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Abstract

Synapses of the mammalian central nervous system are highly diverse in function and molecular composition. Synapse
diversity per se may be critical to brain function, since memory and homeostatic mechanisms are thought to be rooted
primarily in activity-dependent plastic changes in specific subsets of individual synapses. Unfortunately, the measurement
of synapse diversity has been restricted by the limitations of methods capable of measuring synapse properties at the level
of individual synapses. Array tomography is a new high-resolution, high-throughput proteomic imaging method that has
the potential to advance the measurement of unit-level synapse diversity across large and diverse synapse populations.
Here we present an automated feature extraction and classification algorithm designed to quantify synapses from high-
dimensional array tomographic data too voluminous for manual analysis. We demonstrate the use of this method to
quantify laminar distributions of synapses in mouse somatosensory cortex and validate the classification process by
detecting the presence of known but uncommon proteomic profiles. Such classification and quantification will be highly
useful in identifying specific subpopulations of synapses exhibiting plasticity in response to perturbations from the
environment or the sensory periphery.
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Introduction

Synapses are fundamental to every aspect of brain function.

They are recognized today as being highly complex structures

and highly diverse in both function and molecular composition.

At the structural level, individual synapses of the mammalian

central nervous system are thought to comprise hundreds of

distinct protein species [1–3], and genomic and gene expression

data available implies very strongly that there are multiple

isoforms of many of these proteins and that their expression is

differentially patterned across the brains diverse cell types [4]. It

thus seems inescapable that synapses of the brain, even within

traditional transmitter-defined synapse categories (e.g., glutama-

tergic, GABAergic, cholinergic, etc.), must be highly diverse in

protein composition [5]. This conclusion is consistent with the

available functional data, where physiological studies report wide

differences in synaptic transmission as different brain regions and

pathways are examined (again, even when results are compared

only within traditional neurotransmitter categories). Moreover,

the well-known functional plasticity of both synapse structure and

synapse function in response to electrical activity implies directly

that even an otherwise homogeneous synapse population must

become heterogeneous or diverse after individual synapses

experience differential activity. In this light, it seems likely that

synapse diversity per se may be critical to the proper function of

neural circuitry. For instance, there is now widely believed that

the plasticity (and therefore resulting diversity) of individual

synapses is fundamental to memory storage and retrieval and to

many other aspects of neural circuit adaptation to environmental

change [6,7].

Unfortunately, the measurement of synapse diversity has been

restricted by the limitations of available methods capable of

resolving individual synapses. Array tomography (AT) is a new

high-resolution, high-throughput proteomic imaging method that

has the potential to very substantially advance the measurement of

unit-level synapse diversity across large and diverse synapse

populations. AT uses multiple cycles of immunohistochemical

labeling on thin sections of resin-embedded tissue to image the

proteomic composition of synapse-sized structures in a depth-

invariant manner. We have applied AT to freshly-fixed mouse

cerebral cortex, where our volumes have typical sizes of thousands

to millions of mm3 of tissue, contain millions of individually-

resolved synapses, and label over a dozen multiplexed proteomic

markers.

With proper analysis, the informational density of array

tomographic volumes has numerous potential applications.

Synapse-level resolution of large volumes of tissue is an ideal tool

for addressing interesting hypotheses concerning principles like

synaptic scaling [6], structural arrangement [8], and novel synapse

types [9,10]. Combined with connectomic data [11,12], genetic

models [13,14] or dye filling techniques [15,16], array tomography

can also address questions regarding proteomic distributions in

specific subsets of cells. We are interested in investigations of this

nature and others in the mouse cerebral cortex, where the

anatomical distribution of synapses, aside from cortical layer

cytoarchitectonics, is currently largely unexplored.
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Developing a Method of Synapse Quantification
Utilizing array tomography to its fullest extent requires the

development of new synapse detection and classification capabil-

ities. Simple analysis, using repeated human observation of a

fraction of the channels available in the full volume, may be

acceptable for analyzing fragmentary subsets of a few hundred

synapses but cannot scale beyond that. We have developed tools

and methods to assist in handling the high proteomic dimension-

ality of array tomographic volumes (Figure 1), principally the

synaptogram [17]; a means of visualizing small pieces of highly

multiplexed data by splaying out the 3-D volume surrounding a

region of interest (ostensibly a single synapse) into a larger 2-D

image.

An example of a synaptogram in action can be seen in Figure 1-

C,D, both of which visualize the same synaptic volume. 1-C

attempts to render the volume in three dimensions, assigning a

different color to each channel, and running out of easily separable

colors in the process, even for this one example. It also falls prone

to the usual pitfalls of obscuration and optical confusion common

to snapshots of rendered scenes, such that splitting the image into

multiple ones displaying subsets of colors helps visualization

considerably. Contrast this with a synaptogram of the same

synapse in Figure 1-D. Each row of thumbnails displays a different

channel (plus synapsin, included to serve as a reference channel),

each column shows a different z-section; left is below, right is

above. Unlike the render, position and depth relationships are

presented clearly, and the synaptogram can be extended to include

an arbitrarily large number of simultaneous imaging channels by

appending new rows vertically.

With only a bit of exposure to synaptograms, human experts

can use them to tell at a glance exactly what they’re seeing. This

eases the difficulty of per-synapse manual classification such that

the effort of classifying a set of few hundred synapses is no longer

excessive, but no matter how convenient they are to analyze

individually, the sheer number of synapses makes manual analysis

of the entire data set effectively impractical.

Given that just a few hundred analyzed examples can be

obtained with a reasonable expenditure of effort, there are two

approaches to consider. The first is to use those examples as a

representative sample, in a manner similar to stereology. That may

work well for some questions, but not others. Rare or novel

synapse types and cortical laminar distributions would be

especially difficult to study. An alternative, which this paper will

present, is to take that sample of accurately classified synapses and

extrapolate its decision-making information to the much larger

population of unclassified individuals.

Results

Identifying Putative Synaptic Loci
The first necessary step in our classification process is to locate

the sites which may contain synapses. Despite their appreciable

proteomic diversity [18], cortical synapses are small: from the

ostensible midpoint of the synapse, all relevant synaptic protein

labeling can fit within a 500 nanometer radius for mouse cortex

[19]. Given a reliable method of locating synapses, all information

needed to verify and type those synapses can be measured from

the local volume surrounding them, greatly reducing the spatial

analysis needed per synapse. To avoid confusion with actual

synapses, we refer to these sorts of putative synapse locations as

‘‘synaptic loci.’’ They are specific places which might be synaptic.

In order to find putative synapses to help limit the necessary

search space, we are using an antibody targeting Synapsin I.

Synapsin is a scaffolding protein reportedly found in all cortical

synapses [20], and labeled antibodies targeting synapsin have

previously been used on their own to estimate synapse counts [21].

A Millipore Rabbit anti-Synapsin I antibody (Millipore AB1543P)

demonstrates robust and reliable labeling, and is likely to be

colocalized with all relevant synaptic markers [17]. For these

reasons the core of our analysis uses Synapsin I labeling to derive a

list of locations likely to contain synapses from which to begin

small volumetric searches for confirmation. Our approach is to use

the brightest point of each Synapsin I punctum as the site of a

possible synapse to designate a local volume for further analysis,

without attempting to explicitly determine the punctum bound-

aries.

We prefer our local maxima-based approach over thresholding-

based segmentation because the latter has a number of issues arising

from AT’s largely anisotropic resolution (,200nm 6,200nm 6
70nm). This anisotropy, combined with (often unknown) epitope

density and labeling variance means that any segmented punctum

boundary is at best an estimate. An approach using local maxima,

paired with a voxel-based rotation-invariant feature set, is not

affected by the exact boundaries of the puncta of interest, but by the

puncta themselves.

While our approach to synapse discovery sidesteps segmenta-

tion, it does so at the cost of introducing potential false positives:

background local maxima which segmentation would have

discarded, but whose peak brightness rises over our low threshold

for consideration. However, it is possible to filter those out in later

classification. Conversely, this method is ideal for teasing apart

‘‘clumps’’ of synaptic labeling, where multiple synapses exist in

close proximity but can be resolved by the Rayleigh criterion and

thus having separate local maxima.

Manual Classification
Using human experts. It has been demonstrated that the

fluorescently labeled markers used in AT corroborate well with

their identification from EM ultrastructure, despite the deleterious

effects of glutaraldehyde fixation on tissue antigenicity [17]. It then

follows that a process by which synapses can be reliably identified

via their component markers imaged in light microscopy alone will

inherit the corroboration and can be said to be faithful

representations of synapse populations.

Author Summary

Synaptic connections are fundamental to every aspect of
brain function. There is growing recognition that individual
synapses are the key sites of the functional plasticity that
allows brain circuits to store and retrieve memories and to
adapt to changing demands and environments. There is
also a growing consensus that many neurological, psychi-
atric, neurodevelopmental and neurodegenerative disor-
ders may be best understood at the level of specific,
proteomically-defined synapse subsets. Here, we introduce
and validate computational analysis tools designed to
complement array tomography, a new high-resolution
proteomic imaging method, to enable the analysis of
diverse synapse populations of unprecedentedly large size
at the single-synapse level. We expect these new single-
synapse classification and analysis tools to substantially
advance the search for the specific physical traces, or
engrams, of specific memories in the brains synaptic
circuits. We also expect these same tools to be useful for
identifying the specific subsets of synapses that are
impacted by the various synaptically-rooted afflictions of
the brain.

Automated Analysis of a Diverse Synapse Population
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Figure 1. The synaptogram as a tool for high-dimensional proteomic visualization. (A) A maximum projected volume of Synapsin I
labeling. 41 slices, 70 nm per slice, total thickness of 2.87 mm. (B) Randomly-colored segmentation of individual synapsin puncta. (C) Rendering of a
single punctum from the volume showing synapsin (white), imaged together with VGluT1 (red), PSD95 (green), GluR2 (blue), GAD (magenta) and

Automated Analysis of a Diverse Synapse Population
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Humans can visually identify the synaptic category of a given

locus via the use of synaptograms (Figure 1), using the spatial

juxtaposition of a number of relevant synaptic molecules for

classification [17]. Glutamatergic synapses, for example, will by

definition have at least one vesicular glutamate transport protein

and at least one post synaptic density scaffolding protein present.

Similarly, GABAergic synapses can be identified by the presence

of glutamic acid decarboxylase (GAD) and a vesicular GABA

transport protein.

This process of human synapse identification is the best and

most reliable method of synapse identification available to us. It

relies on the perception and expertise of the human viewer to

apply the visual segmentation which defines the ‘‘presence’’ of

necessary labels. This task incorporates a great deal of a priori

knowledge concerning the stearic and functional relationships

between the different molecular labels, the variance in labeling of

each particular antibody, and the particular conditions under

which that tissue had been fixed, embedded, labeled, imaged,

relabeled, etc.

Although manual classification of fluorescence data is orders of

magnitude faster than EM stereology, it is still orders of

magnitude slower than needed to keep up with the synaptic

output rate of AT volumes. For that, we decided to use human-

generated classifications as training data, then liberally applied a

number of clustering and supervised learning methods to

quantitatively mimic the human decision making process.

Assuming the machine learning algorithm thus trained could

perform on par with a human expert it can then be used in place

of the human, though to avoid ‘‘garbage-in, garbage-out’’

scenarios, this does not obviate the need for error estimation

when faced with novel problems.

Machine Learning
Machine learning methods come in two broad categories.

Supervised learning algorithms, trained using a sufficient number

of human rated synapses, are capable of producing numerical

descriptions of human judgment as it is applied to synapse

classification, as well as extrapolating that judgment to the

hundreds of thousands of synapses which comprise an average

data set. Unsupervised clustering, on the other hand, when applied

to raw synaptic loci or already classified synapses is a great

approach to the discovery of marginal classes or subtle subtypes.

Feature extraction. The first step in constructing a compu-

tational framework for either form of synapse classification is to

find a set of explicit measurements which span the feature space

that human raters implicitly search. We are using a small set of ad

hoc, channel-independent, rotationally invariant features to

measure the spatial distribution of each channel’s fluorescence

about the synaptic locus. These features are calculated per voxel,

without relying on segmentation, combinatorial information or a

priori geometrical information, in keeping with the rationale behind

finding the loci in a similarly parameter-independent manner. The

equations used to calculate the four features are given below.

For every voxel i in the local 11611611 voxel window V with

brightness b and pixelwise distance from the synaptic locus d:

IntegratedBrightness~B~
X

i[V

bi ð1Þ

LocalBrightness~
X

i[V

bi

di
2

ð2Þ

CenterofMass~

P
i[V bidi

B
ð3Þ

MomentofInertia~

P
i[V bidi

2

B
ð4Þ

Of these features, the Integrated Brightness is the simplest to

describe, as it is the sum of all the pixel values within 5 pixels.

Local Brightness is also the sum of all values within 5 pixels, but

the contribution of each pixel is reduced by the square of its

distance from the locus. It can be used as a metric for estimating

the volume of the punctum without segmentation because nearby

pixels (more likely to be part of the punctum) contribute much

more heavily than distant ones (more likely to be noise or

neighbors). To test this assumption, we compared scores produced

by this feature to that of a simple connected component analysis

measuring size directly, and found a high degree of correlation

(r = 0.829). The remaining features, Center of Mass and Moment

of Inertia, treat the puncta brightness as if it is a mass distribution

in a synaptogram-sized object, and respectively compute the

distance to the center of that object and its angular inertia for a

rotation about the locus. The combination of all four features

effectively describe the fluorescence distribution in a synaptogram.

The result of this feature extraction, when performed on a

multidimensional image of c channels, is a 4c-long numerical

vector of proteomic measurements describing the putative

synapse. This analysis is repeated for each of p synaptic loci in

the data set, giving us a p 6 4c matrix of measurements to be

further analyzed. To enhance consistency between data sets,

which may well have different imaging conditions, we normalize

each of the extracted features by dividing by the population’s

mean score.

Clustering
Although visual analysis is the traditional and preferred method

of examining biological data, long strings of numbers such as our

feature vectors are difficult for humans to visualize. In response,

high-dimensional numerical measurements have often been

approached using some form of dimensionality reduction as a

first step in numerical analysis. Simply put, reducing a long string

of numbers to a short string of numbers makes them easier

graphically display and understand. Principal Component Analysis

(PCA) is a venerable method of dimensionality reduction which

has seen use in similar applications [22,23], and has proven useful

in ours as well.

Our PCA result, illustrated in Figure 2, identifies some synaptic

populations but does not separate them sufficiently for classifica-

tion. The loci tend to aggregate in clusters which correspond to a

few of the broader synaptic categorizations, namely GABAergic

and two common subtypes of glutamatergic synapses. We

identified the clusters using multivariate regression, that is, taking

VGAT (magenta). From top to bottom: all proteomic markers, glutamatergic presynaptic labels, glutamatergic postsynaptic labels, GABAergic labels.
This appears to be a glutamatergic synapse. (D) The synaptogram derived from the same synapse. Synapsin, top row, is repeated in red for the rest to
provide spatial context. Not shown, sixteen other colors and two redundant labels (synapsin and VGluT1). Scale bar: 5 mm, size of synaptogram/
render volume, 1100 nm 6 1100 nm 6 630 nm.
doi:10.1371/journal.pcbi.1002976.g001

Automated Analysis of a Diverse Synapse Population
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a few of the more distant examples and inferring the contribution

of channels which brought them from the mean. The PCA

demonstrates the existence of separate populations corresponding

to each class, but in the reduced dimensionality of PCA, simple

thresholds are insufficient for proper class discrimination. The two

components plotted explain 50.4% of the variance between them.

An additional 20.9% of the variance is present in the second

principal component (not shown), which appeared to represent

synapse size.

Ideally, the dimensionality reduction accomplished by the above

methods would have proven amenable to simple thresholding. If

that where the case, multivariate regression might have led to

identification and, combined with a measure of the statistical

significance of cluster separation, classification of unknown

synapses based solely on where they fell in the unsupervised plot.

Since our clusters were not so cleanly separable, we resorted to a

more subtle stratagem involving supervised learning.

Classification
The ‘‘supervision’’ of supervised learning refers to the super-

vised training set, a random or semi-random collection of human-

rated examples from which the machine learning algorithm (MLA)

infers the rules for classification to extrapolate onto novel synapses.

To generate each item of the set, we presented a synaptogram to a

human trainer, who rated the synaptogram in one or more binary

categories representing the presence or absence of channels

relevant to synapse classes of interest. We could then associate

those categorizations with the already-derived feature vectors of

those examples, compiling them into a library of ‘‘correct’’

classifications for training.

MLA selection. Another necessary choice in supervised

learning is that of the MLA used as a classifier. In an early

training experiment, we created a training set of 200 examples

classified into glutamatergic/non-glutamatergic and GABAergic/

non-GABAergic categories. We fed these results into an assort-

ment of MLAs with minimal parameter optimization. The error

rates of the various MLAs are presented in Table 1. Although

many of these algorithms performed well, combined with the

posterior metrics detailed below, the random forest ensemble [24]

slightly edged out the competition and earned its place as our

classifier of choice. One observation worth mentioning: all

classifiers performed better when detecting GABAergic synapses,

as compared to glutamatergic. At the time this comparison was

conducted, we had presumed the systematic error to stem from the

reduced background staining of our GABAergic channels.

However, after conducting our channel-based classification

comparison (below), we currently suspect it has more to do with

the comparatively higher classification error of PSD95.

Global feature importance. An additional point in favor of

the random forest ensemble was the useful posterior metrics which

can be simply derived as a byproduct of its algorithmic structure.

Posterior metrics are methods of analyzing the process of

classification after classification. Their primary purpose is to relate

information about why a given locus was classified one way or

another, and meta-information such as the relationship between

classes and the features which proved more important than others

during classification.

Each decision tree in a random forest is a series of optimal

feature threshold branches with decisions for leaves. By keeping

track of which feature was used for each branch point, along with

the confidence that branch point engenders, we could gauge the

importance of the various features relative to each other. Overall,

our local brightness feature proved most useful, with the rest

Figure 2. Clustering of synapsin I imaged with array tomography. When the first and third principal components of the local brightness
feature eq 1 are plotted against each other, they form clusters identifiable as known synaptic subtypes, and explain 50.4% of the variance in the data.
doi:10.1371/journal.pcbi.1002976.g002

Table 1. Machine Learning Algorithm comparison.

LDA QDA NB NBkd RFE kNN SVM

Glut 0.128 0.114 0.110 0.104 0.084 0.176 0.222

GABA 0.044 0.036 0.062 0.052 0.036 0.070 0.178

Comparison of various supervised machine learning algorithms. A small training
set was used to compare the error rates of multiple MLAs when classifying
glutamatergic and GABAergic synapses in an early data set. From left to right:
Linear Discriminant Analysis (LDA); Quadratic Discriminant Analysis (QDA);
Naive Bayesian filter, gaussian distribution assumption (NB); Naive Bayesian
filter, normalized kernel distribution assumption (NBkd); Random Forest
Ensemble (RFE); k-means clustering (kNN); Support Vector Machine (SVN). k-
means clustering, an unsupervised clustering method, was included for
comparison’s sake.
doi:10.1371/journal.pcbi.1002976.t001
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decreasing in performance. Normalized to the local brightness

importance, feature values were 0.76, 1.00, 0.59 and 0.55 for the

integrated brightness, local brightness, center of mass and moment

of inertia features, respectively. Though the local brightness

feature may have outshone the others, all proved useful in

classification.

Channel-based classification. For our preliminary analy-

ses, including the MLA choice analysis and the human agreement

test, we classified synapses based on specific synapse classes: a

synaptic locus was marked positive if and only if its synaptogram

included all the requisite markers for a synapse of the class in

question. Iterated over an entire data set, a human expert looking

for this synaptic class (or an algorithm trained to do the same)

should be able to identify all such synapses. While this approach

adroitly combined the tasks of synapse identification and

classification for this particular type of synapse, it could not serve

as a general method for synapse identification. Novel synapse types

with unexpected channel combinations were likely to be discarded

as noise, if missing a critical channel, or else lumped in with

existing synapse types.

In order to facilitate the discovery of novel synapse populations,

we decided to split the classification of loci into multiple parallel

classification steps. Rather than train one MLA per synapse class

to detect the combination of all relevant channels, we trained one

MLA per channel to detect the ‘‘presence’’ of that channel at each

locus, and allowed the combination of their predictions to identify

synapses of that class. For example, rather than training a

glutamatergic synapse classifier to detect glutamatergic synapses,

we used individual classifiers for the relevant channels (VGluT1,

VGluT2, PSD95), and then combined their outputs in the same

logical way ((VGluT1 | VGluT2) \ PSD95) to identify

glutamatergic synapses.

Approaching the problem of synapse classification in this

manner imparts several benefits to our process. Principally, it

facilitates the identification of novel synapse types by allowing us to

quickly recombine classified channels. For example, if for some

reason we suspected the existence of VGAT-positive glutamatergic

synapses, it would be simple to add a \ VGAT term to the above

logical condition for glutamatergic synapses, and see if the

resulting population occurs significantly above chance.

An additional but perhaps more fundamental benefit of our

channel-based approach is its greater resemblance to the method

by which AT labeling can be validated with EM [17]. If desired,

the output of a channel-classifier can be compared directly to the

EM with a single immunolabel, as opposed to the three or so

needed to verify the output of a full synapse classifier.

Active learning and rare classes. In most supervised

learning models, training set examples are sampled entirely at

random in order for the training set to have the same statistical

properties of the full data set. This can be inefficient for us in the of

case of uncommon channels. The less common a given channel is,

the more negative results a human has to sort through before

reaching a usable number of positive results. For example,

VGluT3 positive loci can be identified in much the same manner

as VGluT1 or VGluT2 loci, but due to their paucity in the cortex

(we see roughly 1.2 VGluT3+ loci per one thousand negative loci),

human raters would have to classify excessive numbers of negative

loci for each positive locus in the training set.

In order to address this possibility, our classification process is a

two-phased nonrandom selection of training examples. It is

described in detail in the methods section but, briefly, functions

by actively using the classifier it is training to select examples that

help ensure a diverse training set, and presents each example’s

predicted class to the user. The net effect of the training

modification is to focus the human role more on verification and

correction than strict instruction. Aside from accomplishing the

goal of efficiently training classifiers for rare classes, we find that

the active version seems to be much less of a strain on human

patience than de novo training, even that aided by synaptograms. It

also reduces the necessary training set size to roughly twice the

number of requisite positive synapses in the training set, despite

the rarity of the class in question.

Once the human raters are satisfied with their training sets, we

pass the entire data volume through the classifiers for identifica-

tion, and collate the results into a combinatorial set of vectors.

Post-Classification Analysis
After classification, the predicted presence of each channel for a

given locus can be derived from the percentage of decision trees in

the random forest ensemble which attest to its presence. This

effectively serves as a confidence metric for the entire ensemble, and

is generally referred to as the ‘‘posterior probability.’’ An instance

with a posterior probability of 1.0 is unequivocally positive for the

class in question, one of 0.0 is undeniably negative. In this manner,

we reduce the 4c-long numeric feature vector to a c1-long numeric

posterior vector, representing the presence or absence of all c1

relevant channels. We can then use these vectors in a combinatorial

fashion to recreate synaptic classes. Glutamatergic VGluT1-

expressing synapses, for example, should at a minimum be positive

(posterior probability §0.5) for VGluT1 and PSD95.

Per-channel feature importance. Since our labeled chan-

nels occupy a number of spatial niches in the canonical synapse,

we were interested in determining which features contributed most

to which channel classifier, in case that reflected the differential

distribution. The results are shown in Figure 3. The channels

which differ from the norm (Figure 3-A) in selecting the center of

mass or moment of inertia features as their most important

included VGluT2, VGluT3 and VAChT. These channels are all

presynaptic, which eliminates spatial differentiation as a cause, but

interestingly they are all uncommon to rare. TH, also rare, did not

display this behavior, and also differs from the rest in that

‘‘neighboring’’ puncta were deemed acceptable for positive

classification. This may suggest that for rare classes where

neighbor discrimination is important, determining whether a

discovered punctum is part of the synapse in question or a close

neighbor plays a bigger role in the accuracy rate than discovering

the punctum in the first place.

OOB error as cross-validation step. The training process of

the random forest classification itself provides a reliable approxima-

tion of its error rate. During training, each tree in a random forest

excludes a random fraction of examples from its construction, which

can later be used in the manner of cross-validation testing to gauge

the accuracy of that tree. More precisely, each training example can

function as withheld data for a sub-random forest ensemble

composed of the fraction of decision trees to have excluded it during

training, and, taken in aggregate, are an estimate of the performance

of the full forest. This is called the ‘‘out-of-bag error’’ [24]. OOB

performance for the classes we are interested in can be found in

Table 2. The OOB error can be interpreted as a self-estimation of

the classifier’s true error rate. Of note is PSD95, with an error rate as

high as the rarer classes, probably due to its postsynaptic location

whereas all other markers are presynaptic.

Comparison to human rating. To quantitatively examine

this system’s performance when applied to real synapse classifica-

tion, we ran our human accuracy test set through the VGluT1 and

PSD95 classifiers, then compared the combined output (VGluT1

\ PSD95) loci with that given by humans. Although these two

channels had the worst OOB performance, the intersection of the

Automated Analysis of a Diverse Synapse Population
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two was about as accurate as the best human raters. We performed

a receiver operating characteristics analysis to describe the

classifier performance in a more detailed fashion; it is shown in

Figure 4B. The fact that the worst OOB error is still equal to the

agreement of human raters implies the output of the classifiers

should be usable with the same degree of confidence as that of

human raters.

Classification Application
Synapse class definition. The use of a channel-based

classification process allows us somewhat greater flexibility in the

definition of synaptic classes. Our lab has years of experience in

recognizing VGluT1-glutamatergic, VGluT2-glutamatergic and

GABAergic synapses [17], which compose the majority of

synapses in the cortex, and all are defined by the presence of at

least two specific markers, in addition to Synapsin I. For this paper

we have also included a number of labels targeting synaptic

populations for which we haven’t found a robust label for a

ubiquitous second protein. This includes VGluT3-positive synap-

ses, cholinergic (vesicular acetylcholine transporter [VAChT]) and

dopaminergic/noradrenergic (tyrosine hydroxylase [TH] positive)

synapses. It is our intention to find such corroborating labels

before these channels are used in a full experiment. Additionally,

dopaminergic synapses have been reported not to express much of

the Synapsin I/II isoforms, if they express them at all [25]. Since

we are using a Synapsin I marker to discover putative synapse loci,

those which are positive for TH may actually be identifying simple

synaptic complexes - dopaminergic synapses adjoining those of

another class.

Cortical depth analysis. One straightforward application of

synapse-classified array tomography can be had via cytoarchitec-

tonics, as seen in Figure 5. We first segregated the data into a

number of synaptic classes, then subdivided those into 10 mm bins

stretching from the pial surface of the cortex to the striatum. We

calculated the density of each bin’s population, and averaged the

Synapsin I local brightness feature to estimate the mean synapse

size. Overall, the synaptic densities were nearly twice as high as

expected in the literature [26], likely due to tissue shrinkage during

dehydration and LR White embedding [27]. To be certain, we

used erythrocyte diameter measurements to estimate the tissue

shrinkage of this block at 56% (Figure S1).

Although larger samples and higher sample sizes will be

necessary for statistical certainty of novel phenomena, there are

a few interesting known observations which help to validate the

method used here. First, there is an increase in VGluT2-positive

Figure 3. Relative feature importance for different molecular labels. When all classes were averaged (top left), our local brightness feature
(ii) saw the most use, followed by integrated brightness (i), center of mass (iii) and moment of inertia (iv). GAD, VGAT, PV, VGluT3, VGluT2, VGluT1,
PSD95, VAChT, and TH each make slightly different use of the feature set. VGluT3, VGluT2, and VAChT are notable in that they rely most heavily on
features other than local brightness.
doi:10.1371/journal.pcbi.1002976.g003

Table 2. MLA training comparison.

Channel OOB Error

GAD 0.0400

VGAT 0.0767

PV 0.0814

VGluT3 0.1146

VGluT2 0.0716

VGluT1 0.0690

PSD95 0.1215

VAChT 0.1394

TH 0.0333

Out-of-bag (OOB) error rate estimates for various classified markers. Order of
markers is the same as in Figure 6. Each classifier had a minimum training set
size of one hundred examples.
doi:10.1371/journal.pcbi.1002976.t002
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Figure 4. Comparison of human rating to machine learning. (A) Accuracy rates. i-vi - When compared against the average decisions of their
peers in a VGluT1 synapse discrimination task, humans performed at different accuracy levels based on their stringency of classification. vii - The
random forest ensemble, (VGluT1 \ PSD95), trained by human rater i, performed comparably to the humans. (B) Rater agreement histogram. 100
individually-classified synaptic loci are scored according to the number of ‘‘yes’’ votes received among the five humans composing the gold standard
consensus. Situations with unanimous agreement (0,5) make up half of the set (49 loci), with an additional 37 examples having only one dissenting
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synapse density in layer IV, which we expected given the laminar

characterization of VGluT2-expressing synapses [17]. Second, we

notice a decrease in the density of parvalbumin-positive GABAer-

gic synapses in layers I and VI, similar to [28]. Finally, we find that

VGluT1-positive synapses in layer 5a, though not more dense than

elsewhere in the cortex, are somewhat larger.

In order to gauge the repeatability of this analysis method we

confirmed the most prominent of these effects, the spike in

VGluT2-positive synapse density in layer IV, using data taken

from a mouse whisker barrel (courtesy of Nicholas Weiler,

unpublished). This is presented in Figure S2.

Pairwise proteomic analysis. Another promising possibility

is the use of data sets classified in our per-channel fashion to search

for unexpected proteomic combinations which may correspond to

novel synaptic subsets, particularly of rare classes. In any volume,

some background noise is to be expected: given the spatial

opinion (1,4). (C) Receiver operating characteristics (ROC) curve, for VGluT1 and PSD95 classifications on human-rated data. The ROC curve describes
the tradeoff between reducing false positives (left side of the curve) and maximizing true positives (right side of the curve). The displayed diagonal
line represents chance, with better classifiers occupying large areas between the diagonal and their own curves.
doi:10.1371/journal.pcbi.1002976.g004

Figure 5. Density and size of synapse classes as a function of depth through the cortex. (A) Synapse density through the cortex. * - VGluT2
synapse density peaks in layer IV. PV-positive GABAergic synapse density is slightly decreased in layer I, and significantly lacking in layer VI. (B)
Synapse size estimated using the synapsin local brightness measurement. ** - VGluT1 size peaks in layer Va (pv0.05).
doi:10.1371/journal.pcbi.1002976.g005
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distribution of synapses, it is inevitable that some synapses will

have asynaptic puncta, or those belonging to nearby synapses,

expressed in the region of analysis. Assuming that two classified

markers have independent distributions, the expected number of

loci in a volume which will be classified positive for both is the

product of their probabilities, Eij~Pi � Pj . We can compare this

with Fij, the number of colocalized loci actually found in the data

set, and use a two-tailed binomial test to check for significance and

reject stochastic noise as an explanation.

For example, VGluT3 has previously been intimated to be

present in a very small subset of cortical GABAergic synapses [29].

Since we have labeled both GABAergic synapses and VGluT3

puncta in the course of classifying their respective categories, we

can simply retain those GABAergic synapses which classed

VGluT3-positive. A two-tailed binomial test can tell if the overlap

we observe (82 synapses) is significantly different from that we

would expect by multiplying the two class probabilities together

(43 synapses). Those are small numbers in a data set of nearly a

million classified synapses, but the difference between them is

significant (pv0.001).

Using the nine classified channels in our present analysis, we ran

binomial tests to calculate the normalized pairwise relationship

between each of them. Our results are presented in Figure 6. The

significant results match our expected relationships for the most

part - GAD, VGAT, parvalbumin all colocalize, as do VGluT1/

PSD95 and VGluT2/PSD95, and all three categories are mutually

exclusionary. There are a few points of interest - as mentioned,

VGluT3 colocalizes with all GABAergic channels and excludes

itself from PSD95, corroborating the literature’s suggestion of

VGluT3 as a supporting neurotransmitter and not a primary

glutamatergic synapse class on its own [30]. Additionally, TH

generally avoids both VGluT1 and VAChT, but shows positive

copresence with VGluT2 (though this relationship disappears in

the striatum).

Discussion

Synapse Class Discovery
When we began the class discovery process as shown in Figure 6,

we expected relationships based on our preconceived notions of a

few synapse classes: that GAD, VGAT and parvalbumin should all

be copresent to some extent [28], and that VGluT1 and VGluT2

should each colocalize with PSD95, but not with each other [31].

Since the algorithm was partially developed with these relation-

ships in mind, it is unsurprising that we found them.

The other channels we examined, VGluT3, VAChT and TH,

had fewer performance expectations, largely due to their paucity

in the data set. Of the three, VGluT3 displayed the most

interestingly unexpected behavior, avoiding the common gluta-

matergic markers and colocalizing instead with all GABAergic

synaptic markers. This is most likely a rare but suspected role of

VGluT3 in the cortex [30], co-expressed with GAD in a minor

population of excitatory interneurons. If so, a followup experiment

with larger volumes may be able to more effectively study this

sparse population, but its detection given even a small number of

examples lends us a degree of confidence that our analysis returns

usable results sufficient to detect novel synaptic phenomena.

Another interesting result with even fewer candidate synapses is

a cortex-only localization of VGluT2 and TH. Dopaminergic

(TH) neurons have been reported to express VGluT2 in rat

cultures [32], midbrain and hypothalamus [33]. It is possible that

these are afferent projections from subthalamic nuclei, in which

case their localization within the cortex and further proteomic

differentiation would be interesting to examine in more detail.

However, with current volume sizes we only find a dozen of these

appositions, so at this time it would be problematic to assert certain

confirmation of their existence, much less their distribution.

Human Consensus Formation
The variance of human raters raises a few interesting questions

to look into in the future. Two of the six raters (#2 and #6) self-

reported using a stricter standard of classification than the rest:

when an example was at all doubtful, they classified it as being

negative. Effectively, these raters elected to position themselves on

the left side of the ROC curve, trading an increase in false

negatives for reduced false positives. Depending on the applica-

tion, stricter classification may be preferable. We tested an

example of this sort of premeditated error ourselves by training

a number of MLAs with various classification criteria, and

comparing their output. These results are presented in Table 3.

As one might expect, we found that a bit of bias in the training

process could go a long way to reducing either Type I or II errors,

at the cost of increasing the other, and that this effect is

exaggerated when processing examples human raters find difficult.

Based on our experiences, we would recommend taking time to

discuss questionable examples and reasons for rating them one

way or another. Such conversations are rather illuminating and

very effective at getting everyone to agree on a common standard

of classification.

Limitations and Future Work
There are two significant limitations to the questions which can

be asked using this method. The first and strictest: an array

tomography volume is a decidedly terminal snapshot of a piece of

tissue. This precludes experiments which would watch a particular

cell or dendrite change over time, or in response to learning [34],

except in animal models which are stereotyped enough for

different animals to have equivalent nervous systems, namely C.

Elegans [35] and Drosophila [36]. Synapse populations are

assumed to be fairly invariant between individual mice (and

presumably humans), however, which allows us to study changes

to synaptic classes as a whole in response to plasticity or disease.

The second limitation is more easily rectified. Our analysis

partially depends on limiting the scope of the problem to that

required to identify synapses at locations already suspected to

contain a synapse. For common synapse classes this is easy. They

all express Synapsin I, so wherever we find our Synapsin I marker,

there may be a synapse. As mentioned, we have already begun to

abut the usefulness of Synapsin I, which may not be expressed in

dopaminergic synapses [25]. Using a pan-Synapsin antibody

would be a straightforward solution to catching all dopaminergic

synapses, but it is fully possible that other, more exotic synapse

types may not express Synapsin at all, instead relying on some

currently unknown mechanism to perform the same function.

Establishing a robust system for synapse classification in array

tomographic volumes opens up a number of avenues for

addressing biological questions. It allows us to conduct single-

synapse analyses in large regions of tissue, which lets us study rare

or spatially-segregated populations. It helps us discover new

synaptic populations and novel variations on known synapse types,

and gives us an unprecedented level of control over the proteomic

complexity we can bring to bear.

Materials and Methods

Acquisition of Array Tomographic Volume
All procedures related to the care and treatment of animals were

approved by the Administrative Panel on Laboratory Animal Care
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Figure 6. Positive and negative pairwise channel copresence. Symbols denote interesting comparisons with statistical significance of
pv0:001. Red squares represent label pairs which are copresent more than expected, blue squares less than expected by chance. * - GABAergic
markers are copresent with each other, but avoid glutamatergic and TH markers. ˆ - VGluT1/2 are copresent with PSD95, but not with each other. # -
VGluT3 is present with all three GABAergic markers, but avoids VGluT1 and PSD95. & - VGluT2 shows some presence with TH. , - TH tends to avoid
VAChT.
doi:10.1371/journal.pcbi.1002976.g006

Table 3. Estimated error rates for different training models.

All Examples

Strategy False Positive False Negative

Normal 0.006 0.003

Gullible 0.142 ,0.001

Cynical ,0.001 0.212

Easy Examples

Strategy False Positive False Negative

Normal 0.007 0.004

Gullible 0.104 ,0.001

Cynical ,0.001 0.146

Hard Examples

Strategy False Positive False Negative

Normal ,0.001 0.001

Gullible 0.250 ,0.001

Cynical ,0.001 0.398

Type I and II error breakdown for various training regimes. (Top) Classifiers trained with varying approaches to handling ambiguous cases can be effectively positioned
along their ROC curve. (Bottom) When data is further broken into easy and hard cases, easy examples see moderately increased agreement and hard examples see more
disagreement, resembling the human agreement histogram of Figure 4.
doi:10.1371/journal.pcbi.1002976.t003
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at Stanford University. All volumes were acquired from mouse

cortex, line C57BL/6J, using the methodology given in [17].

One adult mouse was used for this study. The animal was

anesthetized by halothane inhalation and its brain quickly removed

and placed in 4% formaldehyde and 2.5% sucrose in phosphate-

buffered saline (PBS) at room temperature. Its cerebral hemisphere

was sliced coronally into three pieces and fixed and embedded using

rapid microwave irradiation (PELCO 3451 laboratory microwave

system with ColdSpot; Ted Pella, Redding CA) as described in [37].

The tissue was dehydrated up to 70% ethanol.

Ribbons of serial ultrathin (70 nm) sections were cut with an

ultramicrotome (EM UC6, Leica Microsystems, Wetzlar, Ger-

many) as described in [37]. The ribbons were mounted on subbed

coverslips (coated with 0.5% gelatin and 0.05% chromium

potassium sulfate) and placed on a hot plate (60 C) for 30 min.

For SEM imaging, the subbed coverslips were also carbon coated

using a Denton Bench Top Turbo Carbon Evaporator (Denton

Vacuum, Moorestown, NJ). Subbed and carbon coated coverslips

were also prepared for mounting ribbons of sections to be used for

multiple immunostaining rounds (w6).

Staining was performed as described in [37]. The coverslips

with sections were mounted using SlowFade Gold antifade with

DAPI (Invitrogen, Carlsbad CA). To elute the applied antibodies,

the mounting medium was washed away with dH2O and a

solution of 0.2 M NaOH and 0.02% SDS in distilled water was

applied for 20 min. After an extensive wash with Tris buffer and

distilled water, the coverslips were dried and placed on a hot plate

(60C) for 30 min.

The primary antibodies and their dilutions are listed in [17],

Table 1. Only well characterized commercial antibodies were used

and they were evaluated specifically for AT as described in the

Supplemental Experimental Procedures of [17]. For immunofluo-

rescence, Alexa Fluor 488, 594, and 647 secondary antibodies of the

appropriate species, highly preadsorbed (Invitrogen, Carlsbad CA)

were used at a dilution 1:150. The sequence of antibody application

in the multiround staining is presented in [17], Table S1.

Sections were imaged on a Zeiss Axio Imager.Z1 Upright

Fluorescence Microscope with motorized stage and Axiocam HR

Digital Camera as described in [37]. Briefly, a tiled image of the

entire ribbon of sections on a coverslip was obtained using a 10

objective and the MosaiX feature of the software. The region of

interest was then identified on each section with custom-made

software and imaged at a higher magnification with a Zeiss 63/1.4

NA Plan Apochromat objective, using the image-based automatic

focus capability of the software. The resulting stack of images was

exported to ImageJ, aligned using the MultiStackReg plugin and

imported back into the Axiovision software to generate a volume

rendering. When a ribbon was stained and imaged multiple times,

the MultiStackReg plugin was used to register the stacks generated

from each successive imaging session with the first session stacks

based on the DAPI channel, then a second within-stack alignment

was applied to all the stacks. Since DAPI was stained in all imaging

sessions it made an ideal candidate for alignment, and the

alignment transformation of each imaging session’s DAPI channel

was propagated to the other members of that session to bring the

entire channel set into the same coordinate space.

To reconstruct the larger volume of tissue used in this study, we

first used Zeiss Axiovision software to stitch together individual

high-magnification image tiles and produce a single mosaic image

of each antibody stain for each serial section in the ribbon,

creating a z stack of mosaic images for each fluorescence channel

instead of a single field of view stack. To coarsely align the image

stacks, we used the MultiStackReg plugin with the DAPI channel,

as described above and in [37].

To analyze synapse-level structures an additional alignment step

was needed to remove a minor non-linear physical warping

introduced into the ribbons by the sectioning process. We used a

second ImageJ plugin, autobUnwarpJ (available at http://www.

stanford.edu/,nweiler), which adapts an algorithm for elastic

image registration using vector-spline regularization [38]. As

before, we aligned only a single channel, Synapsin, and

propagated the generated transformation to the other channels.

Synapsin proved ideal for this purpose because it is a dense, high-

frequency channel whose labeled objects are still considerably

thicker than a single section, creating good fiducial markers for the

alignment process.

Finally, data used for Table 3 and Figure S2 were processed

after imaging using a method of deconvolution recently published

by our lab [39]. This does not seem to affect MLA performance,

but the smaller, more discrete puncta do cause an increase in the

number of synapsin local maxima, and therefore generates more

extracted synapsin loci. Future work using deconvolved volumes

may benefit from incorporating an additional filtering step in the

extraction process to either smooth the data before finding local

maxima or segment puncta more directly.

Normalization and Background Subtraction of Volumetric
Data

Before analyzing imaged volumes, we subtracted the back-

ground from each fluorescent channel using a 10610 pixel (1 mm2)

rolling ball filter to remove systematic non-punctate background

fluorescence, then normalized each slice of the stack without

saturating any pixels, such that the brightness histogram of each

section was stretched as much as possible without loss of

information. No other image processing, including removal of

fluorescence due to foreign material, nonspecific staining, etc, was

performed before analysis.

Extraction of Synaptic Loci
To extract a list of putative synapse locations from raw volume

data, we first identified individual synapsin puncta by convolving

the synapsin channel with a 36363 local maxima filter; retaining all

voxels with a brightness § those of its 26-voxel neighborhood.

Then, we passed the synapsin maxima through a connected

component filter to reduce peak voxel clumps (caused by

discretization of the fluorescence data) to centroids, and discarded

those below a deliberately low threshold (10% of the total brightness

range) as being too dim to represent a real synapse. What remained

was a list of putative synapse locations, or ‘‘synaptic loci,’’ so named

for their central role in later classification steps.

Estimating Human Rater Agreement
In order to gauge the reliability of any single human expert’s

rating, we performed a qualitative test of the consistency of human

classification. We presented a set of one hundred randomly-

selected synaptograms to a group of six human raters who were

familiar with the task of interpreting synaptograms, and instructed

them to classify the set based on whether or not the synaptogram

was centered on a glutamatergic synapse. Once collated, we

considered the true classification of a given synaptogram to be that

of a simple majority vote of the first five raters (to prevent ties).

When we compared each rater’s performance relative to the

average, we found an average accuracy rate of 77.7%, with a

standard deviation of 10.1% (Figure 4). The largest source of

variance arose from the self-reported stringency of the raters, in

how much ambiguity they found acceptable when classifying a

locus as positive.
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Estimating MLA Agreement
To test the influence that training stringency and classification

difficulty have on MLA performance, we repeated the above test with

three classifiers trained by rater 1. In addition to the classifier trained

with the default strategy, classifiers that would attempt to guess ‘‘yes’’

or ‘‘no’’ in ambiguous cases were trained and their mutual

performance compared, using their average agreement to establish

a gold standard as was the case for the humans. We also subdivided

the data set further into ‘‘easy’’ versus ‘‘hard’’ cases through the use of

a fourth MLA, and compared those conditions as well.

PCA Image Treatment
The color of each point in the PCA figure was determined by

taking the extreme outliers of the three clusters, determining their

feature composition via multivariate regression, taking the dot

product of the feature weight vectors with the feature vector of

each locus, and assigning that to red, green or blue for the

VGluT1, VGluT2, and GABA clusters respectively. Colors were

manually normalized to be of approximately equal intensity, and

synaptic loci not strongly represented in any of the three colors

were removed to better visualize cluster relationship.

MLA Training Strategy
The training of our machine learning algorithm differs from

standard supervised learning, in which training examples are

chosen at random, by instead selecting examples which together

compose a varied training set. We also added a preprocessing step

to facilitate the training of very rare classes, on our case VAchT

and VGluT3. Thus the training set generation occurs in two

phases. The first phase is to ‘‘prime’’ the training set data for rare

classes by choosing one of each class’s requisite presynaptic

channels and randomly sampling a subset from the loci for which

the channel’s local brightness is more than two standard deviations

above the mean. A number of class subsets generated in this

manner are collated, each class contributing to the negative

examples of the rest. The second phase is an ‘‘active’’ training

process in which a human rater and the MLA being trained work

in tandem to speed training, a technique known as active learning

[40,41]. At each step, the half-trained classifier selects a few

examples, half of which it thinks are positive and half negative, to

present to the rater for verification and feedback.

In pseudocode, the training proceeds according to the following

algorithm:

while Human wishes to train do

Load training synaptogram population, P

Human selects a synaptic category

Train RFE using partially classified training set T , display

predicted error rate

while Human wishes to add training examples do

Randomly choose c, where c[½True,False�
Randomly choose a synaptogram s from subpopulation Pc,

the elements of P classified as c

Display s and c to human for verification

Add/Update s in T to reflect human input

end while

end while

Normalization of Pairwise Channel Data
To produce the pairwise channel copresence map, for each

marker pair (i,j) we calculated the probability of co-occurrence

Eij~Fi=N � Fj=N , where Fi is the number of loci found to be

positive for i, and N is the number of total loci in the population.

Multiplying by N gives us the expected population, Eij. We

compared this number with the observed population Fij using

difference over sum normalization to find the normalized pairwise

relationship Rij~(Fij{Eij)=(FijzEij). These relationships made

pairwise comparisons easy to interpret, with one minor counter-

intuitive exception: markers which comprised a substantial

proportion of the synaptic loci population (VGluT1 and PSD95)

had reduced values, even with themselves, owing to their high Eij.
To bring those into the same reference frame as the rest, we

normalized again using the reciprocal of the sum of the

relationship identity reciprocals, that is,

Nij~Rij � (1=Riiz1=Rjj)=2. Finally, since the previous step

disrupted negative relationship scaling such that the most negative

pairs (VGluT1 vs GABAergic markers) reached nearly 23.0, we

multiplied the positive ratings by 3 to match once more.

Perpendicularization of Cortical Data
To simplify the calculation of the cortical depth-dependent

metrics used in Figure 5, such that any given Y-value represented

tissue at the same cortical depth, we needed to correct a minor

slant in the raw volume. We measured the degree of tissue slope

using the pial surface and the white matter/striatum boundary,

and imposed an affine transformation on the loci, linearly

interpolating them to be level. The underlying data and the

features used to classify the loci were not changed as a result of this

process.

Software Packages Used
Image normalization, locus discovery and feature extraction

were implemented and performed using Fiji (http://fiji.sc/).

Training set generation was implemented as a browser-based

application, coded in Python, to permit our experts to work at

their leisure. We used R for interactive classification for its ease of

Python integration, but the final random forest classifiers, trained

on the complete training set alone, used MATLAB (the

TreeBagger class). Imaris was used to render the data for

visualization of Figure 1.

All implemented code used in this analysis is available at http://

code.google.com/p/smithlabsoftware/ under a GPL v3 license.

Supporting Information

Figure S1 Erythrocyte diameter as indicator of tissue
shrinkage. (A) A single 200 nm section from the same block of

prepared tissue as the full cortical depth analysis, displaying

autofluorescent red blood cells with a maximum diameter of 4.6

mm (arrows). (B) Fresh erythrocytes have a diameter of 6 mm
(arrows), indicating a linear shrinkage of 23% and a volumetric

shrinkage of 54% as a side effect of tissue dehydration. Scale bar 2

mm.

(TIF)

Figure S2 Layer 3/4 VGluT2+ synapse distribution.
Processed in the same manner as the full depth analysis of Figure 5,

VgluT2+ synapses display a similar peak density at the boundary

between layer 3 and 4. The two populations, shown here

separately for clarity, were taken from adjacent fields of view

with an approximately 10% overlap. Each bin represents 10 mm of

cortical depth.

(TIF)
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