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Abstract

Background: Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host.
Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface
to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania
mexicana cysteine protease rCPB2.8 activity.

Methodology/Principal Findings: The data analysis revealed that the presence of heparin affects all steps of the enzyme
reaction: (i) it decreases 3.5-fold the k1 and 4.0-fold the k21, (ii) it affects the acyl-enzyme accumulation with pronounced
decrease in k2 (2.7-fold), and also decrease in k3 (3.5-fold). The large values of DG = 12 kJ/mol for the association and
dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the
presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8
active site. Binding to heparin also significantly decreases the a-helix content of the rCPB2.8 and perturbs the intrinsic
fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys25)-
S2/(His163)-Im+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8
significantly decreased its inhibitory activity against the mature enzyme.

Conclusions/Significance: Taken together, depending on their concentration, heparin-like glycosaminoglycans can either
stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this
glycoconjugate can anchor parasite cysteine protease at host cell surface.
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Introduction

Papain-like cysteine proteases have been identified in

parasitic organisms, such as T. cruzi (cruzain), T. brucei

(trypanopain, TbCatB) and different Leishmania spp. (CPA,

CPB, CPC) [1]. The cysteine proteinase (CP) activity of

Leishmania mexicana is considerably greater in the mammalian

amastigote form than in the promastigote forms [2]. These

classes of CPs exist as multiple isoenzymes [3–7], which are

encoded by a tandem array of 19 similar CPB genes [7–11].

The CPs, together with homologues from either leishmanias

[12,13] and trypanosomatids such as Trypanosoma cruzi (cruzi-

pain or cruzain) [14,15] and Trypanosoma brucei [16] are

cathepsin L-like and are characterized by the presence of an

unusual 100 amino acid C-terminal extension, which in some

cases is highly glycosylated. Like cruzain, CPB from L. mexicana

are abundant and stage-regulated and can occur on the surface

of parasite [10–13].

CPB are thought to be crucial for the survival and infectivity of

the parasite in its human host and have been involved in successful

invasion of host macrophages by promastigotes, the transforma-

tion of parasitic forms, parasitic nutrition, and evasion of hosts

immune system [10,11,17–19]. Because of the importance of

cysteine proteases in the survival and in the life cycle of Leishmania,

they have been targets for development of inhibitors as

antileishmanial drugs [10,20,21].
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A recombinant form of the enzyme encoded by CPB2.8 but

lacking the C-terminal extension (known as CPB2.8DCTE) was

expressed [22], and its substrate specificity has been studied

extensively [23–26,27] and several peptide inhibitors have also

been reported for it [28–30]. The rCPB2.8 presents the amino

acids Asn60, Asp61, Asp64 in the a-helices that form the wall of the

active site cleft [27,31].

Heparan sulfate proteoglycans are ubiquitous components of

cell surface of animal cells. They are components of plasma

membranes and also the extracellular matrix (ECM). Heparan

sulfate is sulfated glycosaminoglycans composed of disaccharides

containing uronic acid and glucosamine with N- and 6-O-sulfates

and N-acetyl substitutions. These molecules are located to regulate

the cell interactions with the environment. The interaction of

heparan sulfate or heparin-like glycosaminoglycans with proteins

control a large spectrum of biological processes including cell

homeostasis, growth factor activity, cell adhesion and parasitic

infection [32,33].

Several microorganism pathogens bind to the glycosaminogly-

can chains of proteoglycans at the host cell surface to promote

their attachment and internalization [34]. Heparan sulfate

proteoglycan-binding mediates the interaction of the amastigote

form of Leishmania amazonensis to mammalian cells, this interaction

seems to be an important first step in the host cell invasion by

Leishmania [35]. Recently, it has been suggest that a cell surface

metalloproteinase from promastigote form of L.(V.) braziliensis can

interact with heparin-like glycosaminoglycans of vector Lulo cells

[36]. Interesting, secreted cysteine protease (CPB) can participate

in Leishmania infection by degradation of fibronectin of the host’s

extracellular matrix (ECM), thereby facilitating the local spread of

the parasite [37].

We have shown that glycosaminoglycans (GAGs), especially

heparin-like compounds, can modulate the catalytic activity some

papain-like enzymes [38,39]. Heparan sulfate and heparin are able

to interact with cathepsin B specifically; this interaction promotes

the stabilization of the enzyme in neutral/alkaline pH, favoring

the endopeptidasic activity of cathepsin B at neutral pH [39]. Also,

the release of kinin by T. cruzi trypomastigotes was increased 10-

fold in the presence of heparan sulfate. Previous data showed that

heparan sulfate markedly potentiates the kininogenasic activity of

cruzipain by forming a heparan sulfate-kininogen-cruzipain

ternary complex [40]. Also, it has been shown that chondroitin

sulfate proteoglycans are able to activate the collagenolytic activity

of cathepsin K [41].

Therefore, the interaction of Leishmania cysteine protease with

GAGs of the host cell surface may be of significant interest for

understanding the biological role of this class of enzyme in

degradation of host ECM components in parasite infection. This

study addressed this possibility.

Materials and Methods

Enzyme rCPB2.8
The recombinant CPB2.8DCTE (designated rCPB2.8 through-

out this manuscript is a recombinant cysteine protease type B

truncated in the C-terminal) was obtained and purified as earlier

described [22,25]. The rCPB2.8 expressed in E. coli show 38000-

Mr and it is converted to 26000-Mr activity mature form after

incubation in acidic medium at 37 uC in the presence of 100 mM

sodium acetate buffer, pH 5.5, 0.9 M NaCl, 2 mM EDTA

(Ethylenediaminetetraacetic acid), and 10 mM DTT (Dithiothre-

itol) until full conversion was observed (approx. 2 — 4 h). N-

terminal Pro-region peptides released during the activation process

are removed by gel filtration at room temperature using a 50 mL

Sephadex G-50 column (Amersham Pharmacia Biotech) equili-

brated in 100 mM sodium acetate, pH 5.5, 2 mM EDTA, 10 mM

DTT, 0.45 M NaCl, and 0.01% (v/v) Triton X-100 at a flow rate

of 0.75 mL/min over 55 mL.

The enzyme concentration was determined by the titration of

the active site using the irreversible inhibitor E64 (1-[[(L-trans-

epoxysuccinyl),L,leucyl]amino]-4-guanidino-butane). Aliquots

of the rCPB2.8 were incubated in the presence of different

concentrations of E64 in 100 mM sodium acetate buffer, 5 mM

DTT, 20% glycerol (included in the buffer assay to increase the

enzyme stability), pH 5.5 at 35uC for 10 min. The uninhibited

remaining enzyme was monitored by the hydrolysis of Z-FR-MCA

(Carbobenzoxyl-L-phenylalanil-L-arginine-4-methylcoumarinyl-7-

amide) in the wavelengths set at 360 nm for excitation and 480 nm

for emission on a thermostatic Hitachi F-2500 spectrofluorometer.

Cloning, expression and purification of the N-terminal
pro-region of Leishmania mexicana CPB2.8

The entire N-terminal pro-region of CPB2.8 was generated

using PCR (Polymerase Chain Reaction) and the plasmid

containing the N-terminally His6 tagged rCPB2.8 sequence as

template [22]. The primers used were 59GCCATAT-

GACGCCGGCTGCTGCGCTGTTCG39 and 59TAACTC-

GAGCGACAGGTCTGC GCGCGCCTTG39. The PCR prod-

uct was cloned into pET21a+ (Novagen) with NdeI and XhoI to

yield a construct to express the N-terminal pro-region with a C-

terminal His6 tag. The vector was transformed into Escherichia coli

BL21DE3 for expression overnight at 37uC with expression being

induced with 0.5 mM isopropyl b-D-thiogalactoside. The protein

was purified from inclusion bodies and soluble phase using nickel

agarose chromatography under denaturing conditions as described

in [22]. Following dialysis of the sample from 8 M urea to PBS

(Phosphate Buffered Saline) pH 7.4 the majority of the protein

sample remained in solution and was used for analysis. The

purified protein gave a single major band on SDS/PAGE (Sodium

Dodecyl Sulphate/Poliacrylamide gel electrophoresis).

Enzyme assays
The influence of heparin upon rCPB2.8 endopeptidase activity

was monitored fluorometrically using the fluorogenic substrate Z-

FR-MCA. The fluorescence intensity was monitored on a

thermostatic Hitachi F-2500 spectrofluorometer. The steady-state

kinetic assays with fluorogenic substrate were performed in

100 mM sodium acetate buffer (pH 5.5) containing 20% glycerol

and 5 mM DTT at 35uC. The enzyme was activated by its pre-

incubation in the assay buffer for 5 min at 35uC before the

substrate addition. The concentration of active rCPB2.8 was

determined by titration with its irreversible inhibitor E-64. All

reactions were done in 161 cm cross section quartz cuvette. For

the Z-FR-MCA (0.1 — 10 mM) substrate assays, the excitation and

emission wavelengths were set at 360 and 480 nm, respectively.

The kinetic parameters were determined by measuring the initial

rate of hydrolysis at various substrate concentrations in the

absence or in the presence of heparin (0 — 60 mM). In the

experiments we have used a size-defined (10 kDa) bovine lung

heparin (The Upjohn Co), prepared by using size exclusion

column approach [32]. The fluorescence of 7-amino-4-methyl-

coumarin and ortho-aminobenzoic acid were determined for the

calculation of precise rate constants. All kinetic experiments were

performed in triplicate. In order to calculate the concentration of

the released product calibration curves of fluorescence versus

concentration were constructed. The data obtained were analyzed

by nonlinear regression using the program GraFit 5.0 (Erithacus

Software Ltd.). The data were analyzed in steady-state kinetic
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system and the values for the constants were determined by using

nonlinear regression to non-competitive Equation 1.

v~
Vmax:½S�

KM :
1

1z½I �=Ki

� �
z½S�: 1

1z½I �=Ki

� � ð1Þ

The influence of others high sulfated GAGs namely heparan

sulfate, chondroitin sulfate, and dematan sulfate were analyzed by

determination of inhibitory potential IC50. The enzyme rCPB2.8

activity was performed in 100 mM sodium acetate buffer (pH 5.5)

containing 20% glycerol and 5 mM DTT at 35uC pre-activated

for 5min. The substrate Z-FR-MCA hydrolyses was followed in a

specrofluorometer F2500 in the excitation and emission wave-

lengths set at 360 and 480 nm, respectively, in the absence and in

the presence of different concentrations of GAGs. The residual

enzyme activity was registered and the rate values were plotted

against GAGs concentrations and the data analyzed by nonlinear

regression using the program GraFit 5.0 (Erithacus Software Ltd.)

using the equation 2. The GAG effects on the enzyme activity

were monitored at different concentrations (0 — 60 mM). All

kinetic experiments were performed in triplicate.

y~
Range

1z x
IC50

� �s ð2Þ

where Range is fitted uninhibited value and s is a slope factor. The

equation assumes that y falls with increasing x.

Determination of Individual Rate Constants for the
Hydrolysis of Z-FR-MCA by rCPB2.8

Although the three-step mechanism for cysteine protease-

catalyzed hydrolysis of peptides is widely accepted [59–61], the

individual rate constants that describe the steps have not been

determined in the studies of rCPB2.8 inhibition. Since

kcat = (k2.k3)/(k2+k3); KS = (k21+k2)/k1 and KM = KS.k3/(k2+k3) are

composite parameters of the rate constants, the Michaelis-Menten

kinetic parameters kcat and KM, determined by steady-state analysis

do not give a detailed picture about the kinetic mechanism of a

cysteine protease. Clearly, the only way to get an accurate picture

of rCPB2.8 inhibition by heparin is through the determination of

the heparin effect upon the mechanistic kinetic parameters k1, k21,

k2 and k3.

Based on the temperature dependence upon the kinetics

parameters kcat/KM and kcat for hydrolysis of Z-FR-MCA by the

rCPB2.8 enzyme, we evaluated the individual constants k1, k21, k2

and k3 of the hydrolytic reactions in the absence or in the presence

of 40 mM heparin using the procedure reported by Ayala and Di

Cera [42] and Judice et al. [43,44] which was based on the

assumption that the hydrolytic process of a cysteine protease

occurs as described below:

The values of the kinetic parameters kcat and KM for rCPB2.8

was determined using 100 mM sodium acetate buffer, 20%

glycerol, 5 mM DTT, pH 5.5 activating the enzyme for 10 min

in the temperature range 10uC to 35uC. In the temperature above

of 35uC the only modifications were: 1) each reaction at

temperatures higher than 35uC up to 55uC were started by

addition to the reaction mixture of enzyme previously activated at

a lower temperature using 5 mM DTT, temperature and the

initial velocity was registered in the first 60 sec; 2) the buffer pH

was corrected for the temperature used.

The following equations were developed as earlier described

[42–44]. The temperature dependence of rate constants obeys the

Arrhenius law (Equation 3):

k~ko exp {
E

R

1

T
{

1

To

� �� �
ð3Þ

where E is the activation energy associated with the rate

constant k, R is the gas constant, T the absolute temperature and ko

the value of k at the temperature To = 298,15 K. The equations

that define the Michaelis-Menten parameters kcat /KM and kcat,

which are based on the reaction of Figure 1, are as follows:

kcat

KM

~
k1k2

k{1zk2
ð4Þ

kcat~
k2k3

k2zk3
(5)

The substitution of Equation 3 in the Eq. 4 and Eq. 5 results in

the following expressions:

kcat

KM

~

k1,0k2,0 exp { E1zE2
R

1
T

{ 1
T0

� 	
 �
k{1,0 exp { E{1

R
1
T

{ 1
T0

� 	
 �
zk2,0 exp { E2

R
1
T

{ 1
T0

� 	
 � ð6Þ

kcat~
k2,0k3,0 exp { E2zE3

R
1
T

{ 1
T0

� 	
 �
k2,0 exp { E2

R
1
T

{ 1
T0

� 	
 �
zk3,0 exp { E3

R
1
T

{ 1
T0

� 	
 � ð7Þ

in which k1,0, k21,0, k2,0 and k3,0 are the rate constants k1

(association constant), k21 (dissociation constant), k2 (acylation

constant) and k3 (deacylation constant), respectively at the

temperature T0 = 298,15 K and E1, E21, E2 and E3 are the

corresponding activation energies.

From the plot of ln s versus 1/T and ln kcat versus 1/T, as

indicated in the equations above (Equations 5 and 6), the

parameters k1,0, k–1,0, k2,0, k3,0, E1, E21, E2 and E3 can be

determined for the temperature T0 = 298,15 K.

Figure 1. Schematic mechanism of hydrolytic process of a
cysteine protease and inhibition. Individual constants k1, k21, k2

and k3 of the hydrolytic reactions of cysteine protease. k1 is the
substrate diffusion constant into the active site, k–1 the substrate
dissociation constant, k2 the acylation constant, k3 the deacylation
constant, KS = (k21+k2)/k1, Ki the inhibition constant, and a is the
parameter of KS and Ki perturbation.
doi:10.1371/journal.pone.0080153.g001
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The Eyring transition-state theory allows the calculation of the

entropy and enthalpy of activation using the following equation

[43–47]:

k~
RT

Nh
exp

DS

R

� �
exp

{DH

RT

� �
ð8Þ

The substitution of Equation 8 in the Eq. 4 and Eq. 5 and

calculating kcat/KM.T and kcat /T results in the following

expressions:

kcat

KM :T
~

R

Nh

exp DS1zDS2
R

� 	
exp { DH1zDH2

RT

� 	
exp DS{1

R

� 	
exp { DH{1

RT

� 	
z exp DS2

R

� 	
exp { DH2

RT

� 	
" # ð9Þ

kcat

T
~

R

Nh

exp DS2zDS3
R

� 	
exp { DH2zDH3

RT

� 	
exp DS2

R

� 	
exp { DH2

RT

� 	
z exp DS3

R

� 	
exp { DH3

RT

� 	
" #

ð10Þ

in which N is Avogrado’s number and h is Planck’s constant and

DS1, DS21, DS2 and DS3 are corresponding activation entropies

and DH1, DH21, DH2 and DH3 are corresponding activation

enthalpies. DS1, DS21, DS2, DS3, DH1, DH21, DH2 and DH3 can

be obtained from parameters using the Eyring plot ln(kcat /KM.T)

versus 1/T and ln(kcat /T) versus 1/T.

The values of the kinetic parameters kcat and KM were

determined for rCPB2.8 in the temperature range from 10uC to

55uC were: 1) each reaction at temperatures higher than 35uC was

started by addition to the reaction mixture of enzyme previously

activated at a lower temperature using 5 mM DTT, and the initial

velocity was registered in the first 60 sec; 2) the buffer pH was

corrected for the temperature used.

rCPB2.8 pH Activity Profile
For the determination of pH activity profiles, the kinetics of Z-

FR-MCA substrate hydrolysis were performed in absence or in

presence of 40 mM heparin at 35 uC in four-component buffer

system of constant ionic strength, consisting of 25 mM glycine,

25 mM acetic acid, 25 mM Mes and 75 mM Tris, containing

20% glycerol and 5 mM DTT, the pH of buffers were adjusted

using HCl or NaOH diluted solutions. The substrate concentra-

tions were kept 20-fold above the KM values. The progress of the

reaction was continuously monitored by the fluorescence of the

released product and the initial rates were determined. It is

important to mention that the enzyme was stable at pH range

studied, and the pH values did not affect the ionic form of

substrate. The pH activity profiles data were fitted according to

Equation 11 by using non-linear regression software system

(GraFit version 5.0, Erithacus Software Ltd) as follows:

Vmax~
Vmaxlim it

1z10pKES1{pHz10pH{pKES2ð Þ ð11Þ

where Vmaxlim it
stands for the pH-independent maximum reac-

tion rate, and pKES1 and pKES2 are the dissociation constants of a

catalytically competent base and acid in the presence of the

substrate respectively.

Effect of Heparin upon Intrinsic Fluorescence of the
rCPB2.8

The intrinsic fluorescence of tryptophan residues of the

rCPB2.8 was monitored in 50 mM sodium phosphate buffer

(pH 7) containing 20% glycerol at 35uC by measuring the

emission of fluorescence between at 300 — 450 nm (10 nm slit)

after excitation at lex = 290 nm (5 nm slit) in a Hitachi F-2500

spectrofluorimeter in the absence or in the presence of different

concentrations of heparin (0 — 167 mM). The 1 cm path-length

cuvette containing 1 mL of the buffered enzyme solution (1 mM)

was placed in a thermostatically controlled cell compartment

under constant magnetic stirring in the spectrofluorimeter for 5

min prior to the addition of small aliquots of a highly concentrated

heparin solution with minimal dilution (less than 5%) and the

decrease in fluorescence signal was read. The dependence of the

relative fluorescence change, i.e., DF = (Fobs – F0) where F0 is the

initial rCPB2.8 solution fluorescence value and Fobs is the observed

fluorescence value after each addition of heparin, was analyzed by

nonlinear least-squares data fitting by the binding Equation 11

according to [48,49], using Grafit 5.0 Software. The same

procedure described above was used to measure the effect of

heparin upon the intrinsic fluorescence of the N-terminal pro-

region domain of CPB2.8.

DF~DF max :
½(PznHzKd )|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(PznHzKd )2{4:P:nH

q
�

2P
ð12Þ

where P is the total protein concentration, H represents the

added heparin fragments concentration, n the stoichiometry, Kd

the dissociation constant and DFmax is the maximum fluorescence

change.

Circular Dichroism Experiments
Circular dichroism (CD) measurements in far ultraviolet regions

(190 — 260 nm) of rCPB2.8-heparin interactions were conducted

in a JASCO J-810 spectropolarimeter scanning at rate of 50 nm/

min at 35 uC. Cells of 0.1 cm for the far UV were used. The

experiments were done in 5 mM sodium phosphate buffer pH 5.8

containing 2 mM of enzyme rCPB2.8. The observed ellipticity was

normalized to units of degrees.cm2.dmol21. All dichroic spectra

were corrected by subtraction of the background for the spectrum

obtained with buffer alone or buffer containing heparin fragments.

The CD spectra for the rCPB2.8 was analyzed for the relative

amount in percentage, of the secondary structural elements by a

program based on comparison to the spectra obtained for the

structures of known proteins according to [50].

Effects of heparin on the inhibitory activity of N-terminal
pro-region of the enzyme rCPB2.8

The inhibitory effect of the N-terminal pro-region on the

endopeptidase activity of the enzyme rCPB2.8 was determined in

the absence or in the presence of 40 mM heparin. The enzyme

rCPB2.8 was pre-activated by incubation in 50 mM sodium

acetate buffer (pH 5.5), containing 5 mM DTT, 20% glycerol for

10 min at 35uC. The rCPB2.8 aliquots were incubated at different

concentrations of pro-region (0 — 0.24 mM) and or with N-

terminal pro-region previously pre-incubated for 30 min with

heparin, the final concentration of heparin at enzyme assay was

12 mM. The endopeptidase activity of the enzyme was continu-

ously monitored by the hydrolysis of fluorogenic substrate Z-FR-

MCA in a spectrofluorometer F-2500 Hitachi, set at wavelengths
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360 nm for excitation and 480 nm for emission. The remaining

activities of the enzyme inhibited by N-terminal pro-region in the

absence or in the presence of heparin were analyzed by nonlinear

regression using the software GraFit 5.0 (Erithacus Software Ltda).

Results

Effect of Heparin upon the rCPB2.8 Endopeptidase
Activity

The effect of heparin upon the rCPB2.8 endopeptidase activity

was monitored with the aid of its fluorogenic substrate Z-FR-

MCA, covering the rCPB2.8 subsites from S2 to S91 [51,52]. The

HPLC and Maldi-TOF mass spectrometry analysis showed that

Arg-MCA is the only peptide bond cleaved by rCPB2.8 on this

substrate; also, heparin did not change the pattern of cleavage of

this substrate by rCPB2.8. No interaction between Z-FR-MCA

substrate with heparin was detected by studying the molar

absorption of substrate in function of heparin concentration (data

not shown). The possible effect of other high sulfated GAGs,

namely heparan sulfate, chondroitin sulfate, and dermatan sulfate

were also investigated upon rCPB2.8-catalysed hydrolysis of the

fluorogenic substrate Z-FR-MCA. The results showed that the

chondroitin sulfate, and dermatan sulfate are not able to inhibit

the activity of rCPB2.8 in the concentration range from 0 – 60 mM

(data not shown), and only heparin and heparan sulfate were

capable of inhibit the endopeptidase activity of rCPB2.8. These

results show that the interaction of heparin and heparan sulfate

polysaccharides to rCPB2.8 is specific to heparin-like GAGs

similar results have been observed previously [38,39].

The interaction of heparin with rCPB2.8 perturbs its catalytic

activity upon Z-FR-MCA substrate (Fig. 2). The efficiency of the

system for the hydrolysis of Z-FR-MCA can be altered by

changing either KM value (a parameter) or kcat value (b parameter).

Figs 2A and 2B show that the presence of heparin results in a large

decrease in Vmax value without changing the apparent binding

affinity of the enzyme for its substrate Z-FR-MCA (KS =

1.660.1 mM). It was observed that heparin binds to free rCPB2.8

(E) and to the enzyme-substrate complex (ES) with the same

dissociation constant KH = 1761 mM (Figs 2D and 2E). The data

analysis show that heparin inhibited rCPB2.8 by a linear non-

competitive inhibition mechanism, a = 1.060.1 and b = 0 as

depicted in Figure 1, where the ternary complex enzyme-

substrate-inhibitor (ESI) cannot form product and can only be

converted back to the ES complex or the EI complex.

Interesting, heparin showed a very similar kinetic pattern of

inhibition upon papain when this enzyme was also assayed with

the same substrate Z-FR-MCA. Heparin promoted a large

decrease of 5.5-fold in Z-FR-MCA hydrolysis second-order rate

without changing the affinity of papain for the Z-FR-MCA,

showing a partial non-competitive inhibition behavior [38]. On

the other hand, it has been demonstrated that the inhibitory effects

of heparin on other cysteine proteases from the papain family may

be related to the substrate structure [44,53].

Seminal works of Schneck et al., 2008, and Steiner et al., 1987,

have shown that the steady-state kinetic parameters kcat, KM, and

kcat/KM do not give a clear picture of cysteine-proteases [54] and

serine-proteases [55] substrate specificity, because kcat, KS, and KM

are composite parameters of the intrinsic rate constants. There-

fore, the determination of the steady-state parameters is not

sufficient to describe the kinetic mechanism in the case of rCPB2.8

inhibition by heparin. In order to get an accurate picture of

rCPB2.8 inhibition by heparin, we also analyzed the effect of

heparin upon the individual rate constants k1, k21, k2 and k3 for the

substrate hydrolysis.

Determination of the Individual Rate Constants in the
rCPB2.8 Kinetic Mechanism

We have used temperature studies of kinetic parameters to

resolve the individual rate constants k1, k21, k2 and k3 in the kinetic

mechanism of rCPB2.8 in the absence or in the presence of 40 mM

heparin as previously described [42–47]. Measurements of k /Kcat M

and kcat as a function of temperature can resolve all the parameters

depicted in Equations 5, 6, 8 and 9.

The temperature dependence of kcat/KM and kcat for Z-FR-

MCA hydrolysis by rCPB2.8 is shown in Fig. 3, in the absence or

in the presence of 40 mM heparin. Figs 3A and 3B show the

Arrhenius plots of the specificity constant kcat /KM (Fig. 3A) and

kcat (Fig. 3B) and Figs 3C and 3D show the Eyring plots of the

specificity constant kcat /KM (Fig. 3C) and kcat (Fig. 3D) in the

temperature range from 10 to 55uC. The observed curvature in

the plots 3A and 3C is indicative of a change in the rate-limiting

step for substrate hydrolysis due to the shift from k2.. k21 at low

temperatures and k21.. k2 at high temperatures. The shift is

caused by the drastic difference in activation energies for substrate

acylation and dissociation when E21.. E2 or E21- E2..0. On

the other hand, the observed linearity in the plots in Figs 3B and

3D is a strong indicative that k3..k2 [42,56]. Taking together

these data, we resolved the kinetic rate constants k1, k21, k2 and k3

at the reference temperature (298.15 K), and the thermodynamic

parameters Ea, DH, DS and DG for this enzymatic reaction in the

absence or in the presence of 40 mM heparin (Table 1).

Table 1 shows that the hydrolysis of substrate Z-FR-MCA by

rCPB2.8 can be satisfactorily described by a three-step kinetic

mechanism, where KS = (k21+k2)/k1 stands for the formation of

ES complex, k2 stands for the rCPB2.8 acylation step and k3 stands

for the rCPB2.8 deacylation step [54]. As expected, the value of k3

(2061 s21) was much higher than the value of k2 (2.760.1 s21)

and the kcat constant is mainly governed by k2, these values agree

with the linearity of the plots (Figs. 3B and 3D), indicating that

substrate acylation is rate limiting over the entire temperature

range examined. Because k2 (2.760.1 s21) is higher than k21

(1.660.1 s21), the hydrolysis of Z-FR-MCA substrate by rCPB2.8

can be considered a diffusion controlled process; the constant of

specificity kcat/KM (1.760.1 mM21.s21) is essentially defined by the

association rate constant k1 (2.760.1 mM21.s21). Despite of k3 ..

k2 and consequently KS = KM; as k2 is 1.7-fold higher than k21, KS

(1.660.2 mM) cannot be considered a true dissociation constant.

The association constant k1 can be limited either by diffusion or

conformational rearrangements that facilitate the enzyme-sub-

strate interaction. As diffusion-limited enzyme substrate encoun-

ters feature k1 values . 107 M21.s21 are linked to small activation

energies E1 , 42 kJ/mol [57], the information on k1 and E1 is

quite valuable in establishing mechanisms of enzyme-substrate

interaction [56]. The present data (Table 2) show that the large

value of E1 (6265 kJ/mol) and k1 (2.7 106 M21.s21) ,

107 M21.s21 in the absence of heparin indicates substantial

structural strains linked to the formation of the enzyme-substrate

complex. Also, during the formation of enzyme-substrate complex

there is a gain of entropy (DS1 = 4763 J/mol.K) and it indicates

that rCPB2.8 can assume a more open conformation [45]. As the

entropy of activation is negative for the acylation and deacylation

step [45], a substantial loss of entropy is observed during the

acylation step as expected (DS2 = –7563 J/mol.K) - strongly

suggesting a refolding of the enzyme [45]. The ‘‘stickiness’’ of

substrate, defined as the rate at which a substrate reacts to give

products relative to the rate at which that substrate dissociates, in

the absence of heparin k2/k21 = 2.060.2, shows that the

propensity of the ES complex to undergo acylation is 2.0-fold

larger than its propensity to decouple in E + S forms. The large
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positive nature of the term DG21 – DG2 = 16167 kJ/mol signals

a substantial difference in the energetic cost of dissociating the

substrate compared with acylating it.

Interestingly, the presence of heparin induces a large effect in

kinetic constants of the enzyme (Table 1). The data analysis

revealed that the presence of 40 mM heparin affects all steps of the

reaction: (i) it decreases 3.5-fold the k1 and reduces 4.0-fold the

k21, (ii) it affects the acyl-enzyme accumulation with pronounced

decrease in k2 (2.7-fold), and also decrease in k3 (3.5-fold). The

effect of heparin on k1 is characterized by a large enthalpy change

of DHcontrol - DHheparin = 27 kJ/mol that is compensated by a

large entropy gain DScontrol - DSheparin = 143 J/mol/K (Table 2).

The influence of Heparin upon rCPB2.8 pH Activity
Profiles

The effect of heparin on the pH activity profiles of rCPB2.8 was

analyzed by monitoring the enzyme-catalyzed hydrolysis of the Z-

FR-MCA substrate. Fig 4A shows that enzyme displays bell-

shaped pH dependence both in the absence and presence of

heparin. Fig 4B shows the Dixon-Web plot of log Vmaxapp versus

pH where the dot lines of slope = 1 and slope = -1 tangent to the

curve at very low log Vmaxapp values intersect the horizontal log

Vmax line at pKES1 and pKES2, respectively. When rCPB2.8 was

assayed in the presence of heparin a large effect of heparin was

observed upon the pH-activity profile. Basically, 40 mM heparin

promoted a general decreases of about 3.5-fold in the values of

Vmax observed for Z-FR-MCA hydrolysis and shifted the rCPB2.8

pH activity profile about 0.3 units to the right. Table 3 shows that

in the presence of heparin the value of pKES1 was shifted from 5.1

to 4.6, the pKES2 was largely increased from 7.8 to 8.8 and the

pHopt of rCPB2.8 was increased from 6.4 to 6.7.

The acidic pKES1 values stands to deprotonation of the active

Cys25, while the basic pKES2 values results from deprotonation of

His163 in the presence of Z-FR-MCA substrate at the active site of

the enzyme. Taken together, these data strongly suggest that

heparin is altering the ionization of catalytic (Cys25)-S2/(His163)-

Im+ H ion pair of the rCPB2.8. A change in the ionization of the

catalytic (Cys25)-S2/(His163)-Im+ H ion pair may be related to

conformational change, or to direct electrostatic modulation

induced by heparin binding or both [58,59].

Heparin Binding-Induced rCPB2.8 Conformational
Change

The conformational change in rCPB2.8 induced by heparin

binding was assessed by monitoring changes in intrinsic trypto-

phan fluorescence [60]. Fig 5A shows the changes in the rCPB2.8

fluorescence emission spectra as a function of heparin concentra-

tion, increasing the concentration of heparin resulted in a

progressive decrease in fluorescence emission spectra of the

enzyme with an isoemissive point around 390 nm. The presence

of an isoemissive point must be observed if there are two emissive

species, irrespective of the origin of the species or their kinetics

[61]. In this case, the isoemissive point is related to the presence of

both forms of enzyme: free enzyme (E) and enzyme-heparin

complex (EH). Therefore, the variation of 1.0 mM rCPB2.8

fluorescence in function of heparin concentration was fitted

according to Eq. 11. The kinetic analysis shows that heparin bind

Figure 2. Effect of Heparin upon the rCPB2.8 Endopeptidase Activity. The influence of heparin upon rCPB2.8 endopeptidase activity was
monitored fluorometrically using the fluorogenic substrate Z-FR-MCA. The steady-state kinetic assays with fluorogenic substrate were performed in
100 mM sodium acetate buffer (pH 5.5) containing 20% glycerol and 5 mM DTT at 35uC. The enzyme was activated by its pre-incubation in the assay
buffer for 5 min at 35uC before the substrate addition. A, the rate of substrate Z-FR-MCA hydrolysis as a function of substrate concentration. The
kinetic parameters were determined by measuring the initial rate of hydrolysis at various substrate concentrations in the absence or in the presence
of heparin, control (n–n); 8 mM (N–N); 16 mM (N–N); 32 mM (%–%); 42 mM (m–m); 48 mM (#–#); 62 mM (*–*) of heparin. B, the reciprocal plot 1/V
versus 1/[S] in the presence of different concentrations of heparin (0 — 62 mM). C, replots of slope1/[S] versus [heparin]. D, replot of 1/V2axis intercept
versus [heparin]. The data of replots were taken from the reciprocal plot 1/V versus 1/[S].
doi:10.1371/journal.pone.0080153.g002

L. mexicana Cysteine Protease B Binds to Heparin

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e80153

.



rCPB2.8 by a saturable bimolecular reaction with an apparent Kd

of 1662 mM (Fig. 5A, insert).

The effect of heparin on rCPB2.8 conformation was also

analyzed by CD spectroscopy. Fig 5B shows that the presence of

40 mM heparin causes a significant change in the spectral envelope

of the rCPB2.8, leading a positive increase of the ellipticity value at

[h]222 nm, suggesting that heparin decreases the helicity of

rCPB2.8. Indeed, Table 4 exhibits the secondary structure content

of enzyme in the absence or in presence of 40 mM heparin

concentration. The fractions of the different rCPB 2.8 structural

types, a, b, and remainder (R), were computed from the CD

spectra (197–260 nm) as described previously (38). The data show

a large decrease of 27% in the rCPB2.8 a-helix content induced by

heparin, whereas b-structure and remainder content increased.

These changes are likely to reflect the enzyme-heparin interaction.

Heparin Decreases the Rate of Inhibition of rCPB2.8 by its
N-terminal Pro-Region

CPB2.8 and other lysosomal cysteine proteases are synthesized

as inactive zymogens due to the presence of an N-terminal pro-

region; this domain is a potent inhibitor of the cysteine proteases

[62,63]. Cleavage and dissociation of the N-terminal propeptide

domain with concomitant activation of the cysteine protease occur

as the result of an autocatalytic processing under acidic conditions

[64] or in the presence of glycosaminoglycans [65–67].

Figure 3. Arrhenius and Eyring plots of the kcat/KM and kcat for the Z-FR-MCA hydrolisys by rCPB2.8. A, Arrhenius plot of the ln (kcat/KM)
versus 1000/T. B, Arrhenius plot of the ln kcat versus 1000/T. C, Eyring plot of the ln (kcat/KM.T) versus 1000/T. D, Eyring plot of the ln (kcat/T) versus
1000/T. The experimental conditions were: the values of the kinetic parameters kcat and KM for rCPB2.8 was determined using 100 mM sodium
acetate buffer, 20% glycerol, 5 mM DTT, pH 5.5 activating the enzyme for 10 min in the temperature range 10uC to 55uC as described under
‘‘Methods.’’ The data were obtained in the absence (N–N) or in the presence (#–#) of 40 mM heparin. The continuous lines (slops) were drawn
according the Equations 6, 7, 9 and 10, with the best-fit parameter values listed in Table 1 and 2.
doi:10.1371/journal.pone.0080153.g003

Table 1. Kinetic rate constants of hydrolysis of Z-FR-MCA by rCPB2.8 in absence or in the presence of 40 mM heparin.

ENZYME Kinetic rate constants (298.15 K)

rCPB2.8 k1(mM21.s21) k21 (s21) k2 (s21) k3 (s21) KS (mM) kcat (s21)

Control 26546168 1.5860.03 2.6960.03 2062 1.660.2 2.460.1

40 mM heparin 768611 0.4060.01 1.0060.01 5.760.6 1.860.2 0.8560.08

doi:10.1371/journal.pone.0080153.t001
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The ability of heparin to bind rCPB2.8 N-terminal pro-region

was analyzed by measuring the changes in the intrinsic fluores-

cence of the pro-region as a function of heparin concentration (Fig.

6A). Heparin also promoted a concentration-dependent decrease

on the intrinsic fluorescence emission spectra of the pro-region.

Heparin interacts with N-terminal pro-region of rCPB2.8 with a

dissociation constant of 1.560.1 mM.

Heparin binding Cardin-motifs (B-X-B-B-X or B-B-X-X-B-B-

B, where B is a basic amino acid residue and X a hidropathic

residue) on the N-terminal pro-region of human procathepsin L

and of Schistosoma mansoni (Sm) procathepsin B mediate zymogen

destabilization and its subsequence activation [66,67]. Also, GAGs

facilitate human procathepsin B activation through disruption of

proregion-mature enzyme interactions binding in the several

positively charged residues in the propeptide [68]. Therefore, the

low affinity of heparin binding to mature human cathepsin L,

mature Sm cathepsin B, and mature human cathepsin B are

related to Cardin binding site and charged residues that is located

at the propeptide region, respectively, which is removed during

zymogen auto-processing. Our results shown that heparin binding

proregion of rCPB2.8 with Kd = 1.560.1 mM (Fig 6A). On the

other hand, heparin binding to mature form of the enzyme with

Kd = 1662 mM (Fig. 5A). Taking together, heparin has about 10-

fold more affinity to proenzyme rCPB2.8 than to mature form.

Fig. 6B reports the inhibition of rCPB2.8 by its N-terminal pro-

region in the absence or in the presence of heparin. The data show

that, in the absence of heparin, the pro-region drove a powerful

inhibition of rCPB2.8 as expected. The presence of heparin

dislodged the inhibitory curve of pro-region to the right. The

dissociation constant of inhibition was found to be 1.060.1 nM, a

value that is about 10-fold lower than its dissociation constant

measured in the presence of heparin (Kapp = 1061 nM). It is likely

that the binding of heparin to both rCPB2.8 and pro-region

accounts for the large decrease in the inhibition rate.

Discussion

The presence of heparin in the rCPB2.8 kinetic assays results in

a decreased Vmax (kcat) value for the hydrolysis of Z-FR-MCA

without change the substrate dissociation constant (Fig. 2).

Heparin inhibits rCPB2.8 endopeptidase activity upon the

substrate Z-FR-MCA by an apparent linear intersecting non-

competitive type inhibition fashion, where heparin and the

fluorogenic substrate Z-FR-MCA bind reversible, randomly, and

independently at different sites of the enzyme resulting in inactive

ternary ESI complex (Figure 1). It was observed that heparin binds

free rCPB2.8 (E) with a dissociation constant of KH = 1761 mM;

and heparin binds the complex enzyme/substrate (ES) with the

same dissociation constant value (a= 1.0). These data strongly

suggest that heparin binding distorts the structure of rCPB2.8

sufficiently to prevent the catalysis of the ternary complex ESI.

Although the three-step mechanism for cysteine cathepsins-

catalyzed hydrolysis of peptides is widely accepted [54–55], the

individual rate constants that describe the steps have not been

Figure 4. The influence of heparin upon rCPB2.8 pH activity profiles. The substrate Z-FR-MCA hydrolysis was performed in absence (N–N)
and in presence (#–#) of 40 mM heparin at 35uC in universal buffer containing 25 mM glycine, 25 mM acetic acid, 25 mM Mes and 75 mM Tris,
containing 20% glycerol and 5 mM DTT, the pH of buffers were adjusted using HCl or NaOH diluted solutions as described under ‘‘Methods.’’ A, the
pH activity profiles data were fitted according to Equation 10 by using non-linear regression software system. The associated table shows the values
of pKES1 and pKES2 in absence and in the presence of heparin. B, Dixon-Web plot of the log Vmaxapp versus pH where the dot lines of slope = 1 and
slope = -1 tangent to the curve.
doi:10.1371/journal.pone.0080153.g004

Table 2. Activation energies, entropies, enthalpies and Gibbs free energies of hydrolysis of Z-FR-MCA by rCPB2.8 in absence or in
the presence of 40 mM heparin.

Activation Energies
(kJ.mol21) Entropies (J.mol.K21) Enthalpies (kJ.mol21) Gibbs Free Energies (kJ.mol21)

rCPB2.8 E1 E21 E2 DS1 DS21 DS2 DH1 DH21 DH2 DG1 DG21 DG2

Control 6265 144612 5364 4763 –309619 –7563 5961 14265 5162 4564 234615 7366

40 mM heparin 3463 113610 5164 –8466 –452625 –8364 3262 11266 4962 5765 247617 7467

doi:10.1371/journal.pone.0080153.t002
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determined in the studies of rCPB2.8’s inhibition. More, if k2

contributes significantly to the KS = (k21 + k2)/k1 relationship,

then an inhibitor that affects the kcat = k2.k3/k2+k3 value may also

affect the KS value. Consequently, the only way to get an accurate

picture of rCPB2.8 inhibition by heparin is through the

determination of the effects of heparin upon each individual rate

constant k1, k21, k2 and k3.

In order to determine the values for the kinetic constants k1, k21,

k2 and k3 of the Z-FR-MCA hydrolysis by rCPB2.8, we studied the

effect of temperature dependence upon kcat and kcat/KM for the

enzyme inhibition (Fig. 3). As expected, heparin affected the acyl-

Table 3. pKES and pHopt values obtained by the monitoring
the hydrolysis of Z-FR-MCA by the enzyme rCPB2.8.in absence
or in the presence of 40 mM heparin.

Control Heparin 40 mM

pKES1 5.160.1 4.66 0.1

pKES2 7.860.1 8.860.1

pKES1 6.460.1 6.760.1

doi:10.1371/journal.pone.0080153.t003

Figure 6. Effects of heparin on the N-terminal pro-region of
rCPB2.8. A, the influence of heparin concentration upon N-terminal
pro-region segment intrinsic fluorescence emission. The insert in A
shows the variation of the intrinsic fluoresce emission DF (F-F0) of the N-
terminal pro-region as a function of heparin concentration (0 —
167 mM) as described under ‘‘Methods.’’ B, heparin prevents the
inhibitory activity of N-terminal pro-region upon rCPB2.8. The
remaining activity of the enzyme was plotted as a function of N-
terminal pro-region concentration in the absence (#–#) or in the
presence (N–N) of 40 mM heparin.
doi:10.1371/journal.pone.0080153.g006

Figure 5. Heparin binding-induced rCPB2.8 conformational
change. A, the intrinsic fluorescence of tryptophan residues of the
rCPB2.8 was monitored in 50 mM sodium phosphate buffer containing
20% glycerol at 35 uC by measuring the emission of fluorescence
between at 300 — 450 nm after excitation at lex = 290 nm in the
absence or in the presence of different concentrations of heparin (0 —
167 mM). The insert in A shows the variation of the intrinsic fluoresce
emission DF (F-F0) as a function of heparin concentration. B, effects of
heparin on rCPB2.8 circular dichroism spectra. About 2 mM rCPB2.8
were determined in 5 mM sodium phosphate buffer pH 5.8 in the
absence (N–N) or in the presence (%–%) of 40 mM heparin.
doi:10.1371/journal.pone.0080153.g005

Table 4. Far UV (197 – 260 nm) CD spectra of rCPB2.8.

a-Helix % b-Sheet % Remaining %

rCPB2.8 – pH 5.0 1861 3861 4461

rCPB2.8 + 100 mM Heparin 1361 4361 4461

The CD analysis of rCPB2.8 was proceeded at pH 5.0 in the absence or in the
presence of 40 mM heparin as describe under ‘‘Methods.’’
doi:10.1371/journal.pone.0080153.t004
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enzyme formation with pronounced decrease in k2 (2.7-fold), and

also decreased the rate of the hydrolysis of the acyl-enzyme

complex k3 3.5-fold (Table 1). Interesting, the magnitude of the

effect of heparin on the substrate association rate constant step (k1)

was basically the same as the heparin-induced decrease the

substrate dissociation constant step (k21+ k2); in both cases heparin

decreased 3.5-fold its values (Table 1). In other words, the

apparent dissociation constant of the substrate KS was the same in

the absence (1.660.2 mM) or in the presence of heparin

(1.860.2 mM). These data corroborate the previously results

depicted in Fig. 2 which describe heparin as an apparent non-

competitive inhibitor of the rCPB2.8.

The binding of heparin with rCPB2.8 was characterized by a

large enthalpy-entropy energetic compensation (Table 2), the data

proves that heparin decreases diffusion of Z-FR-MCA into the

rCPB2.8 active site by 3.5-fold and that this effect is linked to

significant conformational change that increases the energetic

barrier for formation of the productive ES complex by DG = 12

kJ/mol. As expected, heparin also increases the energetic barrier

for the substrate dissociation from the ES complex by decreasing

4.0-fold the dissociation rate k21. In the presence of heparin the

energetic cost (DG21 – DG2) is also increased 13 kJ/mol. Both

large values of DG of the association and dissociation steps indicate

substantial structural strains linked to the formation/dissociation

of the ES complex in the presence of heparin, which underscore a

conformational change that prevents the diffusion of substrate in

the rCPB2.8 active site.

The binding of heparin to rCPB2.8 also perturbs its intrinsic

fluorescence. The binding of heparin induced a saturable suppres-

sion upon the intrinsic fluorescence emission spectra of the enzyme

(Fig. 5A). Interestingly, the estimated affinity of heparin for rCPB2.8

measured by intrinsic fluorescence assays (Kd = 1662 mM) was

very similar to the values of KI found for the inhibition of its

endopeptidase activity (KI = 1761 mM). These results indicate that

heparin binding is perturbing the rCPB2.8 structure in a similar

manner.

The quenching in the intrinsic fluorescence emission spectra

of the enzyme indicates that the buried tryptophan residues

became exposed to a more polar environment in the presence

of heparin [60]. Because rCPB2.8 contains numerous trypto-

phan residues, the change in fluorescence could not be ascribed

to specific residues. It is important to note that rCPB2.8 has 8

tryptophan residues in its composition [22], and that heparin

binding produced a decrease of 25% in the intrinsic

fluorescence of tryptophan residues present in it. Interesting,

the docking analysis show that the interaction of heparin with

Trp185 at subsite S19 and with Trp189 residues at subsite S2’ of

the rCPB2.8 active site suppresses the intrinsic fluorescence of

rCPB2.8. The present data are consistent with a conforma-

tional change induced by heparin binding that affects both

enzyme activity and the intrinsic fluorescence of tryptophan

residues.

Binding to heparin also significantly decreases the a-helix

content of rCPB2.8. This binding was marked by significant

changes in the shape and position of the CD spectral envelope

(Fig. 5B). Table 4 shows that heparin decreases the helical content

of rCPB2.8 by decreasing the number of amino acids residues in

the helical conformation; and this effect seems to be related to the

increase of the b-sheet content. These data strongly suggest that

the conformational change induced by heparin binding leads to a

decrease in the catalysis of the rCPB2.8 for the substrate Z-FR-

MCA.

The presence of heparin disturbed the pH activity profile of the

enzyme (Fig. 4), in the presence of heparin the value of the pKES1

was shifted from 5.1 to 4.6, and the pKES2 was increased from

7.8 to 8.8 (Table 3). For members of the papain family, the ionic

thiolate-imidazole (Cys25)-S2 by (His159)-Im+H interaction of

the active site is predicted to result in low nucleophilic reactivity

of the ion pair S atom as in the case for an un-ionized thiol

group. It has been suggested that the release of nucleophilic

reactivity in Cys25 requires decrease in the solvation of (Cys25)-

S2 by (His159)-Im+H occasioned by movement of the cleft

around Trp177 (papain numbering). This Trp177 movement

results in His159 being exposed to solvent with consequent

decrease in its solvation of the thiolate anion of Cys25. More, the

Trp177 movement is correlated with the interruption of Trp177-

Gln19 hydrogen bond across pKa 4; the rupture of the hydrogen

bond between Trp177-Gln19 seems to be essential to establish the

oxyanion hole in binding the developing tetrahedral species

during the acylation process [58,59]. In rCPB2.8, the function

of Trp177 residue of papain in catalysis is assumed by Trp185

[29].

Recently, it has been demonstrated that heparin and several

other GAGs can increase the rate of pro-cysteine cathepsins

maturation by disrupting the interactions between its N-terminal

pro-region and mature enzymes [22,65,68]. Indeed, our results

clearly show that heparin interacts with the N-terminal pro-region

of rCPB2.8 showing dissociation constant of 1.560.1 mM, a value

that is about 10-fold lower than its dissociation constant for mature

rCPB2.8 (Kd = 1662 mM). The results strongly suggest that

heparin interacts preferentially with the inactive pro-enzyme

rather than its mature form. It is also important to mention that

the interaction of heparin with the N-terminal pro-region of

rCPB2.8 significantly decreased its inhibitory activity against the

mature enzyme (Fig. 6B). Despite of the exact molecular

mechanism for rCPB2.8 zymogen activation is unknown yet, the

procathepsin B activation shows that this mechanism involves

unimolecular conformational change followed by a bimolecular

proteolytic removal of the propeptide, which can be accomplished

in one or more steps. This activation is also facilitated by

glycosaminoglycans or by binding to negatively charged surfaces

[65].

Taken together, the present results suggest that heparin, at

low concentrations (below 2 mM), can both weaken the

effectiveness of the N-terminal pro-region inhibitor and poten-

tiate the conversion of pro-enzyme into mature CPB form and,

conversely, higher concentrations of heparin (above 20 mM) can

inhibit this conversion. The large amounts of proteoglycans and

free chains of GAG present in the extracellular matrix can

overcome the high rate of conversion pro-enzyme into mature

forms of CPB2.8, thereby decreasing the amount of the active

enzyme present.

Thus the results suggest that GAGs from the ECM of host cells

may be important binding sites for the parasite cysteine proteases.

In the ECM, GAGs are covalently bound to core proteins, forming

a dense network of fixed negative charges available for interaction

with CPB enzymes released extracellularly by Leishmania during its

process of infection. It has been shown that Leishmania can secrete

cysteine protease enzymes (CPB) to the ECM of host cells; this

process is related to parasite infection by proteolysis of fibronectin

from host ECM [37]. Also, it is well known that during ECM

remodeling or pathological degradation mediated by several

proteolytic enzymes, GAG chains are released following hydrolysis

of core proteins [69,70].

GAG chains released from ECM proteoglycans by the action

of proteolytic enzymes during parasite infection and inflam-

matory response may contribute to the regulation of CPB

enzymes by themselves and in association with inhibitors such
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as its N-terminal pro-region. So, depending on their concen-

tration, GAG can either stimulate or antagonize the activity of

CPB enzymes during parasite infection. Similar GAG control

has also been described for other classes of proteolytic enzymes

[71].
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