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Hierarchical multi‑label 
classification based on LSTM 
network and Bayesian decision 
theory for LncRNA function 
prediction
Shou Feng1,2,4, Huiying Li3,4 & Jiaqing Qiao3*

Growing evidence shows that long noncoding RNAs (lncRNAs) play an important role in cellular 
biological processes at multiple levels, such as gene imprinting, immune response, and genetic 
regulation, and are closely related to diseases because of their complex and precise control. However, 
most functions of lncRNAs remain undiscovered. Current computational methods for exploring 
lncRNA functions can avoid high‑throughput experiments, but they usually focus on the construction 
of similarity networks and ignore the certain directed acyclic graph (DAG) formed by gene ontology 
annotations. In this paper, we view the function annotation work as a hierarchical multilabel 
classification problem and design a method HLSTMBD for classification with DAG‑structured labels. 
With the help of a mathematical model based on Bayesian decision theory, the HLSTMBD algorithm 
is implemented with the long‑short term memory network and a hierarchical constraint method 
DAGLabel. Compared with other state‑of‑the‑art algorithms, the results on GOA‑lncRNA datasets 
show that the proposed method can efficiently and accurately complete the label prediction work.

In recent years, noncoding RNA (ncRNA) has become a hot spot. With the continuous progress of genome 
annotation, the results show that only approximately 1–2% of the genes in the mammalian genome are involved 
in the work of coding proteins, while the previously neglected non coding sequences also play vital roles in all 
life  activities1. Among these noncoding sequences, a transcript type with a length of more than 200 nucleotides 
and an inability to encode proteins, called long noncoding RNA (lncRNA), has attracted special attention. It has 
been found that lncRNAs not only have rich biological functions, but also widely participate in various important 
physiological  processes2.

As lncRNAs play an important role in regulating biological activities, determining the biological function of 
lncRNAs has also become particularly important. Although traditional experimental methods can accurately 
determine the functions of RNAs, these experimental methods often require high-throughput biological experi-
ments, including cumbersome and complex sequencing and  comparison3–6. Researchers often spend considerable 
time and cost labelling few functions, and the experimental results are often not processed in a timely manner 
or effectively.

With the rapid increase in massive bioinformatics data, an increasing number of lncRNAs have been found 
and labeled. However, using traditional experimental methods to determine the function of these lncRNAs 
obviously cannot meet the actual biological needs. To solve these problems, many researchers use computational 
methods to establish prediction models to predict the functions of  lncRNAs7. Predicting lncRNA functions by 
computational methods can greatly reduce the time required for the annotation of lncRNA functions. As long 
as the predicted function is given and the scope is reduced, researchers can carry out verification experiments 
with direction and basis, which can not only reduce the experimental cost, but also promote the rapid develop-
ment of functional  genomics8.
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Since there are few known lncRNA functions, existing studies on computational methods for predicting 
lncRNA functions usually use graph theory and statistics-related knowledge to establish a correlation network 
between lncRNAs and proteins, DNA, and other RNAs, and then based on the principle of ’guilty by associa-
tion ’, compute the relevance obtained from the network to annotate functions for lncRNAs. Guo constructed a 
bi-coloured network whose vertices represented protein-coding and non-coding genes, and whose edges rep-
resented co-expression and protein interactions. Then, they designed a global propagation algorithm on the 
bi-coloured network, and computed an association score for each unannotated lncRNA, measuring how much 
it could be annotated with a  function9. Zhao constructed two bi-coloured networks, each of which corresponded 
to a view of lncRNA gene association, and each type of genomic data was used to construct the lncRNA-gene 
 associations10. Jiang used the hypergeometric test to functionally annotate a single lncRNA or a set of lncRNAs 
with significantly enriched functional terms among the protein-coding genes that were significantly coexpressed 
with the lncRNAs.He also provided a comprehensive resource for the functional investigation of human lncR-
NAs,  LncRNA2Function11. The lncRNA similarity network, protein interaction network, and lncRNA-protein 
coexpression network were used to construct a global heterogeneous network in Zhang’s  work1, and then the 
correlation coefficients between lncRNAs and proteins were determined by the bi-random walk method. Finally, 
the possible functions of lncRNAs were annotated in Gene Ontology(GO) terms based on the highly-ranked 
adjacent protein-coding genes.

Studies show that most previous work has focused on the construction of a correlation network and the 
computation of the score of  similarities7. Machine learning methods are hardly involved in the prediction stage, 
although  Zhao10 pointed out that the neural network NeuraNetL2GO used in Zhang’s  work12 could make more 
use of graph embedding features from networks. The deep learning architectures DBN and DNN for lncRNA 
identification and lncRNA-protein interaction prediction used in Yang’s method LncADeep also perform well 
and have demonstrated the effectiveness of deep learning methods, which are capable of learning sophisticated 
hidden structures in  data13. In fact, because lncRNA function annotation generally adopts a GO scheme, its 
unique directed acyclic graph (DAG) structure determines that each function is not independent, but has a 
certain hierarchical constraint relationship. The GO resource is the world’s most comprehensive and widely 
used knowledge base concerning the functions of genes and gene products (proteins and noncoding RNAs). 
This information plays a critical role in the computational analysis of genomic and biomedical data. Statistics 
show that GO has been cited by over 100 000 scientific publications to  date14,15. The GO annotation scheme 
organizes functional terms by the DAG structure, and each node in the DAG represents a particular function. 
It is believed that utilizing the relationships among GO terms would improve the prediction  ability1. A portion 
of the GO resource is shown in Fig. 116. All terms in the domain can be traced back to the root term, and each 
term may have multiple child terms or multiple parent terms. There may be many different paths to the root 
ontology through a different number of intermediate  terms17. Therefore, when lncRNAs adopt a GO annotation 
scheme for functional annotation, lncRNA function prediction should be regarded as a hierarchical multilabel 
classification problem for DAG structures rather than a binary classification problem or a flat multilabel clas-
sification  problem18,19.

To address the above issues, a hierarchical multilabel classification method based on a long short-term mem-
ory (LSTM) network and Bayesian decision theory (HLSTMBD) is proposed for lncRNA function prediction in 
this paper. The proposed method designs an LSTM network for all function nodes of the GO, and the informa-
tion of different nodes’ relationships in the DAG is considered by Bayesian decision theory. Furthermore, the 
DAGLabel algorithm is utilized to ensure the hierarchical constraint of the final results. Our contributions can 
be summarized as follows:

First, to improve the prediction accuracy of all function nodes, the LSTM network is designed in the proposed 
HLSTMBD method. With the help of the depth feature extraction and mining ability of the LSTM network, the 
classification accuracy of each node can be improved.

Second, to fully consider and make use of the hierarchical information between parent and child nodes 
in the DAG structure, a mathematical classification model based on Bayesian decision theory (BD model) is 
constructed to change the hierarchical multilabel classification problem into a conditional risk minimization 
problem, which can integrate the hierarchy information and treat different prediction errors that may occur at 
parent and child nodes with different costs.

Third, to address the problem that prediction results become meaningless because they do not meet the hier-
archical constraints, the DAGLabel algorithm is adopted to ensure the hierarchical constraint of the final results 
of the proposed HLSTMBD method, which can also ensure the accuracy of the final results.

The remainder of this paper is structured as follows. “Notations and definitions” section presents preliminar-
ies on hierarchical multilabel classification. Then, the proposed method is elaborated in detail in “The proposed 
method” section. The experimental results are provided in “Experiment” section. Finally, the paper is concluded 
in “Conclusion” section.

Notations and definitions
In this section, the notations and definitions in hierarchical multilabel classification are described first, and then 
Bayesian decision theory is presented.

Hierarchical multi‑label classification. Let X = Rp be a p-dimensional input feature space, each 
instance can be written as a vector with p features. L = {l1, l2, . . . , lc} is a predefined class label finite set. 
There are c possible labels, where c ≥ 2 , and these labels conform to a hierarchy. H is a predefined hierarchy, 
which can be a tree or a DAG. Each label in L corresponds to a node in H , and the label set L can be repre-
sented by H. D = {(xi , yi)|i = 1, 2 . . .m} is a training dataset, and xi = (xi1, xi2, . . . , xip) ∈ X is an instance. 
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yi = (yi1, yi2, . . . , yic) is the label vector of xi , and yij = 1 means xi has label lj , and yij = 0 means xi does not have 
label lj , and these labels can have multiple paths in H.

The DAG hierarchy can be denoted by G =< V ,E > with vertices V = {1, 2, . . . , |V |} and edges 
e = (k, l) ∈ E, k, l ∈ V  . The nodes V represent the classes, so V = L and the class li is represented simply by 
the node j if there is no ambiguity.A direct edge e = (i, j) ∈ E describes the hierarchical relationship that i is the 
parent node of j. We further denote the set of children of a node i as child(i), the set of its parents as par(i), the 
set of its ancestors as anc(i), the set of its descendants as desc(i) and the set of its siblings as sib(i).

The task of hierarchical multilabel classification is to learn a mapping function f from training dataset D, 
where f : X → 2L . For an unknown instance xt ∈ X , the function f (·) can predict the label vector f (xt) of the 
instance xt . The mapping function f (·) is also called the hierarchical multilabel  classifier20.

The hierarchy constraint. For hierarchical multilabel classification, because of the hierarchical structure 
between labels, the classification result of an instance must satisfy hierarchical  constraint21. Let y be the true label 
of an instance x , and yi be the i-th component of y . yi = 1 means that the instance belongs to node i, and ypar(i) 
means the component set of par(i) in y , then the mathematical form of the hierarchical constraint for a directed 
acyclic graph can be expressed as:

Bayesian decision theory for HMC. Loss  function22, also known as cost function, is used to measure the 
degree of inconsistency between the predicted value of the model and its real label, that is, the degree of pre-
diction error of the model. The loss function is a non-negative real value function between the predicted value 
and the real value of an instance. The smaller the difference between the real value and the predicted value, the 
smaller the value of the loss function, and the better the model. Let f (·) be a classifier; the loss function of an 
instance x can be written as L(y, f (x)) . For a classification problem, the conditional risk R(ŷ|x) of classifying its 
label as ŷ is

According to Bayesian decision theory based on the minimum risk  principle23, for an instance x , the label that 
minimizes conditional risk is the predictive label of the instance, therefore, the prediction of an instance’s labels 
becomes the following optimization problem:

(1)
{

yi = 1 ⇒ {i = 0 ∪ ypar(i) = 1}
yi = 0 ⇒ ydesc(i) = 0

(2)R(ŷ|x) =
∑

y∈{0,1}c

L(y, ŷ)P(y|x)

Figure 1.  The schematic diagram of GO.
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The proposed method
The framework of the proposed method can be described by Fig. 2. Considering that nodes with similar topologi-
cal features tend to have similar functions, we used low-dimensional topological features as the representative 
vector of each node, which were extracted from the lncRNA coexpression network with the diffusion component 
analysis (DCA) approach as described in Zhang’s  work12. We first use a random walk with restart algorithm 
(RWR) on each node to obtain a combination of the local and global topological information. The RWR algo-
rithm is an improvement on the basis of the random walk algorithm. Starting from a certain node in the graph, 
each step faces two choices: randomly select the adjacent node or return to the starting node. The algorithm 
contains a parameter r , which is the restart probability, and 1− r represents the probability of moving to an 
adjacent node. After iterations, it tends to be stable, and the probability distribution obtained after the plateau 
can be regarded as a distribution affected by the starting node. RWR can capture both the multifaceted relation-
ship between two nodes and the overall structural information of the graph.Then the high dimension obtained 
by RWR is reduced by singular value decomposition. After that, we obtain the features of each node and our 
classification process starts.

First, an LSTM network is designed and trained for all nodes of the DAG structure, and according to the 
characteristics of each instance, the predicted probability for each label is obtained. Next, the mathematical 
model based on Bayesian decision theory is designed to integrate the primary classification results obtained by 
each LSTM network. Finally, since there may be labels in the label set that violate the hierarchy constraint at this 
time, the hierarchical constraint algorithm DAGLabel is used to modify them to obtain the predicted label set 
that conforms to the hierarchical structure.

The main content of the proposed HLSTMBD method includes the following three parts: the design of the 
LSTM network, the construction of the BD mathematical model and the design of the hierarchical constraint 
algorithm .

The design of the LSTM network. In this paper, the bidirectional LSTM is chosen as the basic classi-
fier. LSTM is a sequence-to-sequence model and is widely used in natural languange processing(NLP) fields. 
It is well-known for its good performance on memory  function24–26. For our hierarchical multilabel problem, 

(3)

ŷ∗ = arg min
ŷ∈{0,1}c

R(ŷ|x)

= arg min
ŷ∈{0,1}c

∑

y∈{0,1}c

L(y, ŷ)P(y|x)

Figure 2.  The classification process.
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the input features can be seen as a sequence, and the output labels can also be seen as a sequence. In this case, 
the LSTM network can classify all labels at one time and is expected to capture implicit hierarchy information.

The model framework is described in Fig. 3. First, the dense layer is applied to extend the input dimension, 
and then layer normalization is used to normalize the extended features. Then the BiLSTM network is applied 
to capture latent relationships between instances. The BiLSTM network has two independent LSTMs. The input 
sequence is sent to the two LSTM neural networks in positive and reverse order for feature extraction, and the 
feature vector formed by splicing the two output vectors is used as the final feature expression of the  instance27. 
Thus, the BiLSTM network can integrate both past and future information, which is necessary because the 
information in the future period of time is equally important for the prediction of current instances. To avoid 
overfitting, a dropout layer is added before the final classification.

After this network, we can obtain the posterior probability pj of each instance at nodej, which is related to 
the construction of the Bayesian decision (BD) mathematical model.

The mathematical model based on Bayesian decision theory. According to Bayesian decision the-
ory, for DAG hierarchical multilabel classification, the optimization function can be written as:

where � denotes a multilabel set that satisfies the hierarchical constraint expressed in the formula (1). It is easy 
to find that the set � is a subset of the label space, so � ⊆ {0, 1}c.

Formula (4) can be seen as a mathematical model for solving DAG hierarchical multilabel classification. To 
complete this mathematical model, a suitable loss function should be designed first. Then, the solution to the 
function 4 should be derived.

The hierarchical loss function. To design a good loss function for the DAG hierarchical structure, the possible 
prediction errors in DAG hierarchical multilabel classification should first be analysed in detail.

For an instance x and a hierarchy H, when an instance has a prediction error at a node i, there are two pos-
sible cases. The first case is that the true label at node i is 1, but the prediction label is 0, which can be written as 
yi = 1 and ŷi = 0 . The other case is that the true label at node i is 0, but the prediction label is 1, which can be 
written as yi = 0 and ŷi = 1 . The logical compliment represented by ỹi is ỹi = 1− yi . Therefore, when yi = 1 , 
ỹi = 0 and when yi = 0 , ỹi = 1.

For the first case, the prediction results at its parent nodes have two cases.
Case (a) its parent nodes are all correctly predicted, which can be written as ypar(i) = 1 and ŷpar(i) = 1.
Case (b) the true labels of all its parent nodes are 1, but the prediction label of at least one parent node is 0; 

that is, the prediction results of its parent nodes are not completely correct. This case can be written as ypar(i) = 1 , 
and ŷparp0(i) = 0 , ŷparp1(i) = 1 , where the set of its parent nodes whose predicted value is 0 is denoted as parp0(i) , 
and the set of remaining nodes is denoted as parp1(i).

Similar to the first case, for the second case, the prediction results at its parent nodes also have two cases.
Case (c) its parent nodes are all correctly predicted, which can be written as ypar(i) = 1 and ŷpar(i) = 1.
Case (d) the prediction results of each parent node are not all correct. Define the set of parent nodes whose 

true values are 0 as part0(i) , and the set of remaining nodes is denoted as part1(i) , this case can be written as 
ypart0(i) = 0 , and ypart1(i) = 1 , ŷpar(i) = 1.

From the above analysis, when a sample has a prediction error at a node, the possibility of the parent node’s 
error has four cases. Referring to the form of the loss function designed for the tree structure and integrating 

(4)

ŷ∗ = argmin
ŷ∈�

R(ŷ|x)

= argmin
ŷ∈�

∑

y∈{0,1}c

L(y, ŷ)P(y|x)

Figure 3.  The description of the model.
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the information related to the possible errors into the loss function, in this paper, a loss function for a directed 
acyclic graph structure is proposed, namely, the DAG hierarchical loss function, which is abbreviated as the 
DAGH loss function.

In the DAGH loss function, each item corresponds to the parent-child node error type mentioned above. 
Let there be N nodes in a directed acyclic graph H, denoted as {0, 1, 2, . . . ,N − 1} , where the 0 node is the root 
node. Then, the formula of the DAGH loss function is as follows:

The specific forms of these items are as follows:

w1 , w2 , w3 and w4 are weight constants that represent the weight of different errors in the loss function.
Ci is the misclassification cost of a node i, and Ci ≥ 0 . The cost of misclassification of a positive instance as 

negative and the cost of misclassification of a negative instance as positive are considered, and the weights of 
such errors are expressed by α and β , respectively.

For a DAG hierarchy, as a node may have many parent nodes, Ci is expressed as:

From the definition of the misclassification cost Ci , we can see that the misclassification cost Ci is used to reflect 
the information of the hierarchical structure and to some extent reflects the importance of a node in the hierar-
chical structure. The closer a node is to the root node, the more important the node is, and the higher the cost 
of misclassification; conversely, the farther the node is from the root node, the less important the node is, and 
the lower the cost of misclassification.

Now we have finished the design of the hierarchical loss function, the DAGH loss function. Different from 
loss functions to be optimized in neural networks, our DAGH loss function is a principle used to compute hier-
archical prediction error and construct the mathematical model later.

The BD mathematical model. By now, according to Bayesian decision theory, for an instance x , the DAGH loss 
function is substituted into formula (2), and the form of conditional risk of x using the DAGH loss function can 
be obtained.

where,

(5)LDAGH (ŷ, y) = ℓ1 + ℓ2 + ℓ3 + ℓ4

(6)ℓ1 = w1

N−1
∑

i=1

Ciyi ˜̂yi
∏

j∈par(i)

yjŷj

(7)ℓ2 = w2

N−1
∑

i=1

Ciyi ˜̂yi
∑

j∈par(i)

yj ˜̂yj

(8)ℓ3 = w3

N−1
∑

i=1

Ciỹiŷi
∏

j∈par(i)

yjŷj

(9)ℓ4 = w4

N−1
∑

i=1

Ciỹiŷi
∑

j∈par(i)

ỹj ŷj

(10)Ci =

{

1, i = 0
∑

j∈par(i)
Cj

|child(j)| , i > 0

(11)
R(ŷ|x) =

∑

y∈{0,1}N

LDAGH (y, ŷ)P(y|x)

= T1 + T2 + T3 + T4

(12)T1 =
�

y



w1

N−1
�

i=1

Ciyi ˜̂yi
�

j∈par(i)

yjŷj



P(y|x)

(13)T2 =
�

y



w2

N−1
�

i=1

Ciyi ˜̂yi
�

j∈par(i)

yj ˜̂yj



P(y|x)

(14)T3 =
�

y



w3

N−1
�

i=1

Ciỹiŷi
�

j∈par(i)

yjŷj



P(y|x)
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For an instance x , the probability of i at node P(yi = 1|x) is abbreviated as pi , that is, pi = P(yi = 1|x) . T1 , T2 , 
T3 , and T4 are expanded and collated, respectively, and the following proposition can be drawn.

Proposition 1 In the DAG hierarchical multilabelclassification, a DAG hierarchy is defined as H. There are N nodes 
in H, which are denoted as {0, 1, 2, . . . ,N − 1} , and the 0 node is the root node. For an instance x , the concrete form 
of conditional risk using the DAGH loss function is as follows:

Proof The unfolding process of T1 is as follows:

Similarly, the expansion process of T2 is as follows:

For T3:

For T4:

(15)T4 =
�

y



w4

N−1
�

i=1

Ciỹiŷi
�

j∈par(i)

ỹj ŷj



P(y|x)

(16)

R(ŷ|x) =
�

y∈{0,1}N

LDAGH (y, ŷ)P(y|x)

= w1

N−1
�

i=1

Ci
˜̂yipi

�

j∈par(i)

ŷj

+ w2

N−1
�

i=1

Ci
˜̂yipi

�

j∈par(i)

˜̂yj

+ w3

N−1
�

i=1

Ciŷi





�

j∈pa(i)

pj − pi





�

j∈par(i)

ŷj

+ w4

N−1
�

i=1

Ciŷi
�

j∈par(i)

ŷj(1− pj)

(17)

T1 =
�

y



w1

N−1
�

i=1

Ciyi ˜̂yi
�

j∈par(i)

yjŷj



P(y|x)

= w1

N−1
�

i=1

Ci
˜̂yipi

�

j∈par(i)

ŷj

(18)

T2 =
�

y



w2

N−1
�

i=1

Ciyi ˜̂yi
�

j∈par(i)

yj ˜̂yj



P(y|x)

= w2

N−1
�

i=1

Ci
˜̂yipi

�

j∈par(i)

˜̂yj

(19)

T3 =
�

y



w3

N−1
�

i=1

Ciỹiŷi
�

j∈par(i)

yjŷj



P(y|x)

= w3

N−1
�

i=1

Ciŷi[P(ypar(i) = 1|x)

− P(yi = 1, ypar(i) = 1|x)]
�

j∈par(i)

ŷj

(20)

∵ P(ypar(i) = 1|x) =
∏

j∈par(i)

P(yj = 1|x) =
∏

j∈par(i)

pj

∴ T3 = w3

N−1
∑

i=1

Ciŷi(
∏

j∈par(i)

pj − pi)
∏

j∈par(i)

ŷj
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According to the hierarchical constraint, P(yi = 1, yj = 0|x) = 0 , therefore,

Substituting T1,T2,T3 and T4 together, it is the exact equation proposed in Proposition 1.   �

According to Bayesian decision theory based on the principle of minimum risk, for a DAG hierarchical 
multilabel classification problem, its BD mathematical model can be written as:

Although the BD mathematical model has been built, the formula (23) is difficult to solve. The simplification of 
this model is described in detail in the following subsection.

The simplification of the BD mathematical model. A solution to simplify the BD model is derived by further 
deducing and sorting out formula (23), which transforms the minimization problem described by formula (23) 
into the maximization problem described by Proposition 2. The specific contents of this proposition are as fol-
lows.

Proposition 2 The problem of minimizing the risk function expressed in formula (23) is equivalent to the following 
optimization problem:

where LEδ(ŷ, x) is defined as:

Proof The items T1,T2,T3 , andT4 expressed in formulas (17), (18), (20), and(21) are further sorted. The expansion 
of T1 and T2 are as follows:

(21)

T4 =
�

y



w4

N−1
�

i=1

Ciỹiŷi
�

j∈par(i)

ỹj ŷj



P(y|x)

= w4

N−1
�

i=1

Ciŷi
�

j∈par(i)

ŷj[P(yj = 0|x)

− P(yi = 1, yj = 0|x)]

(22)T4 = w4

N−1
∑

i=1

Ciŷi
∑

j∈par(i)

ŷj(1− pj)

(23)

ŷ∗ = argmin
ŷ∈�

R(ŷ|x)

= argmin
ŷ∈�

∑

y∈{0,1}N

LDAGH (y, ŷ)P(y|x)

(24)ŷ∗ = argmax
ŷ∈�

LEδ(ŷ, x)

(25)

LEδ(ŷ, x) = w2

N−1
�

i=1

Cipi
�

j∈par(i)

ŷj

− w1

N−1
�

i=1

Cipi
�

j∈par(i)

ŷj

+

N−1
�

i=1

ŷi[w1Cipi − w3Ci





�

j∈par(i)

pj − pi





− w4Ci

�

j∈par(i)

(1− pj)]

(26)

T1 = w1

N−1
∑

i=1

Ci
˜̂yipi

∏

j∈par(i)

ŷj

= w1

N−1
∑

i=1

Cipi
∏
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Similarly, for T3 and T4:

By adding up the results of the above four items, we can obtain the following results:

Therefore, LDAGH (ŷ, x) can be written as:

It is easy to see that the first item of the formula is independent of ŷ , so the problem of finding the minimum 
value of LDAGH (ŷ, x) is to find the maximum value of LEδ(ŷ, x) , so the proof ends.

Because there are still two variables ŷi and ŷpar(i) in the formula (25), it is difficult to solve the maximum value 
problem of LEδ(ŷ, x) . To solve this problem, a node function σ(·) is introduced. A node i is specifically defined as:

where, σ1(i) and σ2(i) are defined as:

(27)
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(28)
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R(ŷ|x) = w2

N−1
�

i=1

Cipi|par(i)|

−







w2

N−1
�

i=1

Cipi
�

j∈par(i)

ŷj
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In particular, when the children node set of node i is an empty set, the value of σ1(i) is 0, that is, when 
child(i) = ∅ , σ1(i) = 0 . The definition of the function σ2(i) does not include the root node.

After introducing the concept of node function σ(i) , LEδ(ŷ, x) can be represented by σ(i) .   �

Proposition 3 LEδ(ŷ, x) is expressed by σ(i) as:

Proof Let M =
∑

i ŷiσ(i) , and unfolding it, we can obtain:

Let the first item of M be M1 , so M1 =
∑

i ŷiσ1(i) , and unfolding M1:

Let the second item of M be M2 , so M2 =
∑

i>0 ŷiσ2(i)) , and unfolding M2:

  �

Combining both M1 and M2 , M1 +M2 = LEδ(ŷ, x) is proved.
Based on Proposition 3, the solution to the problem described in Proposition 2 is equivalent to the following 

problem.

Proposition 4 For a DAG hierarchical multilabel classification problem, when the DAGH loss function is used, 
according to Bayesian decision theory, the classification can be transformed into the following optimization problems.

Formula (39) is the simplified mathematical model for the DAG hierarchical multilabel classification problem. 
To solve the optimization problem described by formula (39), only the posterior probability of an instance at each 
node needs to be obtained, which is exactly what we described in the earlier section when discussing the predicted 
probability for each label through the LSTM network. According to the strategy described in formula (39), we can 
obtainthe optimized result of the label set of each instance.

Hierarchical constraint algorithm DAGLabel. In solving the optimization problem above, it is neces-
sary to ensure that the final classification result ŷ∗ satisfies the DAG hierarchical constraint, i.e., conforms to 
formula (1). To ensure that the final result satisfies the hierarchical constraint, the DAGLabel algorithm is used 
to solve the optimization problem in formula (39).

DAGLabel is a greedy algorithm. Its basic idea is to traverse the whole hierarchical structure and select the 
node with the largest σ value for judgment and operation. The DAGLabel algorithm simplifies the DAG step by 
step and finds the optimal classification result by searching for the node with maximum σ in the hierarchical 
structure and combining it with the parent node, which may violate the hierarchical constraint as a new node. 
The DAGLabel algorithm can obtain the optimal classification result without knowing the maximum number 
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of labels for an unknown instance and can ensure that the classification result meets the hierarchical constraint. 
The pseudocode of the DAGLabel algorithm is described in algorithm 1. 

The main steps of the HLSTMBD algorithm. The proposed mathematical model transforms the DAG 
hierarchical multilabel classification problem into classical classification problems, which provides a theoretical 
basis for the algorithm design of DAG hierarchical multilabel classification problems. This section combines the 
three parts above and shows how the entire model works properly.

The hierarchical multilabel classification algorithm proposed in this paper is abbreviated as the HMC-DAG 
algorithm. This algorithm consists of two parts: a training stage and a prediction stage. In the training stage, a 
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single classifier is trained in the directed acyclic graph. In the prediction stage, for an unknown instance x , the 
algorithm mainly includes the following three steps.

Step 1 Use the base classifier obtained in the training stage to classify instance x separately, and obtain the 
classification result.

Step 2 Calculate the value of σ at each node by using the results of step 1 and the formulas (32), (33) and (34).
Step 3 Use the value of σ obtained in step 2 and formula (39) to calculate the final classification result ŷ∗.
The overall framework of the DAG hierarchical multilabel classification algorithm proposed in this paper is 

given in algorithm 2.

Complexity analysis. In this section, the complexity of the HMC-DAG algorithm is analysed. This algorithm 
designs a classifier in the training stage and transforms the hierarchical multilabel classification problem into a 
’seq-seq’ classification problem for processing, so the complexity of step 1 depends on the selected base classifier.

Step 2 calculates the value σ of an instance at each node. If there are N nodes in the DAG, for an instance to 
be tested, the time complexity is O(N).

Step 3 calculates the final classification result, which is implemented by the DAGLabel algorithm, so the time 
complexity of this part depends on the DAGLabel algorithm. After the analysis of the DAGLabel algorithm, the 
time complexity of this part is O(N log(N)).

Experiment
The main application area of DAG hierarchical multilabel classification is biological function prediction. To vali-
date the performance of the hierarchical multilabel classification algorithm proposed in this paper, we designed 
an experiment using data sets in the field of lncRNA function prediction, and selected Gene Ontology as the 
gene function annotation scheme. To design related experiments, we should first analyze the specific content of 
the annotation scheme of gene function used in the experiment.

GO annotation scheme. With the development of biology, the biological function annotation scheme 
using tree structure is too simple to organize and describe the complex relationship between biological func-
tions. Therefore, Gene Ontology (GO) has been widely used by  researchers28. The GO annotation scheme can 
effectively organize complex information between biological functions and has become a comparatively popular 
biological function annotation  scheme29.

The GO annotation scheme was proposed by the Gene Ontology Consortium to describe and manage the 
functions of genes and their products in various species. It annotates genes or proteins by using proprietary bio-
logical  terms30. GO can be represented by a directed acyclic graph, in which each node corresponds to a function 
and each directed edge corresponds to the membership relationship between nodes. Figure 1 is a part of GO.

Experimental datasets. The dataset GOA-lncRNA used in the experiment comes from biological lncRNA 
data under GO annotation. Currently, scientists usually infer functions of lncRNAs by the interactions between 
DNA,RNA,proteins and  them12. These interactions may contribute to cellular processes. Since genes with the 
same or similar functions often have similar expression patterns in multiple different tissues, it is an effective 
method to analyse the role of lncRNAs by analysing the coexpression patterns shared with neighbouring coun-
terparts.

Since there is currently no public GO annotation for lncRNAs, but based on the fact that the target lncRNA 
may have a very similar function to the direct neighbour protein in the lncRNA protein binding network, the 
literature uses the known protein GO annotation to annotate some lncRNAs using the neighborhood counting 
method. That is, for each target lncRNA l in the lncRNA-protein association network, the occurrence frequency 
of each function f belonging to F is calculated based on the direct neighbours of l, where F is a set of functions 
owned by all direct neighbors of l. If it has the f function, it will be labelled 1; otherwise, it will be labelled 0. At the 
same time, an appropriate neighbour threshold as analysed in Zhang’s  work1 is selected to adjust the prediction 
of lncRNAs; thereby, the initial dataset of this article, GOA-lncRNAs, is obtained. After selecting the biological 
process aspect of GO terms as labels, the dataset with features and labels is randomly divided as D1–D5.

The specific content of each data set is shown in Table 1.

Evaluation criteria. Although no evaluation method is considered to be the best evaluation criterion for 
the DAG hierarchical multi-label classification problem at present, micro average F1 and macro average F1 are 
recommended as evaluation criteria of the hierarchical multi-label classification problem in  paper31. Both are 
suitable for evaluating DAG hierarchical multilabel classification. These two indicators are widely used in many 
studies,such  as32–35.

Let a data set contain a total of m instances. The precision hPreµ , recall hRecµ and F1 indicator hFµ1  in the 
form of microaverage are calculated as follows.

(40)hPreµ =

∑m
i=1 |P̂i

⋂

T̂i|
∑m

i=1 |P̂i|

(41)hRecµ =

∑m
i=1 |P̂i

⋂

T̂i|
∑m

i=1 |T̂i|
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The macroaverage version of precision hPreM , recall hRecM and the F1 value hFM1  are calculated as follows.

For the i − th instance in the dataset, the definition of its hierarchical precision ( hPrei),hierarchical recall ( hReci ) 
and hierarchical F1(hF1,i)are:

Also, P̂i is the set consisting of the most specific class(es) predicted for a test instance and all its(their) ancestor 
classes, and T̂i is the set consisting of the most specific true class(es) of test example i and all its(their) ancestor 
classes. We can see that the micro average hFµ1  is calculated by precision and recall on all the samples; however, 
the macro average hFM1  is calculated by hPrei and hReci for each sample. It should be noted that there is a common 
characteristic for all metrics; the larger the measure value is, the better the classifier performance.

Experimental setup. In terms of hardware equipment, the computer CPU used in this experiment has 
eight cores and sixteen threads, the main frequency is 2.9 GHz, NVIDIA (R) Cuda version 11.1, and the mul-
ticore in the graphics card can be used for calculation and processing to improve calculation performance. The 
biological process aspect of GO is our focus in the experiment section.As previously described in  papers36,37, we 
use two-thirds of each data set for training and the remaining one-third for testing. Out of the training set, two-
thirds are used for the actual training, and one-third is used to validate the parameters.

The classifier model used in the experiment is built through the Keras API, which uses Tensorflow as the 
backend. The advantage of Keras is that it sets the commonly used neural network layer into a modular API, 
which is convenient for building compilation and calling. The model can classify all labels at once. The learning 
rate of 0.0008 is automatically selected and returned through “RandomizedSearchCV” from a list of learning 
rates. Activation in all dense layers is selected as “sigmoid”,while in the LSTM layer, it is selected as “tanh” by 
default. The neural network is trained by optimizing the binary crossentropy error.

The SVM classification in the comparative experiment is realized through the LIBSVM  package38. LIBSVM 
is a software package developed by Professor Lin Zhiren of National Taiwan University to implement the SVM 
algorithm. The author provides many default parameters for the SVM, which simplifies the process of using 
and adjusting the parameters of the SVM. We choose RBF (radial basis function) as the kernel function in the 
experiment. The classification follows the following steps: convert the original data to the SVM format, perform 
the data normalization, use the radial basis kernel function, use cross-validation to find the optimal parameters 
C and γ , and finally use the optimal parameters to train the entire datasets and test.

Results and analysis. The results of the HMC‑DAG algorithm. To verify the effectiveness and perfor-
mance of the proposed HMC-DAG algorithm, the algorithm is used to deal with lncRNA function prediction 

(42)hF
µ
1 =

2× hPreµ × hRecµ

hPreµ + hRecµ

(43)hPreM =

∑m
i=1 hPrei

m

(44)hRecM =

∑m
i=1 hReci

m

(45)hFM1 =

∑m
i=1 hF1,i

m

(46)hPrei =
|P̂i

⋂

T̂i|

|P̂i|

(47)hReci =
|P̂i

⋂

T̂i|

|T̂i|

(48)hF1,i =
2× hPrei × hReci

hPrei + hReci

Table 1.  Information from 5 datasets.

Dataset Instances number|D| Attribute number |A|

D1 807 50

D2 807 50

D3 807 50

D4 807 50

D5 808 50
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based on the GO scheme for the 5 datasets described above, and the results are evaluated by using both the 
macroaveraged version and the microaveraged version of hF1 . Table 2 show the results of HMC-DAG when us-
ing LSTM as the base classifier.

Compared with other algorithms. To illustrate the superiority of our proposed HLSTMBD method, we combine 
this algorithm with eight other baseline algorithms, HMC-TD-SVM, HMC-DT-SVM, HMC-TPR-SVM, HMC-
DAG-SVM, HMC-TD-LSTM, HMC-DT-LSTM, HMC-TPR-LSTM, and CLUS-HMC, for comparison.

The comparison algorithm can be divided into two categories. The CLUS-HMC algorithm is a global method. 
The method sets different weights for different labels in the hierarchical structure, generates an inductive decision 
tree to classify all labels at once, and uses the weighted Euclidean distance as a measure and cross-validation to 
determine the required level  parameters39. FTest is the stopping criterion, and the node will be split only when 
the internal variance of FTest in a certain level of subset is significantly reduced. The CLUS-HMC method can 
establish a set of FTests and optimize them. In this case, the smallest FTest will be selected to minimize the RMSE 
metric on the provided validation set.

The remaining methods are local methods. First, a base classifier is set to initially classify the labels. Since 
the label results obtained by the base classifier may violate the given hierarchical relationship, the hierarchical 
constraint algorithm is added to modify the classification results to make the classification results effective. The 
comparison method is compared with SVM at the base classifier level and compared with the TOPDOWN, 
DOWNTOP, and TPR algorithms at the hierarchical constraint algorithm level.

The SVM classifier aims to find an optimal hyperplane that can distinguish between various types, so that the 
distance between the parallel and the optimal hyperplane and the support vector is maximized, and each sample 
point is mapped to an infinite-dimensional feature space through the kernel function. The dimension ascends, so 
that the originally linearly inseparable space becomes linearly separable. The SVM classifier has been proven to 
have excellent generalization ability and can effectively avoid overfitting problems, and since the solving process 
is a convex optimization problem, its local optimal solution must be the global optimal solution.

The comparison method, the TPR method is called the true path rule and is a common method to integrate 
the initial classification  results40. The whole method process can be divided into two steps, from the bottom to the 
top (downtop step) and from the top to the bottom (topdown step). To traverse the entire hierarchical structure 
from bottom to top, pass the positive prediction value of the lower node to the upper node at first, so that it has 
an impact on the judgment of the upper node. After this process is over, the hierarchical structure is accessed 
from the root node from top to bottom, and the result of the upper-level node whose prediction result is still 
negative is passed to the relevant lower-level node. The downtop and topdown steps in the TPR method represent 
the bottom-up and top-down steps, respectively, which can be used as the hierarchical constraint downtop and 
topdown methods to integrate the results separately.

The algorithm compares the two indicators of the microaveraged version and the macroaveraged version 
of hF1 , and the results are shown in Figs. 4 and 5. Of the ten indicators on the five datasets, eight of the HMC-
DAG-LSTM algorithms are in a close or leading position. In addition, since the SVM in the experiment sets a 
classifier for each node to perform independent binary classification, each sample needs to integrate the binary 
prediction results of all labels, and LSTM classification only designs a classifier to complete the conversion from 
“sequence-sequence”, which can achieve the prediction results of all labels at one time in the output level. There-
fore, the algorithm simplifies the classification and integration steps from the original design of a classifier for 
each node to a one-time classification for all nodes.

To fully certify the advantage of our approach, two more experiments were carried out to compare with the 
SOTA machine learning method, the NeuraNetL2GO method, and gave a possible explanation for why our 
method showed better results. A classifier chain in accord with the hierarchy structure formed by many classifiers 
is trained in NeuraNetL2GO. The input of classifiers (except the classifier for the first level) consists of two parts: 
the outputs of the former classifier and the input feature vectors of the instances. In this way, the prediction of 
levels close to the root can have an impact on levels away from the root. First, we tested how the NeuraNetL2GO 
method worked on our 5 datasets. Since the definition of the evaluation metric Fmax in NeuraNetL2GO is actu-
ally the evaluation metric result in our approach, the results are shown below in Fig. 6. According to our GO 
depth, the percentage of hidden units is set to [0.6,0.55,0.5,0.45,0.4,0.35,0.3,0.25,0.2,0.15,0.1].

The results in Fig. 6 show that of all 5 datasets, our method has a higher F-measure, which indicates a better 
prediction model. To explain the results in more depth, Fig. 7 shows the Fmeasure-GO depth on 5 datasets. It can 

Table 2.  The results of HMC-DAG-LSTM.

Data set

HMC-DAG-
LSTM

hF
µ

1
hF

M

1

D1 0.940 0.933

D2 0.927 0.917

D3 0.958 0.958

D4 0.933 0.926

D5 0.960 0.960
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be seen that our methods performed better in nearly all levels of prediction, and these figures indicate that as the 
levels go deeper, the results of the NeuraNetL2GO method show an obvious descent tendency at approximately 
level 4, while the broken lines in our method are not all the way down. Different from the classifier chain in 
which the performance of the former classifiers has a direct impact on the latter ones, only one classifier is used to 
complete our classification, which means that one GO term in the GO sequence has relatively more independence 
on its own prediction result determined by its own input features and has little influence on others’ prediction.

In another experiment, our method is applied to the lncRNA2GO-55 dataset, the test dataset of the Neu-
raNetL2GO method manually created based on Zhang’s work, which only includes lncRNAs that have been 
functionally characterized through knockdown or overexpression experiments. The results in Fig. 8. show that 
our HLSTMBD method has a higher Fmeasure of 8.46% than the NeuraNetL2GO method. We further calculated 
the numbers of lncRNAs that were annotated with at least one biological process GO term, and the results are 
shown below in Fig. 9. All 54 lncRNAs were annotated with at least one GO term in our method; however, the 
number in NeuraNetL2GO was 50.

The effectiveness of our method is mainly due to two reasons. First, the advanced mathematical HBD model 
behind our method is a more precise and convincing theory for hierarchical multilabel classification problems. 
Different from NeuraNetL2GO, in which only the probability of nodes is considered and adjusted, our method 
is more comprehensive because the impact of the hierarchy structure is also involved. The framework also 
showed great generality, and there are many solutions to the classical classification problem simplified by this 
model. Next, the bidirectional LSTM network we use is well known for its excellent performance in capturing 
hidden global information, which indicates that the final result of the descendant nodes may have an effect on 
the ancestor nodes, and even if the two nodes are far apart, the latent relationship may also be noticed in our 
network. Compared to the classifier chain formed by MLPs used in NeuraNetL2GO, the hierarchy information 
is spread level by level in one direction and may have a great reduction as the level goes deeper; in other words, 
the node of the 2nd level may have little impact on the 10th level, and the chain may lead to the result that the 
prediction errors are easier to propagate between the levels. In addition, we use a single classifier. Compared to 

Figure 4.  The bar chart of each algorithm’s hFM1  value.

Figure 5.  The bar chart of each algorithm’s hFµ1  value.
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the classifier chain formed by the classifiers whose numbers are related to the scale of the hierarchy, our method 
is more flexible and has a smaller size.

In addition, we mainly focused on the BP (biological process) terms (one of the three groups of GO) of 
GO annotations, while the others(molecular function and cellular component) were also included in the Neu-
raNetL2GO method. In the area of the prediction of BP terms (an independent DAG structure), our method 
has better performance. In regard to the demand of predicting all GO groups (three separate DAG structures) 
at one time, three separate networks will be constructed in our method, and the current NeuraNetL2GO may 
be the better choice.

However, there may be some limitations in our HLSTMBD method. First, because of the lack of annotated 
lncRNA functions, a ’guilty by association’ method is applied to annotate lncRNAs; however, the annotations we 
obtain and send to classifiers may lead to a bias against the correct annotation. Next, although our BD model is 
proven to have great potential in hierarchical multilabel classification problems, the advantage of our constraint 
algorithm DAGLabel has not been fully revealed in the experiment against the TOPDOWN, DOWNTOP and 
TPR algorithms.

Figure 6.  Bar chart of Fmeasure values of the two algorithms.

Figure 7.  Performance comparison of different levels in the GO hierarchy.
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Conclusion
In this paper, a new hierarchical multilabel classification method based on LSTM and Bayesian decision theory is 
proposed for lncRNA function prediction. First, the LSTM network is designed to capture part of the hierarchical 
relationship to complete the preliminary classification. Furthermore,a mathematical classification model based 
on the Bayesian decision theory (BD model) is constructed to fully consider and make use of the hierarchical 
information between parent and child nodes in the DAG structure, which can change the hierarchical multi-
label classification problem to the conditional risk minimization problem. Finally, the hierarchical constraint 
algorithm DAGLabel is used to solve the BD model to obtain the final results, which can also correct the labels 
that violate the hierarchy constraints in the initial classification results. Experiments on five datasets show that 
compared to other baseline algorithms, the proposed HLSTMBM algorithm can classify all labels at one time 
without losing the precision in the classification stage, which greatly improves the classification efficiency and 
plays an important role in lncRNA function annotation.

In the future, a new prediction model may be built with fewer parameters or less labelled data to reduce the 
prediction time or improve the prediction performance.
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