem-
ory in the sense that the probability of an action depends on the
previous actions that the walker has made? Different classes of
processes with memory exist. Let us focus on those with positive
correlations and those with anti-correlations. Anti-correlations
can be seen as a stabilizing mechanism: any action the walker
makes means that when taking future actions the walker will be
more likely to take the opposite action (Figure 3A). This leads
to smaller fluctuations on longer time-scales than seen by chance
(Figure 3B). Positive correlations have the opposite effect: any
action the walker takes makes it more likely to take that action
in the future (Figure 3A). This leads to large fluctuations in the
integrated signal (Figure 3B). We define a fluctuation function as
the standard deviation of the signal profile:

f (L) =
(〈

x2
L

〉)0.5
= Lα (5)

We note from Eq. (4) that this function grows as a power-law
with self-affinity parameter α= 0.5 for a stationary random signal.
Using Eq. (5) – and as shown in Figure 3C – it follows that if the
fluctuations scale according to time with:

• 0 < α < 0.5 then the process has a memory, and it exhibits
anti-correlations. (can be modeled by a fGn with H = α)
• 0.5 < α < 1 then the process has a memory, and it exhibits

positive correlations. (can be modeled by a fGn with H = α)
• α= 0.5 then the process is indistinguishable from a random

process with no memory. (can be modeled by a fGn with H = α)
• 1 < α < 2 then the process is non-stationary. (can be modeled

as a fBm with H = α− 1).
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FIGURE 3 | Processes with a memory produce qualitatively, and
quantitatively, different fluctuations compared to a random walk
process. (A) Correlations occur when the “walker’s” decision to follow a
certain direction is influenced by its past actions. (Left) Path of an
anti-correlated walker shown over time. At each time step the walker makes a
decision based on a weighted choice between left and right. The weighted
choice can be seen by the sum of the areas of the arrows pointing left and
right. Each action the walker takes continues to influence future actions, with
the walker being more likely to take the opposite action. This is illustrated as a
gradual accumulation of arrows that refer to past actions, but also decrease in
size over time, because the bias contributions of those actions decay over
time. The green arrows show how the first action the walker takes (going
Right) persists over time, with the influence getting smaller as time goes on
seen by the green arrow size decreasing. (Center) Path of a random walker

shown over time. The random walker is not influenced by previous actions
and so always has equal probability of going left or right. (Right) Path of a
correlated walker shown over time. Here each action the walker takes
influences future actions by making the walker more likely to take that action.
The green arrows show that by taking the action of going right at time 0, the
walker is more likely to go right in future time steps with the influence getting
smaller as time goes on. (B) Cumulative signal for a positively correlated
process (red, circle) shows larger fluctuations over time than a random walker
(blue, triangle). An anti-correlated signal (green, square) shows smaller
fluctuations over time. (C) By looking at the average fluctuations for these
different processes at different time-scales, we can quantify this difference. A
random walker shows a scaling exponent of 0.5, with the positively correlated
process having a larger exponent, and the anti-correlated process having a
smaller exponent.

For short-range correlations the scaling exponent will deviate
from 0.5 only for short window sizes, because the standard devi-
ation of the integrated signal in long windows will be dominated
by fluctuations that have no dependence on each other. Thus, it is
important to report the range where the scaling is observed. We
return to the practical issues of identifying the scaling range in
the section on “Insights from the application of DFA to neuronal
oscillations.”

EFFECTS OF TRENDS ON SCALING
We have seen that calculating the fluctuation of signal profiles
in windows of different sizes can be used to quantify the scale-
free nature of time series. However calculating the fluctuations at

a certain time-scale is strongly influenced by whether the signal
has a steady trend on longer time-scales. This trend is unlikely to
be part of a process on the time-scale of that window and may
be removed by subtracting the linear trend in the window, and
then calculating the standard deviation. This way we know that
processes on scales larger than the given window size will only
marginally influence the fluctuation function, Eq. (5).

To illustrate this, consider a white-noise signal with and without
a slow trend (Figure 4A). The standard deviation of the integrated
signal with a trend necessarily will be larger for any window size
and, importantly, also grow faster with increasing window sizes
compared to the signal without a trend (Figure 4B). Detrend-
ing the signal profile, however, efficiently reveals the true scaling
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FIGURE 4 |Trends on longer time-scales can introduce false
correlations into the signal. (A) For a signal with a trend, the standard
deviation will be larger (σ=0.41) than the same signal with no trend
(σ=0.29). (B) Average fluctuations for a window size shown for a
white-noise signal (blue crosses) and the same signal with a trend added
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trend. (C) Importantly, detrending self-similar signals with trends (red
crosses) also recovers the scaling of the original signal (blue circles). (D)
Self-similar signal (α=0.75) with trend (red ) and without trend (blue) used
in (C).

of the signal with a superimposed trend both for uncorrelated
(Figure 4B) and correlated (Figures 4C,D) signals. This is the
basis for the robust performance of the DFA algorithm which we
describe in the next section.

THE DETRENDED FLUCTUATION ANALYSIS
Detrended fluctuation analysis, was introduced by Peng et al.
(1994) to quantify LRTC with less strict assumptions about the
stationarity of the signal than the auto-correlation function.
This was supported with a set of online tutorials and datasets1

to allow researchers to investigate the method on real-life data
(Goldberger et al., 2000). Since then, the algorithm has found
widespread application as indicated by more than 1800 cita-
tions to (Peng et al., 1994; Google Scholar, September 2012),
and it is one of the most commonly used methods to quan-
tify the scale-free nature of physiological time series and their
alteration in disease (Peng et al., 1995; Castiglioni et al., 2010;
Frey et al., 2011). The DFA is based on the rationale described
in the sections presented so far, and can be summarized as
follows:

1. Compute the cumulative sum of the time series (Figure 5A) to
create the signal profile (Figure 5B).

2. Define a set of window sizes, T, which are equally spaced on
a logarithmic scale between the lower bound of four samples
(Peng et al., 1994) and the length of the signal.

a. For each window length t∈T
a.i. Split the signal profile into a set (W) of separate time

series of length t, which have 50% overlap.
a.ii. For each window w ∈ W

a.ii.1. Remove the linear trend (using a least-squares fit) from
the time series to create wdetrend (Figure 5C)

a.ii.2. Calculate the standard deviation of the detrended signal,
σ(wdetrend)

a.iii. Compute fluctuation function as the mean standard
deviation of all identically sized windows:

< F (t ) >= mean (σ (W))

3. Plot the fluctuation function for all window sizes, T, on
logarithmic axes (Figure 5D).

4. The DFA exponent, α, is the slope of the trend line in the range
of time-scales of interest and can be estimated using linear
regression (Figure 5D).

Here, we have chosen logarithmically spaced window sizes,
because it gives equal weight to all time-scales when we fit a line in
log-log coordinates using linear regression. The lower end of the
fitting range is at least four samples, because linear detrending will
perform poorly with less points (Peng et al., 1994). For the high
end of the fitting range, DFA estimates for window sizes >10%
of the signal length are more noisy due to a low number of win-
dows available for averaging (i.e., less than 10 windows). Finally,
the 50% overlap between windows is commonly used to increase
the number of windows, which can provide a more accurate esti-
mate of the fluctuation function especially for the long-time-scale
windows.

The DFA exponent is interpreted as an estimation of the Hurst
parameter, as explained with the random walker example, i.e., the

1http://www.physionet.org
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FIGURE 5 | Step-wise explanation of Detrended Fluctuation Analysis.
(A) Original time series. Taken from a 1/f signal sampled at 5 Hz with a
duration of 100 s. (B) Cumulative sum of original signal shows large
fluctuations away from the mean. (C) For each window size looked at,
remove the linear trend from the signal, and then calculate the fluctuation.
Two example window sizes shown with signal shown as solid line, and
detrended signal shown as dotted line. (D) Plot the mean fluctuation per
window size against window size on logarithmic axes. The DFA exponent is
the slope of the best-fit line (α= 1).

time series is uncorrelated if α= 0.5. If 0.5 < α < 1 then there are
positive correlations present in the time series as you are getting
larger fluctuations on longer time-scales than expected by chance.
If α < 0.5 then the time series is anti-correlated, which means that
fluctuations are smaller in larger time windows than expected by
chance.

Since DFA was first introduced several papers have tested the
performance of DFA in relation to trends (Hu et al., 2001), non-
stationarities (Chen et al., 2002), pre-processing such as artifact
rejection (Chen et al., 2002), and coarse-graining (Xu et al., 2011).
Other trend-removal techniques have been proposed, such as
higher-order polynomial (Kantelhardt et al., 2001) or adaptive
detrending (Riley et al., 2012); however, these have not yet been
tested in the DFA analysis of neuronal oscillations.

DFA APPLIED TO NEURONAL OSCILLATIONS
Synchronized activity between groups of neurons occurs in a
range of frequencies spanning at least four orders of magnitude
from 0.01 to 100 Hz (Buzsáki, 2006). The power spectral density
plotted on double-logarithmic axes roughly follows a power-law
distribution, but there are also several “peaks” seen along it, corre-
sponding to the classical frequency bands (e.g., theta, alpha, beta,
etc.; Figure 6B). In this section, we describe how to apply DFA
to the amplitude modulation in these frequency bands, and show
how they have been utilized in quantifying healthy and patholog-
ical conditions. We cannot apply DFA directly to the band-pass
filtered signal, because it will appear as a strongly anti-correlated
signal because of the peaks and troughs averaging out when com-
puting the cumulative sum. Instead, we focus on the amplitude
envelope of oscillations.

Our method consists of four steps:

1. Pre-processing of signals.
2. Create band-pass filter for the frequency band of interest.
3. Extract the amplitude envelope and perform DFA.
4. Determine the temporal integration effect of the filter to choose

the window sizes for calculating the DFA exponent.

PRE-PROCESSING OF SIGNALS
Sharp transient artifacts are common in EEG signals. These large
jumps in the EEG signal on multiple channels are, e.g., caused by
electrode movement. Leaving these in the signal is likely to affect
the DFA estimates, whereas removing them has little effect on
the estimated exponent (Chen et al., 2002). Other artifacts from,
e.g., eye movement, respiration heartbeat, sweat are also likely to
disturb the estimate, thus they should be removed.

Another factor that can influence the DFA estimate is the signal-
to-noise ratio of the signal. The lower this ratio, the more biased
the estimated scaling is toward an uncorrelated signal. Simulations
indicated that a SNR >2 is sufficient to accurately determine LRTC
(Linkenkaer-Hansen et al., 2007).

FILTER DESIGN
To filter the EEG/MEG data (Figure 6A) we use a band-pass finite-
impulse-response filter (FIR). This is used instead of an infinite
impulse response filter (IIR) to avoid introducing long-range cor-
relations in the signal before calculating the fluctuation function.
The filter order for the FIR filter is recommended to be set to two
cycles of the lowest frequency in order to accurately detect the
oscillations while also limiting the temporal integration caused by
the filter. In (Figure 6B) we can see a clear peak in the alpha band
frequency range (8–13 Hz) and therefore we would band-pass fil-
ter in this frequency range with a filter order set to two cycles
of 8 Hz.

EXTRACT THE AMPLITUDE ENVELOPE AND PERFORM DFA
When applying DFA to neuronal oscillations, we are interested in
how the amplitude of an oscillation changes over time. To calcu-
late this we extract the amplitude envelope from the filtered signal
by taking the absolute value of the Hilbert transform (Figure 6C;
Nikulin and Brismar, 2005). The Hilbert transform is easily acces-
sible in most programming languages (e.g., scipy.signal.Hilbert in
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FIGURE 6 | Step-wise explanation of applying DFA to neuronal
oscillations. (A) EEG recording from electrode Oz shows clear oscillations
during a 15 min eyes-closed rest session. Data were recorded at 250 Hz and
band-passed filtered between 0.1 and 200 Hz. (B) Power spectrum (Welch
method, zero padded) shown in logarithmic (left) and double-logarithmic
axes (right), shows clear peak in the alpha band. (C) Signal in (B) filtered in
the alpha band (8–13 Hz) using a fir filter with an order corresponding to the
length of two 8 Hz cycles (blue). Amplitude envelope (red ) calculated using
the Hilbert transform. (D) DFA applied to the amplitude envelope of
white-noise signal filtered using the same filter as in (C). At time windows
<2 s, filter-induced correlations are visible through a bend away from the
0.5 slope. (E) DFA applied to the amplitude envelope of the alpha band
filtered EEG signal shows long-range temporal correlations between 2 and
90 s with exponent α=0.71.

Python (Scipy), Hilbert in Matlab). Wavelet transforms, however,
have also been used to extract the amplitude envelope (Linkenkaer-
Hansen et al., 2001). Once you have the amplitude envelope you
can perform DFA on it. However, to decide which window sizes to
calculate the exponent from, you first need to follow step 4.

DETERMINING THE TEMPORAL INTEGRATION EFFECT OF THE FILTER
Filtering introduces correlation in the signal between the neigh-
boring samples (e.g., due to the convolution in case of FIR filter-
ing). Thus, including very small window sizes in the fitting range
of the fluctuation function will lead to an overestimation of tem-
poral correlations (Figure 6D). The effect of a specific filter on
the DFA may be estimated using white-noise signals (where a DFA
exponent of 0.5 is expected; Nikulin and Brismar, 2004):

a) Create 1000 white-noise signals each one corresponding to
∼1000 s.

b) Filter each signal using the filter designed in step 2.
c) Extract the amplitude envelopes of the filtered noise signals

(step 3).
d) Perform DFA on each signal, and average all fluctuation

functions.
e) Estimate the lowest fitting time window where the fluctuation

function starts to curve away from an exponent of 0.5.

Now that you have the window sizes that have only negligi-
ble filter effect, you are finally able to calculate the DFA exponent
(Figure 6E).

TRY IT YOURSELF USING THE NEUROPHYSIOLOGICAL
BIOMARKER TOOLBOX
The NBT was created to facilitate integration of multiple biomark-
ers and to support large-scale biomarker research in the Matlab
environment. DFA has been implemented as part of the NBT. You
can download NBT from http://www.nbtwiki.net, where you can
also find further tutorials on using this toolbox. NBT can import
various data formats (e.g., raw, .dat, .mat, .txt) into the NBT for-
mat. The NBT format is defined by three main .mat files: the first
contains the signal stored in a matrix, the second contains infor-
mation about the signal, the third contains the biomarker objects
and it is automatically created when you compute a biomarker.
The three files are named according to the NBT convention:

• projectID.subjectID.date.condition.mat for the signal
• projectID.subjectID.date.condition_info.mat for the signal infor-

mation
• projectID.subjectID.date.condition_analysis.mat for the bio-

markers.

After you have imported your data into NBT format a variety
of actions can be performed on the data, from viewing and pre-
processing data to biomarker computation, statistical analysis, and
visualization. In the following, we show how a single biomarker,
the DFA exponent, can be calculated using the MATLAB command
line or a script.

You can also find this tutorial (with more details) online: http://
www.nbtwiki.net/doku.php?id=tutorial:detrended_fluctuation_
analysis_dfa
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REMOVING ARTIFACTS
Before performing any analysis you need to load the signal
(already converted into NBT format) into the workspace. Type
the following line in the command window to load the signal:

[Signal,SignalInfo,path]=nbt_load_file;

Signal and SignalInfo are the main variables on which NBT works,
containing the signal and signal information respectively. Most of
the NBT functions have these two variables as input and produce
an updated version of them after specific internal processing.

Now you can proceed with artifacts removal. NBT provides
several functions to help in this (e.g., an interface for visual inspec-
tion of bad channels and noisy epochs, Independent Component
Analysis functions for removing periodic artifacts, and differ-
ent semi-automatic algorithms for facilitating the data cleaning
process), but we will not go into details here. However, we would
like to emphasize that large-amplitude transient artifacts will influ-
ence the temporal structure of the signal and, therefore, it is better
to remove them prior to DFA computation (Chen et al., 2002).

FILTER THE SIGNAL AND EXTRACT THE AMPLITUDE ENVELOPE
First, we use the function nbt_GetAmplitudeEnvelope to filter the
signal using a FIR filter and get the amplitude envelope using the
Hilbert transform, [AmplitudeEnvelope, AmplitudeEnvelopeInfo]=
nbt_GetAmplitudeEnvelope(Signal, SignalInfo, hp, lp, filter_order).
Let us assume that we want to find the DFA in the alpha frequency
band (8–13 Hz):

[AmplitudeEnvelope,AmplitudeEnvelopeInfo]
=nbt_GetAmplitudeEnvelope

(Signal, SignalInfo, 8, 13, 2/8);

Note the last parameter 2/8. This is the filter order (in seconds),
which we set such that at least two 8 Hz oscillations cycles are
covered by the filter window.

PERFORM DFA
The DFA exponents can be then computed using the function
nbt_doDFA defined as follow: [DFAobject,DFA_exp]=nbt_doDFA
(Signal, SignalInfo, FitInterval, CalcInterval, DFA_Overlap,DFA_
Plot, ChannelToPlot, res_logbin).

The parameters, FitInterval and Calcinterval, determine the
time windows in seconds over which we fit and calculate respec-
tively. The DFA_overlap tells how much overlap we want between
our windows (in this case 50%, see below). The plotting parame-
ters DFA_plot assumes value 1 if you want to visualize the result,
otherwise 0; in ChannelToPlot you can specify for which channel
you want to plot the fluctuation function. The last parameter is
the resolution of the logarithmic binning, which by default is 10
per decade.

Now find the DFA exponents and visualize the fluctuation
function by typing:

[DFAobject,DFA_exp]=nbt_doDFA
(AmplitudeEnvelope,AmplitudeEnvelopeInfo,
[2 25], [0.8 30], 0.5, 1, 1, []);

This instruction will calculate the fluctuation function with
50% overlapping windows from 0.8 to 30 s, and find the DFA
exponent by fitting in the interval from 2 to 25 s. The DFA expo-
nent will be stored in DFA_exp and DFA_object is a structure that
stores information such as the fluctuation for each time window
and the parameters used to calculate the DFA.

INSIGHTS FROM THE APPLICATION OF DFA TO NEURONAL
OSCILLATIONS
The discovery of LRTC in the amplitude envelope of ongo-
ing oscillations, was based on 10 subjects recorded with EEG
and MEG for 20 min during eyes-closed and eyes-open rest
(Linkenkaer-Hansen et al., 2001). In both conditions, ampli-
tude envelopes of alpha and beta oscillations exhibited power-
law scaling behavior on time-scales of 5–300 s with DFA expo-
nents significantly higher than for band-pass filtered white-noise
(Figure 7A). These results were further validated by showing
1/f power spectra and a power-law decay in the auto-correlation
function.

The robustness of LRTC in ongoing oscillations has been con-
firmed in several follow-up studies, albeit often based on shorter
experiments and scaling analysis in the range of about 1–25 s
(Linkenkaer-Hansen et al., 2007; Monto et al., 2007; Berthouze
et al., 2010; Smit et al., 2011; Figure 7B). The power-law scal-
ing behavior in the theta band is reported less often (Smit et al.,
2011), and to our knowledge LRTC in the delta band have only
been investigated in subdural EEG (Monto et al., 2007). LRTC
have also not been reported often in the gamma band due to the
low SNR obtained from EEG/MEG recordings in this band. Inva-
sive recordings in non-human primates, however, have reported
1/f spectra for the amplitude modulation in both low and high
gamma bands (Leopold et al., 2003). Recordings from the subthal-
amic nucleus in Parkinson patients even show prominent LRTC in
the very high-frequency gamma range (>200 Hz), especially when
treated with the dopamine-precursor drug Levodopa (Hohlefeld
et al., 2012).

To gain validity for LRTC it has been shown that LRTC have
a link to the underlying genetics of the subject. This link was
provided in (Linkenkaer-Hansen et al., 2007) where the scaling
of eyes-closed rest EEG from monozygotic and dizygotic twin
subjects (n= 368) showed that ∼60% of the variance of DFA
exponents in the alpha- and beta-frequency bands is attributable
to genetic factors (Figure 7C). This was an important result as it
clearly showed that the non-random patterns of fluctuations in
the ongoing oscillations are governed by low-level biological fac-
tors as opposed to uncontrolled experimental variables during the
recording sessions. The finding also provides an explanation of
the significant test-retest reliability of DFA exponents (Figure 7D;
Nikulin and Brismar, 2004).

Several studies have reported that DFA exponents of neu-
ronal oscillations are independent of oscillation power for a given
frequency band, both when the oscillations are recorded with sub-
dural EEG (Monto et al.,2007) and scalp EEG (Linkenkaer-Hansen
et al., 2007; Smit et al., 2011; Figure 7E). These results together
indicate that the DFA can be used as a robust measure of oscillatory
dynamics, which captures different features of brain activity than
those seen in classical analysis such as power in a frequency band.
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FIGURE 7 | Results of applying DFA to neuronal oscillations. (A) Robust
long-range temporal correlations are observed in the amplitude envelope of
human EEG alpha oscillations using the DFA. Circles, eyes-closed rest
condition; Dots, surrogate data (Figure modified from Linkenkaer-Hansen
et al., 2001). (B) Differences in the scale-free modulation of the amplitude
envelope of neuronal oscillations are prominent among individuals and can be
quantified using DFA. Here shown for three filtered EEG signals (6–13 Hz)
with weak (top), medium (middle), and strong (bottom) LRTC (from channel
O2). The gray lines represent the amplitude envelope (low-pass filtered, 1 Hz).
DFA fluctuation functions are shown to the right, with signal (circles), and
white-noise (crosses). The DFA exponent is the slope of the fluctuation

function. (Figure modified from Smit et al., 2011). (C) Individual differences in
long-range temporal correlations in alpha oscillations are to a large extent
accounted for by genetic variation, as seen by the difference in correlations of
DFA exponents between monozygotic and dizygotic twins (Figure modified
from Linkenkaer-Hansen et al., 2007). (D) DFA has high test-retest reliability.
DFA exponents from the amplitude modulation of alpha oscillations, two
sessions with an interval of 6–28 days, symbols indicates different subjects
(Figure modified from Nikulin and Brismar, 2004). (E) The DFA exponent is
independent of oscillation power. Data were recorded using EEG on 368
subjects during a 3 min eyes-closed rest session (Figure modified from
Linkenkaer-Hansen et al., 2007).

DFA AS A BIOMARKER OF NEUROPHYSIOLOGICAL DISORDER
We have so far discussed the results of applying DFA to healthy
subjects; however, some of the most exciting results have come
from pre-clinical studies, which indicate possible functional roles
for LRTC. For example, a breakdown of LRTC in the amplitude
fluctuations of resting-state theta oscillations detected in the left
sensorimotor region was reported for patients with major depres-
sive disorder (Linkenkaer-Hansen et al., 2005). Interestingly, the
severity of depression, as measured by the Hamilton depression
rating scale, inversely correlated with the DFA exponent of the
patients (Figure 8A). Reduction in the LRTC of oscillations has
also been reported in the alpha band in the parietal region in
patients with Alzheimer’s disease (Montez et al., 2009; Figure 8B).

Furthermore, reduction in the alpha and beta bands in the centro-
parietal and fronto-central areas has also been reported for patients
with schizophrenia (Nikulin et al., 2012).

Interestingly, it seems as though it is not only a loss of LRTC
that correlates with disorders, but also elevated levels of LRTC. A
study (Monto et al., 2007) looked at different scales of neuronal
activity by using subdural EEG to record the areas surrounding an
epileptic focus in five patients during ongoing seizure-free activ-
ity. They discovered that the LRTC are abnormally strong near the
seizure onset zone (Figure 8C). Further, it was shown that admin-
istration of the benzodiazepine lorazepam to the patients, leads to
decreased DFA exponents in the epileptic focus, suggesting that
the pharmacological normalization of seizure activity brings with
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FIGURE 8 | DFA is a promising biomarker for pre-clinical studies. (A) DFA
exponents of theta oscillations in left sensorimotor region correlate with the
severity of depression based on the Hamilton score. Data recorded from 12
depressed patients with MEG, during an eyes-closed rest session of 16 min.
(Figure modified from Linkenkaer-Hansen et al., 2005). (B) DFA of alpha
oscillations shows a significant decrease in the parietal area in patients with
Alzheimer’s disease than in controls. MEG was recorded during 4 min of
eyes-closed rest and the DFA exponent estimated in the time range of 1–25 s.

(Right ) Individual-subject DFA exponents averaged across significant channels
are shown for the patients diagnosed with early stage Alzheimer’s disease
(n=19) and the age-matched control subjects (n= 16; Figure modified from
Montez et al., 2009). (C) Difference in the DFA exponent of high frequencies
(beta band) and low frequencies (alpha band) indicates the location of the
epileptic focus (white box ). Data recorded from an epileptic subject using
subdural EEG during seizure-free activity (modified from Monto et al., 2007 by
permission of Oxford University Press).

it also a normalization of LRTC. Interestingly, however, DFA expo-
nents were observed to increase in the seizure-free surrounding
areas, which may correspond to the increase in LRTC observed
in vitro after application of Zolpidem, which is also a GABAergic
modulator (Poil et al., 2011).

Overall these studies seem to indicate that there is an optimal
level of temporal structure of oscillations and any deviation from
this can result in a significant loss of function (Poil et al., 2012).
Importantly, whereas early studies have estimated the DFA expo-
nent from the scaling of the fluctuation function across almost
two orders of magnitude in time (Linkenkaer-Hansen et al., 2001,
2004; Parish et al., 2004; Monto et al., 2007), most reports have
used one decade of fitting range and found the DFA a very useful
biomarker to study neuronal dynamics in health and disease.

OUTLOOK
In the last 10 years there has been rapid progress in the field
of LRTC analysis of neuronal signals (Linkenkaer-Hansen et al.,
2001; Parish et al., 2004; Stead et al., 2005; Monto et al., 2007).
However, there are still many fundamental issues that need to be
addressed, thus presenting many exciting opportunities for apply-
ing LRTC methodology to studies of normal and pathologic brain
functioning.

It has for a long time been recognized that the brain functions
at different time-scales, ranging from a few tens of milliseconds
required for the perception of stimuli, to tens of seconds spent
on different cognitive operations (Axmacher et al., 2006; Buzsáki,
2006; Cassenaer and Laurent, 2007; Lisman, 2010). Yet, rarely were
neuronal dynamics studied with approaches incorporating differ-
ent time-scales in order to better understand integrative brain
mechanisms. In this sense LRTC represent a unique approach
describing in a succinct way how neuronal activity unfolds in time
taking into account different time-scales. Given that neuronal sig-
nals are often non-stationary, DFA has been proven to be a reliable
method for capturing LRTC. The DFA method can be successfully

applied to both resting-state and task-dependent recordings. It can
also be used for quantifying brain activity during different tasks,
such as mental counting, visual and motor imagery, or even dur-
ing presentation of different stimuli. Here the neuronal reactivity
caused by the stimuli is usually transient in the order of hundreds
of milliseconds and as such can easily be ruled out as the source for
modulation of neuronal dynamics on the scale of tens of seconds
(Linkenkaer-Hansen et al., 2004), the latter rather being related to
the attentional or vigilance states. Recently DFA has been adapted
to allow detection of time-varying scaling exponents (Berthouze
and Farmer, 2012), which could prove useful in data where brain-
state changes could be expected to produce different scaling, e.g.,
at the onset of sleep (Kim et al., 2009) or in acute response to drugs
(Monto et al., 2007; Hohlefeld et al., 2012).

In (Monto et al., 2008) it was shown that there are infraslow
oscillations with a frequency of 0.01–0.1 Hz that predict human
behavioral performance and were correlated with the amplitude
of the classical frequency bands (alpha, beta, gamma, etc.). How-
ever, it is yet to be determined whether the amplitude modulation
of the classical frequency band oscillations are the cause of infra-
slow oscillations, which is theoretically plausible, because these
oscillations often have non-zero mean (Nikulin et al., 2007). Alter-
natively, a mechanism that is not directly related to the neuronal
oscillations could produce excitability changes in the cortex, which
would be reflected in infraslow oscillations and modulate the
amplitude of all the other oscillations.

One of the main explanations for the presence of LRTC in
neuronal oscillations has been the hypothesis of a brain being
in a critical-state (Bak, 1996; Linkenkaer-Hansen et al., 2001;
Kello et al., 2010). Criticality in neuronal networks has been
related to optimal information processing using computational
models (Kinouchi and Copelli, 2006). At the level of neuronal
populations, criticality is reflected in scale-free distributions of
local field potential propagations, so-called neuronal avalanches,
and these have been observed both in vitro (Beggs and Plenz,
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2003) and in vivo (Petermann et al., 2009). Importantly, it was
recently shown in computational models of neuronal oscillations
that LRTC emerges only when networks produce critical neuronal
avalanches and this occurs when excitatory and inhibitory con-
nectivities are balanced (Poil et al., 2012). Thus, it is likely that
LRTC reflect critical-state dynamics of neuronal networks, but
more work is needed to explain how variation in DFA exponents
in different frequency bands and anatomical regions relate to
neuronal avalanches, criticality, and computation.
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