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Background: The ulnar collateral ligament (UCL) complex of the elbow plays a primary role in valgus
and posteromedial stability of the elbow. The anterior oblique ligament (AOL) of the UCL is believed to
provide the majority of resistance to external forces on the medial elbow. The transverse ligament (TL) of
the UCL is generally thought to have minimal contribution to the elbow’s overall stability. However,
recent studies have suggested a more significant role for the TL. The primary aim of this study was to
identify the TL’s contribution to the stability of the elbow joint in determining the joint stiffness and
neutral zone variation in internal rotation.
Methods: Twelve cadaveric elbows, set at a 90� flexion angle, were tested by applying an internal
rotational force on the humerus to generate a medial opening torque at the level of the elbow. The
specimens were preconditioned with 10 cycles of humeral internal rotation with sinusoidal torque
ranging from 0 to 5 Nm. Elbow stiffness measures and joint neutral zone were first evaluated in its
integrity during a final ramp loading. The test was subsequently repeated after cutting the TL at 33%, 66%,
and 100% followed by the AOL in the same fashion.
Results: The native UCL complex joint stiffness to internal rotation measured 1.52 ± 0.51 Nm/�. The first
observable change occurred with 33% sectioning of the AOL, with further sectioning of the AOL mini-
mizing the joint stiffness to 1.26 ± 0.32 Nm/� (P ¼ .004). A 33% resection of the TL found an initial neutral
zone variation of 0.376 ± 0.23� that increased to 0.771 ± 0.41� (P < .01) at full resection. These values
were marginal when compared with the full resection of the AOL for which we have found 3.69 ± 1.65�

(P < .01).
Conclusion: The TL had no contribution to internal rotation elbow joint stiffness at a flexion angle of
90�. However, sequential sectioning of the TL was found to significantly increase the joint neutral zone
when compared with the native cadaveric elbow at a flexion angle of 90�. This provides evidence toward
the TL having some form of contribution to the elbow’s overall stability.

© 2021 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
The ulnar collateral ligament (UCL) complex is located on the
medial side of the elbow and is composed of three ligamentous
bundles: the anterior oblique ligament (AOL), the posterior oblique
ligament (POL), and the transverse ligament (TL).22 The AOL and
POL originate from the medial epicondyle of the humerus and
insert onto the sublime tubercle of themedial coronoid process and
the medial border olecranon of the ulna, respectively.17 The TL
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bridges the AOL and the POL, originating from the olecranon pro-
cess and inserting onto the coronoid process.23 Each of these liga-
mentous bundles have been described to have individual
contributions to the overall function of the UCL complex as the
primary static stabilizer of the medial elbow.10,30

Injuries to the UCL complex are most commonly seen with
athletes competing in overhead throwing sports, such as baseball
pitchers or javelin throwers.6,38 This is owing to the large, repetitive
tensile forces applied to the UCL complex from the acceleration
phase of the throwingmotion.2,34 UCL injuries can also occur from a
traumatic fall onto an outstretched arm, resulting in high amounts
of valgus and rotatory stress.43 Patients with UCL injuries typically
present with medial-sided elbow pain, ulnar nerve paresthesia, or
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an occasional locking or clicking sensation in the joint.26,28,33 In
most cases, conservative management is the first line of treatment.
However, depending on the patient’s requirements or if they were
to fail nonoperative treatment, surgical management may be
indicated.11

No specific surgical technique or graft choice has been shown to
be a consistently superior choice for the treatment of UCL injuries.16

Although, typically, these surgeries aim to reconstruct or repair the
AOL alone.29 There is also no standard for measuring the objective
success after undergoing UCL surgery.15 These inconsistencies may
explain the variable postoperative clinical outcomes, with studies
showing 68-93% of cases having good to excellent results.35 Post-
operative rehabilitation time after undergoing surgery for UCL in-
juries has also been reported to be variable, with some cases
ranging from 11.5 to 20.5 months.9

The AOL is the thickest of the three ligaments, and it acts as the
primary stabilizer of the medial elbow by providing significant
resistance to valgus stress and prevents humeroulnar distraction.19

The AOL is composed of an anterior band, which is taught between
0 and 60� of flexion, and a posterior band, which is taught between
90 and 120� of flexion.6,24 Both of these structures function as
coprimary restraints between 60 and 90�, allowing for the AOL to
provide support throughout the range of elbow flexion.22 The
elbow especially requires extra support at 90�, where it has been
shown to have the highest degree of instability.4,10 Further studies
have demonstrated there is maximum ulnohumeral gapping with
the elbow flexed at 90� when only the AOL is transected.31,40 The
AOL also shows maximum lengthening at 90�, when both the
anterior and posterior bands of the AOL are functioning
together.5,22 The POL mostly plays a secondary support role for the
AOL during higher degrees of flexion,41 although it has recently
been shown to play a larger role in rotatory instability.21

It was previously accepted in the orthopedic community that
the TL plays little, if any, role in medial elbow stability owing to its
anatomic position being limited to the ulna.10 A study from 1985 by
Morrey and An30 has previously stated that the ligament itself is
poorly developed and not differentiable from the joint capsule.
Other authors have also reported that it was not consistently pre-
sent.4 However, more recent studies, using computed tomography-
based 3-dimensional renderings5 and advanced mapping tech-
niques, have been able to reliably locate the TL underneath the
connective tissue covering the ulnar nerve and the aponeurosis of
the flexor-pronator mass as well-demarcated fibers bridging the
insertions of the AOL and POL.3,5,23 In addition, this has led to the
assumption of a more important role in medial elbow stability for
the TL because it has been found with a broad soft-tissue insertion
onto the AOL, which could result in a reinforcement of the AOL’s
connection to the POL. However, the same studies indicated the
need of further biomechanical investigation to provide any signif-
icance to this observation.5,23

Because of its broad insertion onto the AOL, injury to the TL may
lead to an overall decrease in function of the AOL, which would
ultimately cause an increase in elbow joint laxity (Camp et al, 2018).
In facts, clinical outcome data from surgical reconstruction or repair
of the AOL alone have not been found to guarantee a 100% return to
prior function.15

In the present study, we aim to identify the TL’s mechanical
contribution to the stability of the elbow joint. More specifically, we
want to identify the role of the UCL bundles in determining joint
stiffness and neutral zone in internal rotation. We hypothesize that
at a flexion angle of 90�, where the elbow has the highest degree of
instability,10 the TL does not contribute to the medial elbow stiff-
ness but influences the joint neutral zone.
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Materials and methods

Specimen preparation

This study was conducted using twelve fresh frozen human
cadaveric elbows (71.8 ± 19.8 years of age). The male-to-female
ratio was 11:1. All specimens were preserved in cold storage
at �10�C before retrieval and thawed at room temperature for
dissection. Each cadaveric extremity was then transversely
transected 15 cm proximally and distally from the tip of the
olecranon process using a hand saw. Next, a standard medial
approach to the elbow was carried out until the UCL was
encountered. All surrounding superficial soft tissues were
removed to clearly define the UCL complex, in addition to the
joint capsule and lateral collateral ligament complex. Special
care was taken to isolate and detach the common flexor-
pronator mass to avoid disturbing the UCL complex. Finally,
the humerus and forearm of each specimen were fixed into a
steel pot using an acrylic resin (Bondo, 3M).

Mechanical testing

After preparations were completed, the specimens were
connected to the rotational actuator of an Instron 8874 biaxial
testing system through a custom-made fixture. The humerus
was connected to the rotational actuator, while the forearm was
attached to a mobile stage mounted on the Instron Frame.39 The
frame allowed the forearm to move freely on the horizontal
plane and rotate around the radioulnar axis (see Fig. 1).
Following a previously validated protocol for mechanical testing
of the elbow joint at 90� flexion, specimens were first pre-
conditioned with 10 cycles of humeral internal rotation with a
cycling load following a sinusoidal function ranging from 0 to 5
Nm.27 Medial elbow stability was then evaluated during the final
ramp loading using joint stiffness and incremental neutral zone
measurements. Joint stiffness was defined for our purposes as
the slope of the reaction torque-rotation curve approximated
using a linear function within the values of 0.5 to 5 Nm.25

Relative to the intact control configuration, joint neutral zone
variation was defined as the rotational angular deviation
observed at a minimum reaction load of 0.5 Nm14 to determine
any descrete changes that would not be seen in clinical evalu-
ations. To obtain control values, testing was first conducted on
the specimens with intact UCL bundles. The loading sequence
was then repeated after sequentially sectioning the TL at 33%,
66%, and 100% along its midsection. Partial sectioning of the TL
was performed by first differentiating the ligamentous fibers and
identifying the boundaries of the ligament as it has been pre-
viously described.37 Its width was then measured with a caliper
and transected as per this value. The sectioned portion of the TL
and the load-displacement curve were monitored throughout
the loading process for any damage and drops in reaction loads;
in addition, specimens were inspected between each cycle for
any visible damage. Measurements were taken after the joint
was fully destabilized by sequentially sectioning the TL.

Statistical analysis

Progressive stiffness reduction and neutral zone increments
were evaluated for means using paired T-tests between sequential
resections, using a significance level of 0.05.37 All statistical ana-
lyses were performed using Microsoft Excel (Microsoft, Redmond,
WA, USA).
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Figure 2 Mean elbow joint stiffness with successive sectioning of the TL and AOL
under medial internal rotatory toque. AOL, anterior oblique ligament; TL, transverse
ligament.
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Figure 3 Mean neutral zone variation of sectioned TL and AOL compared with intact
specimen. AOL, anterior oblique ligament; TL, transverse ligament.

Figure 1 Cadaveric elbow specimen constrained to the mechanical testing machine
using a custom made fixture. An internal rotational torque is applied to the humerus
from the apparatus while being able to freely rotate around a medio-lateral axis. The
radioulnar complex has valgus constraints while being able to freely rotate around the
ulnar axis and move in the horizontal plane.

G.F. Solitro, R. Fattori, K. Smidt et al. JSES International 5 (2021) 549e553
Results

The native UCL complex joint stiffness to internal rotation
measured 1.52 ± 0.51 Nm/� as the elbow was loaded from 0.5 to 5
Nm of internal rotational torque. Each sequential sectioning of the
TL yielded no changes to the joint stiffness (P > .05, refer to Fig. 2).
The first significant decrease in joint stiffness was observed when
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the AOL was sectioned at 33%, resulting in a value of 1.46 ± 0.45
Nm/� (P¼ .02). Joint stiffness progressively decreased to 1.37 ± 0.42
Nm/� with 66% sectioning of the AOL, until the complete sectioning
of both bundles minimized the joint stiffness to 1.26 ± 0.32 Nm/�

(P ¼ .004).
With each level of sectioning for the TL and the AOL, significant

changes to the joint neutral zone (P � .01) were observed (refer to
Fig. 3). The joint neutral zone was initially measured to be
0.38 ± 0.23� after a 33% sectioning of the TL. Further sequential
sectioning of the TL resulted in a progressive increase to
0.59 ± 0.36� at 66% and 0.77 ± 0.41� at 100% (P < .01). The results
from successive sectioning of the AOL had larger incremental
changes to the joint neutral zone compared with the TL. The joint
neutral zone increased to 1.15 ± 0.35� and 1.72 ± 0.57� with
sectioning of the AOL at 33% and 66%, respectively (P � .01). Com-
plete sectioning of the AOL resulted in the largest incremental in-
crease to 3.69 ± 1.65� (P ¼ .01).
Discussion

The TL is known to form a bridge between the distal insertions
of the AOL and the POL on the ulna, and in previous studies, its role
on elbow stability was thought to be negligible.4,30 However, more
recent studies have brought new attention on the TL,24 and it has
been suggested that the TL has a more significant contribution to-
ward the elbow’s stability than what was previously thought.5,23

This study was designed to identify the biomechanical role of
injury to the TL in elbow joint stability in internal rotation. We have
found that the variation in stiffness from progressive sectioning of
the TL is marginal compared with the contribution given by
sectioning of the AOL. This reinforces the concept of the AOL’s role
as the primary stabilizer of the medial elbow,19 as well as expresses
the TL’s minimal role in contributing to the elbow’s stiffness.24

However, we have also found that progressive sectioning of the
TL produces a significant increase to the joint’s neutral zone. The
amplitude of the increases we foundmight be considered small, but
it provides evidence toward the TL having contribution to the el-
bow’s overall stability. The small increases to the neutral zone
variation observed at the reaction load of 0.5 Nm, used as the
reference in this study, should be considered an indicator of any
clinically relevant elbow instability that may develop during a
throwing athlete’s motion, which has been reported to be as high as
64 Nm.34

Surgical reconstruction of the UCL after injury was first
described by Jobe in 1974, and it has gradually evolved since then
with many improvements and variations.29 Many of the evolutions
to Jobe’s techniques have focused primarily on reconstruction of
the AOL owing to its primary role in medial elbow stability.12 As a
consequence of this, as well as its previously accepted minimalistic
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role, the TL is generally not evaluated with UCL injuries,32 and there
are no indications for its reconstruction found in previous litera-
ture. Based on the findings of this study, reconstruction of the AOL
alone can result in a return to normal joint stiffness, but the medial
elbow joint’s neutral zone remains significantly increased with an
applied stress due to an unaddressed injury to the TL. It has been
reported that the recovery time for pitchers to return to competi-
tion level after undergoing UCL reconstruction ranges from 11.5 to
20.5 months.9 In addition, findings have shown that increased
elbow laxity can cause the overestimation of apparent shoulder
external rotation during physical examination, adding unnecessary
rehabilitation time.27 Postoperative elbow instability also requires
additional rehabilitation time to develop appropriate muscle
strength, so that normal stability can be reestablished.13 Based on
the observed influence of the TL on the elbow’s neutral zone found
in our study, its reconstruction alongside the AOL may be able to
decrease total elbow instability and ultimately shorten the length
of postoperational rehabilitation time. Frangiamore et al19 per-
formed partial sectioning of the AOL at different locations on the
ligament using 2.5 and 5 Nm internal rotational torque on cadaveric
elbows with flexion angles of 70�, 90�, and 120�. Their findings
show that there was a decrease in joint stiffness regardless of the
location of the cut or flexion angle, with a maximum normalized
average of 31 ± 12% decrease to joint stiffness at all flexion angles
after a posterior distal transection of the AOL. These findings
correspond with our results on joint stiffness after partial
sectioning of the AOL at 90�, while also having a similar maximum
percentile decrease after we completely sectioned the AOL
(29 ± 13%). Another study that performed complete sectioning
sequences on the UCL complex of an elbow flexed at 70� found an
increase to ulnohumeral joint gapping with the release of both of
the AOL and the TL under valgus stress. Their results also showed
that the release of the AOL provides a greater increase than the
release of the TL.7 These findings have a similar trend to our results
in regards to the joint’s neutral zone variation at a different flexion
angle and testing load.

There are some limitations present in this study. The biggest
limitation is from the dissections performed to visualize the UCL
bundles of the specimens. Removal of the surrounding soft tissues
compromises any secondary stabilizers, such as the flexor-pronator
mass.20 This limitation is inherent to any cadaveric study; however
our dissections were performed similar to other authors’ tech-
niques, and we were careful during the dissections to create uni-
form specimens to evaluate medial elbow stability.1,8,19,20,23,37,38

Another limitation to our study is the joint flexion angle of 90�

used during the testing procedures. Different flexion angles may
produce different numerical results, but it must be considered that
the flexion angle used in our present study was chosen because it is
the flexion angle at which the highest degree of instability occurs,
which would allow for better sensitivity in our results.10 A third
limitation comes from our ability to create partial sectioning of the
ligaments tomimic the physiological conditions of UCL injuries. We
defined the boundaries of each ligament of the UCL complex to
minimize any subjectivity in the lengths of our sectioning. How-
ever, it is not possible to perfectly reproduce the physiological
tearing present in most cases of UCL injuries. Despite this limita-
tion, partial sectioning of the ligaments allowed us to better
appreciate variations in biomechanical behavior compared with
complete transections found in other studies.7,36 As an additional
limitation, our specimens had age of 71.8 ± 19.8 years, which would
not accurately reflect young throwing athletes between the ages of
15 and 24 years, who more commonly sustain UCL injuries.42

However, it is of comparable age with other cadaveric studies
involving UCL injuries that used specimens with average ages
ranging from 69 ± 6.5 to 77 ± 1.3 years.18,37,38
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Conclusion

In this study, the TL was found to have no contribution to in-
ternal rotation elbow joint stiffness at a flexion angle of 90�.
However, sequential sectioning of the TL was found to significantly
increase the joint neutral zone when compared with the native
cadaveric elbow at a flexion angle of 90�. While further biome-
chanical and clinical studies are needed to precisely quantify the
effects of TL repair or reconstruction in addition to AOL surgery in
the setting of UCL injuries. The present study provides evidence
toward the TL having contribution to the elbow’s overall stability.
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