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COVID-19 nonpharmaceutical interventions (NPIs), including mask wearing, have
proved highly effective at reducing the transmission of endemic infections. A key public
health question is whether NPIs could continue to be implemented long term to reduce
the ongoing burden from endemic pathogens. Here, we use epidemiological models to
explore the impact of long-term NPIs on the dynamics of endemic infections. We find
that the introduction of NPIs leads to a strong initial reduction in incidence, but this
effect is transient: As susceptibility increases, epidemics return while NPIs are in place.
For low R0 infections, these return epidemics are of reduced equilibrium incidence and
epidemic peak size. For highR0 infections, return epidemics are of similar magnitude to
pre-NPI outbreaks. Our results underline that managing ongoing susceptible buildup,
e.g., with vaccination, remains an important long-term goal.

SARS-CoV-2 | masking | dynamics

Nonpharmaceutical interventions (NPIs), including mask wearing and social distancing,
have proved crucial for reducing the transmission of SARS-CoV-2 prior to the
development and deployment of vaccines. At the same time, these interventions have also
limited the transmission of other respiratory pathogens including respiratory syncytial
virus (RSV) and influenza (1). During winter 2020 in the southern hemisphere, and
winter 2020/2021 in the northern hemisphere, cases of respiratory infections fell
dramatically compared to previous seasons (2–4). The US Centers for Disease Control
(CDC) reported 2,857 total positive influenza specimens for the 2020/2021 season from
combined clinical and public health labs when compared to 229,551 positive specimens
in the 2018/2019 season (5). In Australia, 598 cases of influenza were confirmed in 2021
compared to 313,000 in 2019 (6).

Given the observed efficacy of NPIs for reducing the incidence of influenza and
RSV, a key public health question is whether interventions should continue to be
implemented long term to reduce future burden from endemic disease (7). Mask wearing
has been shown to be highly effective at reducing the transmission of respiratory, airborne
pathogens in laboratory studies (8, 9). Moreover, in some countries, the practice of
wearing masks precedes the emergence of COVID-19. A study conducted in Japan
in 2012 found that 38% of survey respondents wore a mask during the 2011/2012
influenza season (10). Mask wearing, prior to COVID-19, was also common in China,
Taiwan, and Hong Kong, with the practice gaining popularity during and following the
SARS-CoV pandemic in 2003 (11, 12). Yet, the long-run effectiveness of mask wearing
for reducing the transmission of endemic diseases, as opposed to emerging pathogens
such as SARS-CoV and SARS-CoV-2, remains unclear. Notably, a crude comparison of
influenza attack rates between Japan (13) and the USA (14) reveals broadly similar values
(see also Fig. 4).

Here, we use epidemiological models to explore the impact of possible long-run
NPIs, including mask wearing, on the dynamics of endemic, acute directly-transmitted
infections. We focus on the transmissibility of the pathogen which is captured by the basic
reproduction number, R0, as well as the duration of immunity to the disease. NPIs enter
the model by lowering the transmission rate, β, which biologically reflects per-pair trans-
mission; we assume that NPIs do not impact the recovery rate following infection. We
first consider the implications for two types of pathogen: a low R0 pathogen with waning
immunity, i.e., “influenza-like,” and a high R0 pathogen with longer-lasting immunity,
i.e, “RSV-like.” For the low R0 pathogen we assume susceptible-infected-recovered-
susceptible (SIRS) dynamics where the return to susceptibility reflects the pathogen evolv-
ing to evade host immunity or waning immunity. For the high R0 pathogen, we assume
susceptible-infected-recovered (SIR) dynamics. In this case, increases in the susceptible
population are driven by births. These two models have seasonal transmission rates:
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in the influenza model, seasonal transmission is driven by the
seasonality of specific humidity in New York (15), and in the
RSV model, the transmission rate is derived by fitting the model
to data from Texas (1). Following this analysis, we derive the
analytical solution using a more generic form of the SIR and
SIRS models with varied R0 and immunity length.

Results

Fig. 1A shows the model results for the influenza-like pathogen.
The model assumes that mean R0 prior to the implementation
of NPIs is approximately 1.8 and the duration of immunity is
40 wk and the duration of infectiousness is 1 wk. The NPIs
are included as a fixed 20% reduction in transmission for 1 y,
starting in 2020, followed by a year without NPIs to reflect
the implementation and then reduction of COVID-19 controls.
Early estimates suggest that transmission of respiratory pathogens
declined by at least 20% in the United States at the start of the
pandemic (1, 16–18) (results for different percentage reductions
are shown in SI Appendix, Fig. 2). As NPI measures are relaxed,
the model predicts an out-of-season resurgence in cases driven by
an increase in the susceptible population during the NPI period,
as described in previous work (1). To explore the impact of
long-term NPIs on future outbreaks, we introduce a second NPI
period as a 20% reduction in transmission that lasts indefinitely
(i.e., reflecting possible ongoing mask wearing). The secondary
NPIs lead to an immediate decline in case numbers. However,
after 1 to 2 y, modeled incidence resurges even while NPIs remain
in place. Crucially, the proportion of susceptible individuals rises
over the NPI period and stabilizes at a new mean, at which point,
seasonal epidemics return albeit at a reduced epidemic peak size.

We repeat the exercise in Fig. 1B for RSV, a pathogen
with higher R0 (19). We use a model fit to data from Texas
where we estimate mean R0 = 7 and the birth rate is the
2020 birth rate in Texas. Again, we assume an initial 20%
reduction in transmission, followed by a year without NPIs,
and then reintroduce the NPIs permanently at a 20% reduction
in transmission. During the initial NPI period, modeled RSV
cases decline substantially but resurge when NPIs are removed
(1). During the secondary NPI period, modeled RSV outbreaks
return after 3 to 4 y of low case numbers. However, on returning,
RSV resumes a seasonal pattern of outbreaks that are strikingly
similar to the pre-NPI era in terms of timing and magnitude.

This result contrasts with the low R0 SIRS model where
outbreaks during the NPI period remain of reduced peak size.
Population-level susceptibility to RSV increases substantially over
the secondary NPI period (blue line Fig. 1A), eventually settling
on a higher mean susceptible proportion. We find a similar result
even with more stringent controls, though epidemics take longer
to reestablish (SI Appendix, Fig. 2).

To interpret this result, we calculate a moving average of
the effective reproduction number (Re, which is equal to R0
multiplied by the proportion susceptible S/N ) over the modeled
period (gold line, Fig. 1A). During the first and early second
phases of NPIs Re declines below pre-NPI levels. Later, during
the second phase of NPIs, higher susceptibility drives up Re such
that after 3 to 4 y, Re returns to pre-NPI equilibrium levels.
Collectively, these results imply that control measures such as
mask wearing are effective at reducing the incidence of endemic
disease in the short-term, as evinced by the observed reduction in
RSV and influenza cases during the COVID-19 pandemic (1, 2).
However, over the long term, substantial reductions in incidence
are hard to maintain, particularly for high R0 pathogens. These
effects derive from the dynamics of susceptibility; long-term NPIs
may lead to a substantial increase in susceptibility that can lead
to a spike in incidence if later relaxed or if a more transmissible
strain emerges (SI Appendix, Fig. 2).

Our model results reveal a distinct difference in the behavior
of a low R0 pathogen (influenza) and high R0 pathogen RSV
during a period of ongoing NPIs. Whilst NPIs are in place,
epidemics of both pathogens return; yet, the low R0 epidemics
are reduced in epidemic peak size while the high R0 epidemics
appear unaffected. To explore this result in the general case, we
turn to a simple unforced SIR model with demography (Fig.
2A). We simulate the dynamics of an infection where R0 = 8,
the birth rate is set equal to the mortality rate, the duration of
infectiousness is 2 wk, and a 20% reduction in transmission (β)
occurs during the NPI period. In the time series (Top Left, Fig.
2A) and S–I phase plane plot (Right side, Fig. 2A), we recover
our results from Fig. 1B wherein the proportion infected returns
to similar levels during the NPI period. The S–I phase plane
plot reveals that NPIs shift the epidemic to a different attractor
defined by higher equilibrium susceptibility.

We can capture the impact of NPIs across infections of
different R0, for example, influenza and RSV, via equilibrium
analysis (20). Beginning with the fully immunizing, unforced
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Fig. 1. Epidemics return while controls are in place. Impact of NPIs on proportion infected (I/N, red line), 52-wk rolling average of proportion infected (mean
I/N, black dashed line), proportion susceptible (S/N, blue line), and 52-wk rolling average of the effective reproduction number (mean Re, gold line) shown for
two phases (gray shaded time period) of 20% reduction in transmission for influenza (A) and RSV (B). Recruitment of susceptibles is primarily driven by waning
immunity for (A) and births in (B).
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Fig. 2. Analytical results using unforced SIR/SIRS models (A) Time series (Top Left), S–I phase plane (Right), and equilibrium solution (Lower Left) for the unforced
SIR model with demography. Gray shading in time series plot represents the implementation of a 20% reduction in transmission. Dotted lines represent
equilibrium proportion infected and susceptible (I∗ and S∗) for a pathogen with R0 = 8, and dashed lines represent I∗ and S∗ following a 20% reduction in
transmission. (B) Shows percentage reduction in I∗ against R0 for pathogens with R0 increasing from 2 to 15 by 1 (color gradient). (C) Shows the same plots as
(A), but for an SIRS pathogen model where the duration of immunity is 52 wk. Dotted lines and time series plot now represent a pathogen with R0 = 2.5 and
dashed lines a 20% reduction in transmission. (D) Shows the dependence of I∗ (colored lines) on the duration of immunity varied from 0.5 (blue) to 200 (red)
wk. Dashed lines represent the relationship between R0 and S∗ which is insensitive to the duration of immunity.

SIR model, we examine the analytical solution for the equilibrium
proportion infected I∗ and proportion susceptible S∗ and plot
these as a function of R0 in Lower Left Fig. 2A (for derivation see
Materials and Methods). I∗ has a nonlinear relationship with R0
and is a linear transformation of−1/R0 (Fig. 2A). Pathogens with
a high R0 sit on the flat part of the I∗ curve such that reductions
in R0 due to NPIs do not substantially impact the proportion
infected. In contrast, for a pathogen with a lower R0 (e.g., 1–
4), a reduction in R0 due to NPIs will yield a greater percentage
reduction in equilibrium cases. We show this explicitly in Fig. 2B,
where the dashed y = −x line corresponds to a scenario where the
NPI-driven percentage reduction in transmission exactly equals
the percentage reduction in equilibrium infected. For an SIR
pathogen with R0 = 2, a 10% reduction in transmission leads to
an 11% reduction in I∗. However, for a pathogen with R0 = 3, a
10% reduction in transmission leads to a 6% reduction in I∗. For
higher transmission pathogens, reducing R0 has minimal impact
on I∗ unless substantial reductions are made.

We find similar results for the unforced SIRS model (Fig. 2C).
In this model, susceptibility is driven by waning immunity (where
the duration of immunity is equal to 1 y) as well as births (set
equal to the mortality rate). In the time series and S–I phase plane
plot (Top Left and Right side of Fig. 2C), we simulate a pathogen
with R0 = 2.5 and a 20% reduction in transmission during the
NPI period. For this lower R0 pathogen, reducing transmission
leads to a clearer reduction in I∗ (as shown by comparing the time

series in Fig. 2B to Fig. 2A). However, the equilibrium I∗ still
remains substantially above the transient, short-term reductions
in incidence observed when the NPI measures are initially put
into place (Fig. 2C S–I phase plane plot). For SIRS infections in
general, I∗ remains a linear transformation of−1/R0 (Lower Left,
Fig. 2C). In Fig. 2D, we vary the duration of immunity in the
SIRS model. Notably, equilibrium S∗ remains unchanged, given
by S∗ = 1/R0, while I∗ declines as the duration of immunity
increases. The SIS model, where the duration of immunity is zero,
gives qualitatively similar conclusions (Materials and Methods).

The analytical solution to the SIR and SIRS models shows
that for high R0 infections, such as RSV, the equilibrium impact
of NPIs may be more limited in terms of reducing infections
in the medium-to-longer term. For low R0 infections, such as
seasonal influenza, NPIs may drive stronger effects. Crucially
for both pathogen types, short-term reductions in incidence
may substantially exceed the long-term, equilibrium effect. This
suggests that the clear and important reduction in cases of
endemic, respiratory pathogens during the COVID-19 pandemic
may not persist long term and hence does not reflect the true
efficacy of NPIs at controlling endemic infections in the long
run. Importantly, the qualitative results do not hinge on the
values of the duration of infectiousness, duration of immunity,
or birth/mortality rates (SI Appendix, Figs. S3 and S4).

While the efficacy of long-term NPIs may be limited for certain
pathogens, a combined approach that employs vaccines as well as
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NPIs may be highly effective at reducing infections. In Fig. 3A,
we take the RSV model from Fig. 1B and assume that NPIs are
implemented for 3 y that reduce transmission by 20%. After 3 y,
a vaccine is introduced that is administered to infants at birth that
reduces infection and has 80% coverage (applying a vaccination
rate across the whole population generates a similar picture;
see SI Appendix, Fig. 7). Following vaccine introduction, mean
proportion infected remains permanently lowered and NPIs
successfully minimize outbreaks prior to vaccine introduction
(see SI Appendix, Fig. 6 for comparison case). In Fig. 3B, we show
the analytical result for the impact of a vaccination that reduces
infection and NPIs on I∗ . Increasing vaccination coverage has
a linear effect on reducing I∗. NPIs may further reduce I∗ by
lowering R0 and increasing the probability of local elimination.
It is important to note that the vaccines we consider here reduce
infection. The introduction of a vaccine that reduced severe
disease but not infection would not impact I∗. In contrast, if
a vaccine were introduced that reduced transmission it would
mirror the effect of the NPIs.

In certain countries, mask wearing has been a common practice
prior to the COVID-19 pandemic. Our results imply that for
a low-R0 pathogen such as influenza, NPI measures including
mask wearing could have a modest effect on influenza case
numbers. An international comparison of influenza attack rates
is difficult due to differences in reporting and surveillance across
countries. Improved availability of serological data may enable
these comparisons in the future (21). Instead, we look at the
implications of mask wearing for epidemic intensity, a measure
of how concentrated cases are through the year. More intense
outbreaks, i.e., a higher number of cases within a fixed period,
can represent a larger burden to healthcare systems depending
on available resources. Crucially, the intensity of the outbreaks
can be compared across regions despite differences in reporting
and surveillance. Our measure of epidemic intensity is equal to
0 if cases are exactly evenly distributed throughout the year and
1 if cases are concentrated in one week of the year (Materials and
Methods) (22).

We first consider changes in epidemic intensity for a simple
SIRS model with seasonal forcing assuming a 20% reduction
in transmission (Fig. 4A). Following the introduction of NPIs,
intensity declines and cases become more spread out through

the year. In Fig. 4B, we show the dependence of both intensity
and mean proportion infected on the reduction in R0 (where
mean R0 is 1.8). We find similar declines in both intensity and
mean proportion infected as more stringent NPIs are introduced.
In Fig. 4C, we plot intensity against latitude for all countries
reporting data to the World Health Organization’s Global
Influenza Programme as well as data from Hong Kong. Latitude
is a key determinant of epidemic intensity, with less intense
outbreaks occurring close to the tropics likely driven by climatic
factors (15, 23). We highlight in blue locations where mask
wearing is more frequently practiced and sample red locations
where mask wearing is not practiced. On average, locations with
seasonal mask wearing have a slightly reduced epidemic intensity
compared to predicted levels based on latitude alone. However,
while latitude is a significant predictor of outbreak intensity
(P � 0.001), mask wearing was not found to be significant
(P = 0.10). Importantly, many other factors including contact
patterns and birth rates could drive cross country differences in
outbreak intensity.

Discussion

There are several caveats to our analysis. First, the long-term
impact of NPIs depends on the basic reproduction number
of the pathogen, however, values of R0 are typically hard to
determine and likely vary by location. For example, we estimate
a mean R0 of 7 for RSV in Texas, while other studies in the
United States estimate an R0 between 8.9 and 9.2 (16, 19).
Studies that assume a full return to susceptibility following RSV
infection tend to report lowerR0 estimates, i.e.,R0 ≈ 2, however,
this assumption does not appear realistic based on serological
evidence (24). Second, we have not explicitly addressed how
NPI measures may impact the age distribution of infections. In
the classical unforced SIR model, the mean age of infection is
inversely proportional to R0 (20), suggesting that NPIs will have
relatively modest effects on the mean age of infection for high
R0 pathogens. However, even small changes could make a big
difference if vulnerability and transmission changes quickly with
age. We explore age-structure using a simple model with two age
classes (SI Appendix, Figs. S8 and S9 and Supporting Methods).
Age heterogeneity of NPIs is important but does not qualitatively
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impact results. A more comprehensive age-structured model that
captures the dynamics of multiple age classes should be explored
in future work. Finally, we have not considered the evolutionary
consequences of implementing long-term NPIs, particularly for
influenza. Evidence from the COVID-19 NPI period suggests
prolonged low circulation has reduced the diversity of influenza
viruses and perhaps resulted in the extinction of the B/Yamagata
lineage (25). Given that such periods of very low circulation are
likely temporary, it is unclear how influenza evolution may be
affected by NPIs in the long term (26).

Broadly our results underline the importance of NPIs in lim-
iting major outbreaks (SI Appendix, Fig. S2). Indeed, sufficiently
effective implementation of NPIs can eliminate transmission
[e.g., the elimination of enteric infections by water treatment and
sewerage (27)]. Below this elimination threshold, we find that the
long-term impact of NPIs on endemic infections depends on the
dynamics of population susceptibility. After implementation of
NPIs, cases may decline, but over time, population susceptibility
increases driving up the effective reproduction number Re and
increasing the likelihood of a return epidemic. When such an
outbreak occurs, population susceptibility stabilizes at a new
equilibrium level where the mean proportion infected may be
similar in size to the pre-NPI levels albeit dependent on the
basic reproduction number of the pathogen. This result has
implications for both the long-term control of endemic infections
as well as understanding the circulation of endemic infections
over the coming years, as COVID-19 NPIs continue to be
implemented in response to SARS-CoV-2 variants. In the latter
case, our results imply that endemic infections such as RSV and
influenza may return even if COVID-19 NPIs are ongoing.

The most powerful use case of NPI measures for endemic
infections is in combination with vaccination. Vaccines are
highly effective at reducing infections; NPIs can provide a
temporary control during or preceding vaccine distribution.
Importantly, a combination of NPIs and vaccination could move
endemic infections closer to the elimination threshold, especially
for infections with intrinsically lower R0. Simple models also
underline that vaccination is relatively robust to reductions in
uptake (e.g., due to vaccine hesitancy). Since vaccination does not
cause a rise in susceptibility (20) (SI Appendix, Figs. S6 and S7),
a sharp reduction in uptake does not lead to an immediate large
outbreak; by contrast, a sharp drop in NPI adoption could lead

to a rapid epidemic due to the previous buildup of susceptibles
(SI Appendix Fig. S6). A combination of susceptible limitation
by vaccination and NPIs is thus particularly powerful. Advances
in vaccine development brought about by the global COVID-19
response should be leveraged to control the full range of endemic
pathogens.

Materials and Methods

RSV and InfluenzaModels. RSV and influenza models are shown in Fig. 1. The
time series susceptible-infected-recovered (TSIR) model for RSV is fully described
in previous work (1). The model (shown in Fig. 1 and SI Appendix, Fig. S2) is
parameterized using RSV hospitalization data from Texas. Model simulations
are run for weekly time steps according to

It =
βt−1Iαt−1St−1

Nt−1
c, [1]

St = St−1 + Bt−1 − It , [2]

where It and St are number of infected and susceptible individuals at time t, Nt is
the population size, Bt is the weekly birth rate, andβt is the seasonal transmission
rate estimated biweekly for 52 wk (SI Appendix, Fig. S1). α is a constant that
captures heterogeneities in mixing and the discretization of a continuous time
process, fixed at 0.97 based on previous work (1, 28). Simulations are run
for 50 y to remove transient dynamics. NPIs are characterized as a percentage
reduction in β for a fixed time period, i.e., a 20% reduction is β means 0.8*β .
The reduction in beta approximates a 20% reduction in per-pair transmission.
Further details of TSIR model fitting are provided in the SI Appendix, Supporting
Methods.

The influenza model is SIRS where transmission is dependent on specific
humidity, as described in previous work (15, 29, 30). The model equations are
the following:

dS
dt

=
R
L
−
β(t)IS

N
+ µ(N− S), [3]

dI
dt

=
β(t)IS

N
−

I
D
− µI, [4]

dR
dt

=
I
D
−

R
L
− µR, [5]

where S is the proportion susceptible, I is the proportion infected, R is the
proportion recovered, and N is the total population (where S + I+R = N = 1).
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L is the duration of immunity, set at 40 wk. Waning immunity reflects the
evolution of the pathogen to evade host immunity leading to reinfection. D is
the duration of infectiousness, set at 1 wk. The model includes a weekly birth rate
μ, equal to the mortality rate μ, set at 0.00038 or 1/(50*52). Transmission β is
related to the basic reproduction number R0(t) = β(t)D which is dependent
on specific humidity according to

R0(t) = exp(−180 ∗ q(t) + log(R0max − R0min)) + R0min, [6]

where qt is humidity and R0max = 3 and R0min = 1.2. We use a sinusoidal
function for humidity that is derived from average New York humidity data. The
functional form of the relationship between specific humidity is based on prior
work by Shaman et al. (15, 29). When NPIs enter the model (Fig. 1A), they act to
reduce R0(t) such that a 20% reduction is R0(t) * 0.8.

Generalized SIR and SIRS Models. The generalized SIR and SIRS models are
shown in Fig. 2. The generalized SIRS model is described by

dS
dt

= µ(N− S)−
β IS

N
+ ωR, [7]

dI
dt

=
β IS

N
− (µ+ γ )I, [8]

dR
dt

= γ I− µR− ωR, [9]

where µ is the birth rate, γ is the recovery rate, and ω is the rate at which
immunity wanes. S, I, and R are defined as above. Setting the duration of
immunityω = 0 recovers our generalized form of the SIR model. We derive the
endemic equilibrium by setting dI

dt = 0 (31). Setting N = 1, from Eq. 8we find

I(βS − (γ + µ)) = 0, [10]

where the disease free equilibrium is recovered when I∗ = 0. The endemic
equilibrium is when S∗ = γ+µ

β or:

S∗ =
1

R0
. [11]

Note that the equation for S∗ is independent of ω and therefore the
equilibrium proportion susceptible is the same for both SIR and SIRS model
describedhere.Bysubstituting11 intoEq.(7),wefindtheequilibriumproportion
infected:

I∗ =
µ(R0 − 1) + ω(R0 − 1)

β + ωR0
=

µ+ ω

µ+ ω + γ

(
1−

1
R0

)
. [12]

for the SIRS model. For the SIR model,ω = 0, and the equilibrium proportion
infected is the following:

I∗ =
µ(R0 − 1)

β
=

µ

µ+ γ

(
1−

1
R0

)
. [13]

For the simulations in Fig. 2, we set γ = 1/2, µ = 1/(50 ∗ 52), and
ω = 1/52 for the SIRS model. For the SIR model, R0 = 8 and for the SIRS
model, R0 = 2.5.
SIS model. The generic susceptible-infected-susceptible model is the following:

dS
dt

= µ(N− S)−
β IS

N
+ γ I, [14]

dI
dt

=
β IS

N
− (µ+ γ )I. [15]

Again, the equilibrium proportion susceptible is given by S∗ = 1/R0.
The equilibrium proportion infected can be found either by substituting S∗

in equation (14) or from noting that (N = S∗ + I∗) such that if N = 1,
I∗ = 1− 1/R0.

Vaccination.
Vaccination at birth. Fig. 3 considers vaccination at birth. Vaccination at birth
enters the generalized SIR model via the susceptible equation as

dS
dt

= µ(N(1− p)− S)−
β IS

N
, [16]

where p is the proportion of the birth cohort that are vaccinated. The equations
for the infected population and the recovered population are given by Eqs. 8
and 9 with ω = 0. Using Eq. 8 and assuming N = 1, we find again that the
equilibrium proportion susceptible is S∗ = 1/R0. The equilibrium proportion
infected is given by

I∗ =
µ

µ+ γ

(
(1− p)−

1
R0

)
, [17]

i.e., I∗ is again a linear transformation of 1/R0.
Vaccination at rate, total population. Vaccination may also occur at the
population level. We consider vaccination at a rate v in the SIR model. The
susceptible and infected equations are given as follows:

dS
dt

= µ(N(1− p)− S)−
β IS

N
− vS, [18]

dI
dt

=
β IS

N
− (µ+ γ + v)I. [19]

Setting dI
dt = 0 and rearranging Eq. 19, we find S∗ = µ+γ+v

β . Given that
γ � v and µ, S∗ ≈ 1/R0. Note that is infected individuals are unable to
seroconvert, the vaccination term is removed from Eq. 19, and S∗ = 1/R0.

Nullclines for both the vaccination at birth and vaccination at rate models are
shown in SI Appendix, Fig. S7.

Epidemic Intensity. We define the epidemic intensity based on Dalziel et al.
(22) as

Intensity = 1−
∑

p ln(p)
ln(1/52)

, [20]

where p is a vector of the mean number of influenza cases per week divided by
the sum across all weeks. The mean number of cases per week is calculated by
averaging across all years using weekly influenza country-level time series from
2012–2019. The denominator in Eq. 16 normalizes the intensity metric such
that Intensity = 0, when cases are exactly evenly distributed across all 52 wk of
the year. For years where there are 53 wk, the 53rd wk is removed.

Data, Materials, and Software Availability. Code data have been deposited
in Github (https://github.com/rebaker/longterm_NPI).
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